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Abstract

The degree-based graph entropy Id is a parametric measure de-
rived from an information functional defined by vertex degrees of a
graph, which is used to characterize the structure of complex net-
works. Determining minimal values of Id is challenging due to a
lack of effective methods to analyze properties of minimal graphs.
In this paper, we investigate minimal properties of the graph en-
tropy in (n,m)-graphs and define two new graph operations, which
can decrease the values of Id.

1 Introduction

Graph entropies are useful measures of the complexity of a system de-

scribed as a graph. There have been various graph entropies in different

applications [5] to play different roles. Among them, Dehmer [4] presented

a framework for constructing new entropies based on information function-

als, aiming to infer and characterize the relational structure of complex
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networks. Therefore, many graph invariants were employed to define in-

formation functionals [1, 8, 9]. And as a consequence, degree-based graph

entropies [2] have been introduced and have begun to draw the atten-

tion of researchers in information theory, graph theory, and mathematical

chemistry.

Let G be an (n,m)-graph, that is, with n vertices and m edges, and the

vertex set V (G) = {v1, v2, . . . , vn}. Let dG(vi) or d(vi) denote the degree

of vi. We refer the reader to [2] for further details about the degree-based

graph entropy and only present the simplified definition.

Definition 1. The degree-based entropy of G is defined as

Id(G) = log(2m)− 1

2m

n∑
i=1

d(vi) log d(vi).

The logarithms are always taken to the base two in this paper. And for

the purposes of this discussion, let f(d(vi)) = d(vi) log d(vi) and h(G) =
n∑

i=1

f(di). Then Id(G) = log(2m) − 1
2mh(G) and the minimum value of

Id(G) can be easily obtained from the maximum value of h(G).

In [2], the authors studied extremal properties of Id and obtained the

extremal values of trees, unicyclic graphs, and bicyclic graphs. Das and

Shi [3] gave an upper bound of graph entropies based on degree powers, a

generalization of Id, for graphs with given numbers of vertices and a lower

bound for trees. It is more challenging to determine minimal values of

graph entropies due to a lack of effective methods to tackle this problem [6].

The maximum values of Id were obtained for (n,m)-bipartite graphs in [7].

Then Yan determined the graphs attaining the maximum values in all

(n,m)-graphs, and the structure of the graphs attaining the minimum

values was described as a certain family of graphs, namely KaT graphs.

Based on the work in [10], we conduct further research into the prop-

erties of KaT graphs and define two new graph operations, which decrease

the values of Id. It means that the operations can be effective tools to

study extremal properties of graph entropies for general graphs.
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2 Graph operations

The neighbor set NG(v) or N(v) of a vertex v in G is the set of all vertices

adjacent to v. Clearly, the degree of v in G is the size of N(v). A complete

graph Kn is a graph with n vertices such that all the vertices are pairwise

adjacent. A graph with no edges is called an empty graph.

In [10], a certain family of graphs named KaT graphs were introduced,

and the graphs attaining the maximum values of h were proved isomor-

phic to such graphs. Recall that Id(G) = log(2m) − 1
2mh(G). Next, we

reproduce the results as a start.

Definition 2. A KaT graph is one whose vertex set can be partitioned

into two disjoint sets S and T , where |S| = a, so that S and T induce a

complete graph Ka and an empty graph, respectively, if d(ti) ≥ d(tj) for

ti, tj ∈ T , then N(tj) ⊆ N(ti).

Theorem 1. Any connected graph attaining the maximum value of h must

be isomorphic to a KaT graph.

Obviously, a KaT graph with a = 1 or 2 is a tree. Since only connected

(n,m)-graphs that are not trees are considered, we assume a ≥ 3 in this

paper. In addition, if there is a vertex with degree a in T , we still get a

graph with such structure after removing the vertex from T and adding

it to Ka. So it is feasible to assume that d(t) ≤ a − 1 for any t ∈ T in a

KaT graph. For simplicity and clarity of exposition, we will refer to T as

the independent set instead of a specified set in any KaT graph. V (Ka)

denotes the set of vertices in Ka.

As an immediate result, the following lemma will be of considerable

use.

Lemma 1. Let G be a KaT graph, V (Ka) = {v1, v2, . . . , va}, and suppose

that d(v1) ≥ d(v2) ≥ · · · ≥ d(va). Then

(1) N(t) = {v1, v2, . . . , vd(t)} for any vertex t ∈ T ;

(2) vi is adjacent to all the vertices whose degrees are not less than i in T .

Proof. To prove (1), suppose, on the contrary, that there exists a vertex

t ∈ T such that vi ∈ N(t) and vj /∈ N(t), where d(t) + 1 ≤ i ≤ a− 1 and
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Figure 1. 2-edge distributions from t to t1, t2

1 ≤ j ≤ d(t). Then we have d(vi) ≤ d(vj) for i > j, which means that

there must exist another vertex s in T such that vj is adjacent to s, but

vi is not. Therefore N(t) ̸⊆ N(s) and N(s) ̸⊆ N(t), which contradicts the

definition of KaT graphs. Clearly, (2) is immediate by (1).

Next, we define two graph operations inKaT graphs, which are asserted

by Lemmas 2 and 3.

Definition 3. Let G be a KaT graph, V (Ka) = {v1, v2, . . . , va}, and

suppose d(v1) ≥ d(v2) ≥ · · · ≥ d(va). If there are vertices t, t1, t2, . . . , tk

in T such that k + 1 ≤ d = d(t) ≤ d(t1) = d(t2) = · · · = d(tk) = d′,

then the operations of deleting the edges tvd, tvd−1, . . . , tvd−k and adding

the edges t1vd′+1, t2vd′+1, . . . , tkvd′+1 in G are called a k-edge distribution

from t to t1, t2, . . . , tk. The distribution is proper if there is no vertex of T

with degree greater than d− k and less than d′ +1 in the resulting graph.

The definition seems a little intricate, but by combining Lemma 1, we

can present the procedure of the k-edge distribution from t to t1, t2, . . . , tk

in an intuitive way. First, arrange the vertices of Ka in a row in descending

order of their degrees; then take away k edges incident with t from back
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Figure 2. 2-edge accumulations from t1, t2 to t

to front; add an edge between each ti and the first vertex nonadjacent to

ti, i = 1, 2, . . . , k. Figure 1 illustrates distributions from t to t1, t2 in two

KaT graphs, where (b) is proper and (a) is not. Note that the edges in

Ka are omitted from the figure for brevity.

Definition 4. Let G be a KaT graph, V (Ka) = {v1, v2, . . . , va}, and

suppose d(v1) ≥ d(v2) ≥ · · · ≥ d(va). If there are vertices t1, t2, . . . , tk, t in

T such that 2 ≤ d′ = d(t1) = d(t2) = · · · = d(tk) ≤ d(t) = d ≤ a− k, then

the operations of deleting the edges t1vd′ , t2vd′ , . . . , tkvd′ and adding the

edges tvd+1, tvd+2, . . . , tvd+k in G are called a k-edge accumulation from

t1, t2, . . . , tk to t. The accumulation is proper if there is no vertex of T

with degree greater than d′ − 1 and less than d+ k in the resulting graph.

The two examples of 2-edge accumulations given in Figure 2 are both

from t1, t2 to t, but (b) is proper and (a) is not. It will be convenient to

refer to a ‘k-edge distribution’ as a distribution and a ‘k-edge accumulation’

as an accumulation. It is easy to see that in either operation, edges are

moved from vertices with smaller degrees to vertices with larger degrees.

G−uv and G+uv denote the graphs obtained by deleting and adding the
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edge uv in G.

Lemma 2. The graph obtained by performing a distribution in a KaT

graph is also a KaT graph.

Proof. Let G be a KaT graph and V (Ka) = {v1, v2, · · · , va} with d(v1) ≥
d(v2) ≥ · · · ≥ d(va). Let G

′ be the graph obtained by a distribution from

t to t1, t2, . . . , tk in G, where k + 1 ≤ d = d(t) ≤ d(t1) = d(t2) = · · · =
d(tk) = d′. By definition, we have

G′ = G− tvd − tvd−1 − · · · − tvd−k+1 + t1vd′+1 + t2vd′+1 + · · ·+ tkvd′+1.

Since NG(t) = {v1, v2, . . . , vd} and NG(ti) = {v1, v2, . . . , vd′} by part (1)

of Lemma 1, NG′(t) = {v1, v2, . . . , vd−k} and NG′(ti) = {v1, v2, . . . , vd′+1},
i = 1, 2, . . . , k. Then for any s ∈ T , NG′(s) = {v1, v2, . . . , vdG′ (s)}. Clearly,
NG′(u) ⊆ NG′(v) for any vertices u and v with dG′(u) ≤ dG′(v), and hence

G′ is a KaT graph.

Lemma 3. The graph obtained by performing an accumulation in a KaT

graph is also a KaT graph.

Proof. The proof of this lemma is analogous to that of Lemma 2.

3 Minimal properties of Id

The following two theorems show that both a proper distribution and a

proper accumulation are operations that increase the values of h.

Theorem 2. Let G′ be a graph obtained by performing a proper distribu-

tion in KaT graph G. Then h(G′) > h(G).

Proof. Let t, t1, t2, . . . , tk be vertices in T of G, k ≥ 1, such that

k + 1 ≤ d = d(t) ≤ d(t1) = d(t2) = · · · = d(tk) = d′.

Let V (Ka) = {v1, v2, . . . , va} with d(v1) ≥ d(v2) ≥ · · · ≥ d(va). Assume

that the distribution from t to t1, t2, . . . , tk is proper, andG′ is the resulting
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graph. By Lemma 2, G′ is a KaT graph. Then we have

G′ = G− tvd − tvd−1 − · · · − tvd−k+1 + t1vd′+1 + t2vd′+1 + · · ·+ tkvd′+1.

Recall that f(d(vi)) = d(vi) log d(vi) and h(G) =
n∑

i=1

f(di). Let

A = f(d)− f(d− k); B = f(d(vd′+1) + k)− f(d(vd′+1));

C = k[f(d′ + 1)− f(d′)]; D =

d∑
i=d−k+1

[f(d(vi))− f(d(vi)− 1)].

Then,

h(G)− h(G′) = (A− C)− (B −D). (1)

Now we claim that d(vd−k+1) = d(vd′+1) + k + 1 in G. Since the

distribution is proper, there is no vertex of T with degree greater than

d − k and less than d′ + 1 in G′. Therefore, by part (2) of Lemma 1,

dG′(vd−k+1) = dG′(vd′+1), and so d(vd−k+1) = d(vd′+1) + k + 1. Then we

have the inequality:

d(vd) ≤ d(vd−1) ≤ · · · ≤ d(vd−k+1) = d(vd′+1) + k + 1.

Because f(x)− f(x− 1) is an increasing function,

D ≤ k[f(d(vd′+1) + k + 1)− f(d(vd′+1) + k)]. (2)

In addition, since d ≤ d′,

C ≥ k[f(d+ 1)− f(d)]. (3)

So, by inequalities (2) and (3), we have

A− C ≤ [f(d)− f(d− k)]− k[f(d+ 1)− f(d)],

B −D ≥ [f(d(vd′+1) + k)− f(d(vd′+1))]

− k[f(d(vd′+1) + k + 1)− f(d(vd′+1) + k)].
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Since (f(x)−f(x−k))−k(f(x+1)−f(x)) is an strictly increasing function

and d ≤ a − 1 < d(vd′+1) + k, A − C < B − D. Thus by equality (1),

h(G) < h(G′).

Theorem 3. Let G′ be a graph obtained by performing a proper accumu-

lation in a KaT graph G. Then h(G′) > h(G).

Proof. Let t1, t2, . . . , tk, t, k ≥ 1, be vertices in T of G such that

2 ≤ d′ = d(t1) = d(t2) = · · · = d(tk) ≤ d(t) = d ≤ a− k.

Let V (Ka) = {v1, v2, . . . , va} with d(v1) ≥ d(v2) ≥ · · · ≥ d(va), and G′ be

the resulting graph after the proper accumulation from t1, t2, . . . , tk to t.

Then

G′ = G− t1vd′ − t2vd′ − · · · − tkvd′ + tvd+1 + tvd+2 + · · ·+ tvd+k,

and G′ is a KaT graph from Lemma 3. Let

A = k[f(d′)− f(d′ − 1)]; B = f(d(vd′))− f(d(vd′)− k);

C =

k∑
i=1

[f(d(vd+i) + 1)− f(d(vd+i))]; D = f(d+ k)− f(d).

Clearly,

h(G)− h(G′) = (A−D)− (C −B). (4)

Since the accumulation is proper, there is no vertex of degree greater than

d′ − 1 and less than d + k in T of G′. By part (2) of Lemma 1, we have

dG′(vd+k) = dG′(vd′), and then d(vd+k) = d(vd′) − k − 1 in G. Since

f(x + 1) − f(x) is an increasing function and d(vd+1) ≥ d(vd+2) ≥ · · · ≥
d(vd+k) = d(vd′)− k − 1,

C ≥ k[f(d(vd′)− k)− f(d(vd′)− k − 1)]. (5)
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And by d′ ≤ d,

A ≤ k[f(d)− f(d− 1)]. (6)

Thus by inequalities (5) and (6), we have

A−D ≤ k[f(d)− f(d− 1)]− [f(d+ k)− f(d)];

C −B ≥ k[f(d(vd′)− k)− f(d(vd′)− k − 1)]− [f(d(vd′))

− f(d(vd′)− k)].

Since k[f(x)−f(x−1)]− [f(x+k)−f(x)] is an strictly increasing function

and d ≤ a − 1 < d(vd′) − k, A −D < C − B, and so h(G) < h(G′) from

equality (4).
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