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Abstract

The degree-based graph entropy I4 is a parametric measure de-
rived from an information functional defined by vertex degrees of a
graph, which is used to characterize the structure of complex net-
works. Determining minimal values of I4 is challenging due to a
lack of effective methods to analyze properties of minimal graphs.
In this paper, we investigate minimal properties of the graph en-
tropy in (n,m)-graphs and define two new graph operations, which
can decrease the values of 1.

1 Introduction

Graph entropies are useful measures of the complexity of a system de-
scribed as a graph. There have been various graph entropies in different
applications [5] to play different roles. Among them, Dehmer [4] presented
a framework for constructing new entropies based on information function-

als, aiming to infer and characterize the relational structure of complex
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networks. Therefore, many graph invariants were employed to define in-
formation functionals [1,8,9]. And as a consequence, degree-based graph
entropies [2] have been introduced and have begun to draw the atten-
tion of researchers in information theory, graph theory, and mathematical
chemistry.

Let G be an (n,m)-graph, that is, with n vertices and m edges, and the
vertex set V(G) = {v1,va,...,v,}. Let dg(v;) or d(v;) denote the degree
of v;. We refer the reader to [2] for further details about the degree-based
graph entropy and only present the simplified definition.

Definition 1. The degree-based entropy of G is defined as

1 n
14(G) = log(2m) — o — ;d(vi) log d(v;).

The logarithms are always taken to the base two in this paper. And for
the purposes of this discussion, let f(d(v;)) = d(v;)logd(v;) and h(G) =
3 f(d;). Then I4(G) = log(2m) — 5=h(G) and the minimum value of
=1

2m
Zld(G) can be easily obtained from the maximum value of h(G).

In [2], the authors studied extremal properties of Iy and obtained the
extremal values of trees, unicyclic graphs, and bicyclic graphs. Das and
Shi [3] gave an upper bound of graph entropies based on degree powers, a
generalization of Iy, for graphs with given numbers of vertices and a lower
bound for trees. It is more challenging to determine minimal values of
graph entropies due to a lack of effective methods to tackle this problem [6].
The maximum values of I were obtained for (n, m)-bipartite graphs in [7].
Then Yan determined the graphs attaining the maximum values in all
(n,m)-graphs, and the structure of the graphs attaining the minimum
values was described as a certain family of graphs, namely K,T graphs.

Based on the work in [10], we conduct further research into the prop-
erties of K,T graphs and define two new graph operations, which decrease
the values of I;. It means that the operations can be effective tools to

study extremal properties of graph entropies for general graphs.
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2 Graph operations

The neighbor set Ng(v) or N(v) of a vertex v in G is the set of all vertices
adjacent to v. Clearly, the degree of v in G is the size of N(v). A complete
graph K, is a graph with n vertices such that all the vertices are pairwise
adjacent. A graph with no edges is called an empty graph.

In [10], a certain family of graphs named K, T graphs were introduced,
and the graphs attaining the maximum values of h were proved isomor-
phic to such graphs. Recall that I4(G) = log(2m) — 5-h(G). Next, we

reproduce the results as a start.

Definition 2. A K,T graph is one whose vertex set can be partitioned
into two disjoint sets S and T, where |S| = a, so that S and T induce a
complete graph K, and an empty graph, respectively, if d(t;) > d(t;) for
ti,t; € T, then N(t;) C N(t;).

Theorem 1. Any connected graph attaining the maximum value of h must

be isomorphic to a K,T graph.

Obviously, a K,T graph with a = 1 or 2 is a tree. Since only connected
(n,m)-graphs that are not trees are considered, we assume a > 3 in this
paper. In addition, if there is a vertex with degree a in T', we still get a
graph with such structure after removing the vertex from 7T and adding
it to K,. So it is feasible to assume that d(¢f) < a —1 for any ¢t € T in a
K, T graph. For simplicity and clarity of exposition, we will refer to T as
the independent set instead of a specified set in any K,T graph. V(K,)
denotes the set of vertices in K.

As an immediate result, the following lemma will be of considerable

use.

Lemma 1. Let G be a K, T graph, V(K,) = {v1,v2,...,v.}, and suppose
that d(v1) > d(ve) > -+ > d(v,). Then
(1) N(t) = {v1,v2,...,v4)} for any vertex t € T}

(2) v; is adjacent to all the vertices whose degrees are not less than ¢ in 7.

Proof. To prove (1), suppose, on the contrary, that there exists a vertex
t € T such that v; € N(t) and v; ¢ N(t), where d(t) +1 <i <a—1 and
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Figure 1. 2-edge distributions from ¢ to t1,t2

1 < j <d(t). Then we have d(v;) < d(v;) for ¢ > j, which means that
there must exist another vertex s in T' such that v; is adjacent to s, but
v; is not. Therefore N(t) € N(s) and N(s) € N(t), which contradicts the
definition of K, T graphs. Clearly, (2) is immediate by (1). |

Next, we define two graph operations in K,T graphs, which are asserted

by Lemmas 2 and 3.

Definition 3. Let G be a K,T graph, V(K,) = {v1,v2,...,0,}, and
suppose d(vy) > d(vg) > -+ > d(v,). If there are vertices t,t1,ta,...,tx
in T such that k+1 < d = d(t) < d(t1) = d(t2) = -+ = d(tx) = d',
then the operations of deleting the edges tvg, tvg_1,...,tvg_r and adding
the edges t1vg/ 41, t2Vg/ 41, - - -, LtV +1 in G are called a k-edge distribution
from t to ty,ts,...,tx. The distribution is proper if there is no vertex of T

with degree greater than d — k and less than d’ + 1 in the resulting graph.

The definition seems a little intricate, but by combining Lemma 1, we
can present the procedure of the k-edge distribution from ¢ to tq,ts, ..., g
in an intuitive way. First, arrange the vertices of K, in a row in descending

order of their degrees; then take away k edges incident with ¢ from back
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Figure 2. 2-edge accumulations from t1,t2 to t

to front; add an edge between each ¢; and the first vertex nonadjacent to
ti,i=1,2,...,k. Figure 1 illustrates distributions from ¢ to tq,ts in two
K,T graphs, where (b) is proper and (a) is not. Note that the edges in

K, are omitted from the figure for brevity.

Definition 4. Let G be a K,T graph, V(K,) = {v1,va,...,v,}, and
suppose d(vy) > d(vg) > -+ > d(v,). If there are vertices t1,ta, ..., tg, t in
T such that 2 < d' =d(t1) =d(t2) = --- =d(tx) < d(t) =d < a—k, then
the operations of deleting the edges t1vg/, tavy, - .., vy and adding the
edges tvgy1,tvgra, ..., tugrr in G are called a k-edge accumulation from
t1,t2,...,tr to t. The accumulation is proper if there is no vertex of T
with degree greater than d’ — 1 and less than d + k in the resulting graph.

The two examples of 2-edge accumulations given in Figure 2 are both
from t1,ts to ¢, but (b) is proper and (a) is not. It will be convenient to
refer to a ‘k-edge distribution’ as a distribution and a ‘k-edge accumulation’
as an accumulation. It is easy to see that in either operation, edges are
moved from vertices with smaller degrees to vertices with larger degrees.

G —uv and G +uv denote the graphs obtained by deleting and adding the
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edge uv in G.

Lemma 2. The graph obtained by performing a distribution in o K,T
graph is also a K,T graph.

Proof. Let G be a K, T graph and V(K,) = {v1,va, - ,v,} with d(vy) >
d(ve) > -+ > d(v,). Let G’ be the graph obtained by a distribution from
t to ty,te,...,t, in G, where k+1 < d =d(t) < d(t;) =d(tz) = -+ =
d(ty) = d'. By definition, we have

G'=G —tvg —tvg_1 — - — tog_pt1 + L1Var41 + t2vgg1 + -+ LV 1.

Since Ng(t) = {v1,v2,...,v4} and Ng(t;) = {v1,ve,...,v4} by part (1)
of Lemma 1, Ng/ (t) = {v1,v2,...,v4—} and Ng(t;) = {v1,v2,..., 0041},
i=1,2,...,k Then for any s € T', Ng/(s) = {v1,v2,...,Va,, (s} Clearly,
Ng/(u) C Ngv(v) for any vertices u and v with dg(u) < dg (v), and hence
G’ is a K,T graph. [ ]

Lemma 3. The graph obtained by performing an accumulation in a K,T

graph is also a K, T graph.

Proof. The proof of this lemma is analogous to that of Lemma 2. |

3 Minimal properties of I;

The following two theorems show that both a proper distribution and a

proper accumulation are operations that increase the values of h.

Theorem 2. Let G’ be a graph obtained by performing a proper distribu-
tion in K,T graph G. Then h(G") > h(G).

Proof. Let t,t1,to,...,t; be vertices in T of GG, k > 1, such that
E+1<d=d(t) <d(t;) =d(tz) = - = d(tx) =d.

Let V(K,) = {v1,v2,...,v,} with d(v1) > d(v2) > -+ > d(v,). Assume
that the distribution from ¢ to t1, 2, . . ., t is proper, and G’ is the resulting
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graph. By Lemma 2, G’ is a K,T graph. Then we have
G =G —tvg—tog_1 — - — tWa—k+1 + 61041 + tavgr 41 + - -+ tpvar 41

Recall that f(d(v;)) = d(v;)logd(v;) and h(G) = > f(d;). Let

-

i=1

A= f(d) = f(d—k); B = f(d(var+1) + k) — f(d(var11));

d
C=klf(d+1)—fd); D= > [fdw:)) — f(dv:)-1)].
d—k

+1

1=

Then,
h(G) — h(G')=(A—-C)— (B - D). (1)

Now we claim that d(vqg—g+1) = d(va+1) + k + 1 in G. Since the
distribution is proper, there is no vertex of T" with degree greater than
d — k and less than d’ + 1 in G’. Therefore, by part (2) of Lemma 1,
der(Vi—g+1) = der(var41), and so d(vg—g+1) = d(vg+1) + k + 1. Then we
have the inequality:

d(va) < d(vg-1) < < d(Vg—k+1) = d(var41) + &+ 1.
Because f(x) — f(x — 1) is an increasing function,
D < k[f(d(va+1) +k+1) = f(d(va+1) + k)] (2)
In addition, since d < d’,
C>k[f(d+1) = f(d)]. (3)
So, by inequalities (2) and (3), we have

) = fld=K)] = k[f(d+1) — f(d)],
(var41) + k) = f(d(vars1))]
— k[f(d(var41) + k + 1) — f(d(var11) + k).
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Since (f(z)— f(x—k))—k(f(z+1)— f(x)) is an strictly increasing function
and d < a—1 < d(wg4+1) +k, A—C < B — D. Thus by equality (1),
h(G) < h(G"). [ |

Theorem 3. Let G’ be a graph obtained by performing a proper accumu-
lation in o K, T graph G. Then h(G') > h(G).

Proof. Let ty,ta,...,tg,t, k> 1, be vertices in T of G such that
2<d =d(t1)=d(tz) = =d(ty) <d(t) =d < a—k.

Let V(K,) = {v1,v2,...,v,} with d(v1) > d(v2) > -+ > d(v,), and G’ be

the resulting graph after the proper accumulation from ¢1,%s,...,t; to t.
Then
G =G- t1vg — Vg — - -+ — LUy + tvgy1 + tvgeo + -+ + tvgyk,

and G’ is a K,T graph from Lemma 3. Let
A= Kf(d) - (@ = 1)} B = f(d(va) — F(d(va) — F);
k
C= Z[f(d(UdJri) +1) = f(d(va:)); D= f(d+k)— f(d).

=

—

Clearly,
h(G) — h(G') = (A— D) — (C - B). (4)

Since the accumulation is proper, there is no vertex of degree greater than
d' — 1 and less than d + &k in T of G’. By part (2) of Lemma 1, we have
de/(vayr) = der(var), and then d(vgir) = d(vg) —k — 1 in G. Since
flx+1) — f(x) is an increasing function and d(vg41) > d(vaqs) > -+ >
d(vark) = d(va) —k =1,

C = k[f(d(var) = k) = f(d(var) =k = 1)]. (5)



413

And by d' < d,

A<E[f(d) = f(d—1)]. (6)
Thus by inequalities (5) and (6), we have

A—=D <K[f(d) = f(d=1)] = [f(d+Fk) = f(d)];
C =Bz k[f(d(va) — k) = f(d(var) =k = 1)] = [f(d(va))
— fd(var) — k)]

Since k[f(z) — f(x—1)] = [f(z+ k) — f(x)] is an strictly increasing function
andd <a—1<d(vgy)—k, A—D < C — B, and so h(G) < h(G’) from
equality (4). |
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