Graph Operations Decreasing Values of Degree-Based Graph Entropies

Jingzhi Yan ${ }^{a}$, Feng Guan ${ }^{b, *}$
${ }^{a}$ School of Information Science and Engineering
Lanzhou University, Lanzhou 730000, PR China
${ }^{b}$ Mathematics Teaching and Research Group
Lanzhou No. 51 Senior High School, Lanzhou 730000, PR China
yanjingzhi@lzu.edu.cn, lookmap@sina.com

(Received March 14, 2022)

Abstract

The degree-based graph entropy I_{d} is a parametric measure derived from an information functional defined by vertex degrees of a graph, which is used to characterize the structure of complex networks. Determining minimal values of I_{d} is challenging due to a lack of effective methods to analyze properties of minimal graphs. In this paper, we investigate minimal properties of the graph entropy in (n, m)-graphs and define two new graph operations, which can decrease the values of I_{d}.

1 Introduction

Graph entropies are useful measures of the complexity of a system described as a graph. There have been various graph entropies in different applications [5] to play different roles. Among them, Dehmer [4] presented a framework for constructing new entropies based on information functionals, aiming to infer and characterize the relational structure of complex

[^0]networks. Therefore, many graph invariants were employed to define information functionals $[1,8,9]$. And as a consequence, degree-based graph entropies [2] have been introduced and have begun to draw the attention of researchers in information theory, graph theory, and mathematical chemistry.

Let G be an (n, m)-graph, that is, with n vertices and m edges, and the vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Let $d_{G}\left(v_{i}\right)$ or $d\left(v_{i}\right)$ denote the degree of v_{i}. We refer the reader to [2] for further details about the degree-based graph entropy and only present the simplified definition.

Definition 1. The degree-based entropy of G is defined as

$$
I_{d}(G)=\log (2 m)-\frac{1}{2 m} \sum_{i=1}^{n} d\left(v_{i}\right) \log d\left(v_{i}\right)
$$

The logarithms are always taken to the base two in this paper. And for the purposes of this discussion, let $f\left(d\left(v_{i}\right)\right)=d\left(v_{i}\right) \log d\left(v_{i}\right)$ and $h(G)=$ $\sum_{i=1}^{n} f\left(d_{i}\right)$. Then $I_{d}(G)=\log (2 m)-\frac{1}{2 m} h(G)$ and the minimum value of $I_{d}(G)$ can be easily obtained from the maximum value of $h(G)$.

In [2], the authors studied extremal properties of I_{d} and obtained the extremal values of trees, unicyclic graphs, and bicyclic graphs. Das and Shi [3] gave an upper bound of graph entropies based on degree powers, a generalization of I_{d}, for graphs with given numbers of vertices and a lower bound for trees. It is more challenging to determine minimal values of graph entropies due to a lack of effective methods to tackle this problem [6]. The maximum values of I_{d} were obtained for (n, m)-bipartite graphs in [7]. Then Yan determined the graphs attaining the maximum values in all (n, m)-graphs, and the structure of the graphs attaining the minimum values was described as a certain family of graphs, namely $K_{a} T$ graphs.

Based on the work in [10], we conduct further research into the properties of $K_{a} T$ graphs and define two new graph operations, which decrease the values of I_{d}. It means that the operations can be effective tools to study extremal properties of graph entropies for general graphs.

2 Graph operations

The neighbor set $N_{G}(v)$ or $N(v)$ of a vertex v in G is the set of all vertices adjacent to v. Clearly, the degree of v in G is the size of $N(v)$. A complete graph K_{n} is a graph with n vertices such that all the vertices are pairwise adjacent. A graph with no edges is called an empty graph.

In [10], a certain family of graphs named $K_{a} T$ graphs were introduced, and the graphs attaining the maximum values of h were proved isomorphic to such graphs. Recall that $I_{d}(G)=\log (2 m)-\frac{1}{2 m} h(G)$. Next, we reproduce the results as a start.

Definition 2. A $K_{a} T$ graph is one whose vertex set can be partitioned into two disjoint sets S and T, where $|S|=a$, so that S and T induce a complete graph K_{a} and an empty graph, respectively, if $d\left(t_{i}\right) \geq d\left(t_{j}\right)$ for $t_{i}, t_{j} \in T$, then $N\left(t_{j}\right) \subseteq N\left(t_{i}\right)$.

Theorem 1. Any connected graph attaining the maximum value of h must be isomorphic to a $K_{a} T$ graph.

Obviously, a $K_{a} T$ graph with $a=1$ or 2 is a tree. Since only connected (n, m)-graphs that are not trees are considered, we assume $a \geq 3$ in this paper. In addition, if there is a vertex with degree a in T, we still get a graph with such structure after removing the vertex from T and adding it to K_{a}. So it is feasible to assume that $d(t) \leq a-1$ for any $t \in T$ in a $K_{a} T$ graph. For simplicity and clarity of exposition, we will refer to T as the independent set instead of a specified set in any $K_{a} T$ graph. $V\left(K_{a}\right)$ denotes the set of vertices in K_{a}.

As an immediate result, the following lemma will be of considerable use.

Lemma 1. Let G be a $K_{a} T$ graph, $V\left(K_{a}\right)=\left\{v_{1}, v_{2}, \ldots, v_{a}\right\}$, and suppose that $d\left(v_{1}\right) \geq d\left(v_{2}\right) \geq \cdots \geq d\left(v_{a}\right)$. Then
(1) $N(t)=\left\{v_{1}, v_{2}, \ldots, v_{d(t)}\right\}$ for any vertex $t \in T$;
(2) v_{i} is adjacent to all the vertices whose degrees are not less than i in T.

Proof. To prove (1), suppose, on the contrary, that there exists a vertex $t \in T$ such that $v_{i} \in N(t)$ and $v_{j} \notin N(t)$, where $d(t)+1 \leq i \leq a-1$ and

Figure 1. 2-edge distributions from t to t_{1}, t_{2}
$1 \leq j \leq d(t)$. Then we have $d\left(v_{i}\right) \leq d\left(v_{j}\right)$ for $i>j$, which means that there must exist another vertex s in T such that v_{j} is adjacent to s, but v_{i} is not. Therefore $N(t) \nsubseteq N(s)$ and $N(s) \nsubseteq N(t)$, which contradicts the definition of $K_{a} T$ graphs. Clearly, (2) is immediate by (1).

Next, we define two graph operations in $K_{a} T$ graphs, which are asserted by Lemmas 2 and 3 .

Definition 3. Let G be a $K_{a} T$ graph, $V\left(K_{a}\right)=\left\{v_{1}, v_{2}, \ldots, v_{a}\right\}$, and suppose $d\left(v_{1}\right) \geq d\left(v_{2}\right) \geq \cdots \geq d\left(v_{a}\right)$. If there are vertices $t, t_{1}, t_{2}, \ldots, t_{k}$ in T such that $k+1 \leq d=d(t) \leq d\left(t_{1}\right)=d\left(t_{2}\right)=\cdots=d\left(t_{k}\right)=d^{\prime}$, then the operations of deleting the edges $t v_{d}, t v_{d-1}, \ldots, t v_{d-k}$ and adding the edges $t_{1} v_{d^{\prime}+1}, t_{2} v_{d^{\prime}+1}, \ldots, t_{k} v_{d^{\prime}+1}$ in G are called a k-edge distribution from t to $t_{1}, t_{2}, \ldots, t_{k}$. The distribution is proper if there is no vertex of T with degree greater than $d-k$ and less than $d^{\prime}+1$ in the resulting graph.

The definition seems a little intricate, but by combining Lemma 1, we can present the procedure of the k-edge distribution from t to $t_{1}, t_{2}, \ldots, t_{k}$ in an intuitive way. First, arrange the vertices of K_{a} in a row in descending order of their degrees; then take away k edges incident with t from back

Figure 2. 2-edge accumulations from t_{1}, t_{2} to t
to front; add an edge between each t_{i} and the first vertex nonadjacent to $t_{i}, i=1,2, \ldots, k$. Figure 1 illustrates distributions from t to t_{1}, t_{2} in two $K_{a} T$ graphs, where (b) is proper and (a) is not. Note that the edges in K_{a} are omitted from the figure for brevity.

Definition 4. Let G be a $K_{a} T$ graph, $V\left(K_{a}\right)=\left\{v_{1}, v_{2}, \ldots, v_{a}\right\}$, and suppose $d\left(v_{1}\right) \geq d\left(v_{2}\right) \geq \cdots \geq d\left(v_{a}\right)$. If there are vertices $t_{1}, t_{2}, \ldots, t_{k}, t$ in T such that $2 \leq d^{\prime}=d\left(t_{1}\right)=d\left(t_{2}\right)=\cdots=d\left(t_{k}\right) \leq d(t)=d \leq a-k$, then the operations of deleting the edges $t_{1} v_{d^{\prime}}, t_{2} v_{d^{\prime}}, \ldots, t_{k} v_{d^{\prime}}$ and adding the edges $t v_{d+1}, t v_{d+2}, \ldots, t v_{d+k}$ in G are called a k-edge accumulation from $t_{1}, t_{2}, \ldots, t_{k}$ to t. The accumulation is proper if there is no vertex of T with degree greater than $d^{\prime}-1$ and less than $d+k$ in the resulting graph.

The two examples of 2-edge accumulations given in Figure 2 are both from t_{1}, t_{2} to t, but (b) is proper and (a) is not. It will be convenient to refer to a ' k-edge distribution' as a distribution and a ' k-edge accumulation' as an accumulation. It is easy to see that in either operation, edges are moved from vertices with smaller degrees to vertices with larger degrees. $G-u v$ and $G+u v$ denote the graphs obtained by deleting and adding the
edge $u v$ in G.
Lemma 2. The graph obtained by performing a distribution in a $K_{a} T$ graph is also a $K_{a} T$ graph.

Proof. Let G be a $K_{a} T$ graph and $V\left(K_{a}\right)=\left\{v_{1}, v_{2}, \cdots, v_{a}\right\}$ with $d\left(v_{1}\right) \geq$ $d\left(v_{2}\right) \geq \cdots \geq d\left(v_{a}\right)$. Let G^{\prime} be the graph obtained by a distribution from t to $t_{1}, t_{2}, \ldots, t_{k}$ in G, where $k+1 \leq d=d(t) \leq d\left(t_{1}\right)=d\left(t_{2}\right)=\cdots=$ $d\left(t_{k}\right)=d^{\prime}$. By definition, we have
$G^{\prime}=G-t v_{d}-t v_{d-1}-\cdots-t v_{d-k+1}+t_{1} v_{d^{\prime}+1}+t_{2} v_{d^{\prime}+1}+\cdots+t_{k} v_{d^{\prime}+1}$.

Since $N_{G}(t)=\left\{v_{1}, v_{2}, \ldots, v_{d}\right\}$ and $N_{G}\left(t_{i}\right)=\left\{v_{1}, v_{2}, \ldots, v_{d^{\prime}}\right\}$ by part (1) of Lemma $1, N_{G^{\prime}}(t)=\left\{v_{1}, v_{2}, \ldots, v_{d-k}\right\}$ and $N_{G^{\prime}}\left(t_{i}\right)=\left\{v_{1}, v_{2}, \ldots, v_{d^{\prime}+1}\right\}$, $i=1,2, \ldots, k$. Then for any $s \in T, N_{G^{\prime}}(s)=\left\{v_{1}, v_{2}, \ldots, v_{d_{G^{\prime}}(s)}\right\}$. Clearly, $N_{G^{\prime}}(u) \subseteq N_{G^{\prime}}(v)$ for any vertices u and v with $d_{G^{\prime}}(u) \leq d_{G^{\prime}}(v)$, and hence G^{\prime} is a $K_{a} T$ graph.

Lemma 3. The graph obtained by performing an accumulation in a $K_{a} T$ graph is also a $K_{a} T$ graph.

Proof. The proof of this lemma is analogous to that of Lemma 2.

3 Minimal properties of I_{d}

The following two theorems show that both a proper distribution and a proper accumulation are operations that increase the values of h.

Theorem 2. Let G^{\prime} be a graph obtained by performing a proper distribution in $K_{a} T$ graph G. Then $h\left(G^{\prime}\right)>h(G)$.

Proof. Let $t, t_{1}, t_{2}, \ldots, t_{k}$ be vertices in T of $G, k \geq 1$, such that

$$
k+1 \leq d=d(t) \leq d\left(t_{1}\right)=d\left(t_{2}\right)=\cdots=d\left(t_{k}\right)=d^{\prime}
$$

Let $V\left(K_{a}\right)=\left\{v_{1}, v_{2}, \ldots, v_{a}\right\}$ with $d\left(v_{1}\right) \geq d\left(v_{2}\right) \geq \cdots \geq d\left(v_{a}\right)$. Assume that the distribution from t to $t_{1}, t_{2}, \ldots, t_{k}$ is proper, and G^{\prime} is the resulting
graph. By Lemma $2, G^{\prime}$ is a $K_{a} T$ graph. Then we have

$$
G^{\prime}=G-t v_{d}-t v_{d-1}-\cdots-t v_{d-k+1}+t_{1} v_{d^{\prime}+1}+t_{2} v_{d^{\prime}+1}+\cdots+t_{k} v_{d^{\prime}+1}
$$

Recall that $f\left(d\left(v_{i}\right)\right)=d\left(v_{i}\right) \log d\left(v_{i}\right)$ and $h(G)=\sum_{i=1}^{n} f\left(d_{i}\right)$. Let

$$
\begin{array}{ll}
A=f(d)-f(d-k) ; & B=f\left(d\left(v_{d^{\prime}+1}\right)+k\right)-f\left(d\left(v_{d^{\prime}+1}\right)\right) \\
C=k\left[f\left(d^{\prime}+1\right)-f\left(d^{\prime}\right)\right] ; & D=\sum_{i=d-k+1}^{d}\left[f\left(d\left(v_{i}\right)\right)-f\left(d\left(v_{i}\right)-1\right)\right]
\end{array}
$$

Then,

$$
\begin{equation*}
h(G)-h\left(G^{\prime}\right)=(A-C)-(B-D) \tag{1}
\end{equation*}
$$

Now we claim that $d\left(v_{d-k+1}\right)=d\left(v_{d^{\prime}+1}\right)+k+1$ in G. Since the distribution is proper, there is no vertex of T with degree greater than $d-k$ and less than $d^{\prime}+1$ in G^{\prime}. Therefore, by part (2) of Lemma 1, $d_{G^{\prime}}\left(v_{d-k+1}\right)=d_{G^{\prime}}\left(v_{d^{\prime}+1}\right)$, and so $d\left(v_{d-k+1}\right)=d\left(v_{d^{\prime}+1}\right)+k+1$. Then we have the inequality:

$$
d\left(v_{d}\right) \leq d\left(v_{d-1}\right) \leq \cdots \leq d\left(v_{d-k+1}\right)=d\left(v_{d^{\prime}+1}\right)+k+1
$$

Because $f(x)-f(x-1)$ is an increasing function,

$$
\begin{equation*}
D \leq k\left[f\left(d\left(v_{d^{\prime}+1}\right)+k+1\right)-f\left(d\left(v_{d^{\prime}+1}\right)+k\right)\right] \tag{2}
\end{equation*}
$$

In addition, since $d \leq d^{\prime}$,

$$
\begin{equation*}
C \geq k[f(d+1)-f(d)] \tag{3}
\end{equation*}
$$

So, by inequalities (2) and (3), we have

$$
\begin{aligned}
A-C & \leq[f(d)-f(d-k)]-k[f(d+1)-f(d)] \\
B-D & \geq\left[f\left(d\left(v_{d^{\prime}+1}\right)+k\right)-f\left(d\left(v_{d^{\prime}+1}\right)\right)\right] \\
& -k\left[f\left(d\left(v_{d^{\prime}+1}\right)+k+1\right)-f\left(d\left(v_{d^{\prime}+1}\right)+k\right)\right]
\end{aligned}
$$

Since $(f(x)-f(x-k))-k(f(x+1)-f(x))$ is an strictly increasing function and $d \leq a-1<d\left(v_{d^{\prime}+1}\right)+k, A-C<B-D$. Thus by equality (1), $h(G)<h\left(G^{\prime}\right)$.

Theorem 3. Let G^{\prime} be a graph obtained by performing a proper accumulation in a $K_{a} T$ graph G. Then $h\left(G^{\prime}\right)>h(G)$.

Proof. Let $t_{1}, t_{2}, \ldots, t_{k}, t, k \geq 1$, be vertices in T of G such that

$$
2 \leq d^{\prime}=d\left(t_{1}\right)=d\left(t_{2}\right)=\cdots=d\left(t_{k}\right) \leq d(t)=d \leq a-k
$$

Let $V\left(K_{a}\right)=\left\{v_{1}, v_{2}, \ldots, v_{a}\right\}$ with $d\left(v_{1}\right) \geq d\left(v_{2}\right) \geq \cdots \geq d\left(v_{a}\right)$, and G^{\prime} be the resulting graph after the proper accumulation from $t_{1}, t_{2}, \ldots, t_{k}$ to t. Then

$$
G^{\prime}=G-t_{1} v_{d^{\prime}}-t_{2} v_{d^{\prime}}-\cdots-t_{k} v_{d^{\prime}}+t v_{d+1}+t v_{d+2}+\cdots+t v_{d+k}
$$

and G^{\prime} is a $K_{a} T$ graph from Lemma 3. Let

$$
\begin{array}{ll}
A=k\left[f\left(d^{\prime}\right)-f\left(d^{\prime}-1\right)\right] ; & B=f\left(d\left(v_{d^{\prime}}\right)\right)-f\left(d\left(v_{d^{\prime}}\right)-k\right) \\
C=\sum_{i=1}^{k}\left[f\left(d\left(v_{d+i}\right)+1\right)-f\left(d\left(v_{d+i}\right)\right)\right] ; & D=f(d+k)-f(d)
\end{array}
$$

Clearly,

$$
\begin{equation*}
h(G)-h\left(G^{\prime}\right)=(A-D)-(C-B) \tag{4}
\end{equation*}
$$

Since the accumulation is proper, there is no vertex of degree greater than $d^{\prime}-1$ and less than $d+k$ in T of G^{\prime}. By part (2) of Lemma 1, we have $d_{G^{\prime}}\left(v_{d+k}\right)=d_{G^{\prime}}\left(v_{d^{\prime}}\right)$, and then $d\left(v_{d+k}\right)=d\left(v_{d^{\prime}}\right)-k-1$ in G. Since $f(x+1)-f(x)$ is an increasing function and $d\left(v_{d+1}\right) \geq d\left(v_{d+2}\right) \geq \cdots \geq$ $d\left(v_{d+k}\right)=d\left(v_{d^{\prime}}\right)-k-1$,

$$
\begin{equation*}
C \geq k\left[f\left(d\left(v_{d^{\prime}}\right)-k\right)-f\left(d\left(v_{d^{\prime}}\right)-k-1\right)\right] \tag{5}
\end{equation*}
$$

And by $d^{\prime} \leq d$,

$$
\begin{equation*}
A \leq k[f(d)-f(d-1)] \tag{6}
\end{equation*}
$$

Thus by inequalities (5) and (6), we have

$$
\begin{aligned}
A-D & \leq k[f(d)-f(d-1)]-[f(d+k)-f(d)] \\
C-B & \geq k\left[f\left(d\left(v_{d^{\prime}}\right)-k\right)-f\left(d\left(v_{d^{\prime}}\right)-k-1\right)\right]-\left[f\left(d\left(v_{d^{\prime}}\right)\right)\right. \\
& \left.-f\left(d\left(v_{d^{\prime}}\right)-k\right)\right]
\end{aligned}
$$

Since $k[f(x)-f(x-1)]-[f(x+k)-f(x)]$ is an strictly increasing function and $d \leq a-1<d\left(v_{d^{\prime}}\right)-k, A-D<C-B$, and so $h(G)<h\left(G^{\prime}\right)$ from equality (4).

References

[1] S. Cao, M. Dehmer, Z. Kang, Network entropies based on independent sets and matchings, Appl. Math. Comput. 307 (2017) 265-270.
[2] S. Cao, M. Dehmer, Y. Shi, Extremality of degree-based graph entropies, Inf. Sci. 278 (2014) 22-33.
[3] K.C. Das, Y. Shi, Some properties on entropies of graphs, MATCH Commun. Math. Comput. Chem. 78 (2017) 259-272.
[4] M. Dehmer, Information processing in complex networks: Graph entropy and information functionals, Appl. Math. Comput. 201 (2008) 82-94.
[5] M. Dehmer, A.Mowshowitz, A history of graph entropy measures, Inf. Sci. 181 (2011) 57-78.
[6] M. Dehmer, V. Kraus, On extremal properties of graph entropies, MATCH Commun. Math. Comput. Chem. 68 (2012) 889-912.
[7] Y. Dong, S. Qiao, B. Chen, P. Wan, S. Zhang, Maximum values of degree-based entropies of bipartite graphs, Appl. Math. Comput. 401 (2021) 126094.
[8] M. Ghorbani, M. Dehmer, S. Zangi, Graph operations based on using distance-based graph entropies, Appl. Math. Comput. 333 (2018) 547555.
[9] A. Ilić, M. Dehmer, On the distance based graph entropies, Appl. Math. Comput. 269 (2015) 647-650.
[10] J. Yan, Topological structure of extremal graphs on the first degreebased graph entropies, MATCH Commun. Math. Comput. Chem. 85 (2021) 275-284.

[^0]: *Corresponding author.

