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Abstract

The first degree-based entropy of a graph is the Shannon entropy
of its degree sequence normalized by the degree sum. In this paper,
we characterize the connected graphs with given order n and size m
that minimize the first degree-based entropy whenever n−1 ≤ m ≤
2n− 3, thus extending and proving a conjecture by Yan.

1 Introduction

The Shannon entropy of graph invariants has attracted significant atten-

tion in mathematical chemistry as a measure of uniformity of a molecular

structural aspect of interest. Mowshowitz [16] discussed the entropy of

the cardinality of the vertex orbits under graph automorphisms, while

Bonchev [1] focused on the entropy of the cardinality of the subset of

vertices having the same degree or eccentricity. Dehmer [7] introduced a
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more general framework to study the Shannon entropy of any graph in-

variant, normalized by its sum to yield an information functional. This

approach was subsequently applied in [9] to compare the properties of

real and synthetic chemical structures. Although Shannon entropy is con-

ceptually and computationally simple, its careful and context-informed

normalisation and interpretation pose some challenges, as they require

knowing the range of values the measure can take. Finding the measure’s

extremal value for graphs satisfying natural constraints is essential for this

aim. This question of determining the extremal properties of the Shannon

entropy for a graph invariant was first posed by Dehmer and Kraus in [8].

They remarked on the complexity of the problem, which depends on the

presence of structural constraints on the graph.

A graph invariant of particular interest in mathematical chemistry is

given by the powers dc of vertex degrees d, also in light of its connection

to the first Zagreb index [10]. Cao et al. [3] raised the question of finding

extremal values of the Shannon entropy for the first degree-based entropy,

that is, for the case c = 1. They proved extremal properties for certain

classes of graphs, including trees, unicyclic, bicyclic and chemical graphs

of given order and size. In [4], they provided numerical results for the case

c ̸= 1, as well as bounds depending on the smallest and largest degree

of the graph. Lu et al. [14, 15] also used the smallest and largest degree

and Jensen’s inequality to prove bounds on the entropy of degree powers.

The relation between the entropy and different values of the degree power

c was explored by [5], who proved numerical results for trees, unicyclic,

bipartite and triangle-free graphs with a small number of vertices. Ilić [13]

proved that the path graph maximizes the degree-based entropy among

trees. Ghalavand et al. [11] used the Strong Mixing Variable method to

prove maximality results for trees, unicyclic and bicyclic graphs.

In [2], we determined the minimum first degree-based entropy among

all graphs with a given size, showing that the extremal graphs are precisely

the colex graphs. In this paper, we do so for connected graphs with given

size m and order n, which we call (n,m)-graphs, for the case when n−1 ≤
m ≤ 2m− 3. This problem was first presented by Yan [19], who solved it

when n− 1 ≤ m ≤ n+ 5 and conjectured that the degree sequence of the
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graph that minimises the first-degree based graph entropy when m ≥ n+9

is (n−1,m−n+2, 2m−n+1, 12n−m−3). Note that the cases n−1 ≤ m ≤ n+1

correspond to trees, unicyclic, and bicyclic graphs, solved in [3]. Here we

refine Yan’s conjecture, first of all by noticing that the proposed degree

sequence is only possible when m ≤ 2n − 3, and then showing that the

conjecture holds in the wider range n + 6 ≤ m ≤ 2n − 3. This extends

the characterization of the minimal first degree-based entropy to the range

n − 1 ≤ m ≤ 2n − 3. The extremal graphs, i.e. the graphs minimizing

the entropy among all (n,m)-graphs, are presented in Table 1. Except for

a few cases, they are the same as in [18], which solves the same problem

in the case that f is a function for which both f and its derivative f ′ are

convex (which is not the case for f(x) = x log(x)).

Let us now start by formally defining the measure of interest. Here the

logarithm will always denote the base 2 logarithm. Remark, however, that

analogous arguments hold for the natural logarithm.

Definition 1. The first degree-based entropy of a graph G with degree

sequence (di)1≤i≤n and size m equals

I(G) = −
n∑

i=1

di
2m

log

(
di
2m

)
.

If we let f(x) = x log(x) and h(G) =
∑

i f(di) =
∑

i di log(di), then we

have I(G) = log(2m)− 1
2mh(G). Thus, determining the minimum of I(G)

is equivalent to determining the maximum of h(G).

By [19, Theorem 4], we know that the graph maximizing h(G) among

all (n,m)-graphs is a threshold graph. This implies in particular that it

has a universal vertex v, i.e. a vertex adjacent to all other vertices and

hence with degree n − 1. Now, the graph G\v, obtained by removing v

and all its incident edges from G, is a (n−1,m−n+1)-graph. Taking into

account that dG(u) = dG\v(u) + 1 for every vertex u ̸= v, we note that it

is sufficient to find the (n− 1,m− n+ 1)-graph maximizing h1(G), where

h1(G) is formed by taking into account that the original degrees are larger

by one. We extend this idea towards the setting where there are c universal

vertices initially. Then, we compute the extremal graphs maximizing the
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m = n− 1 + a
0 ≤ a ≤ n− 2
a ̸∈ {3, 5, 6}

an− 2− a

m = n+ 2

n− 4

m = n+ 4

n− 5
5n− 7

m = n+ 5

n− 5

Table 1. Overview of extremal (n,m)-graphs minimizing the entropy.
Compare to [19, Table 1] and [3, Theorems 1,2, and 3]

related function hc(G) given only the size (and fixed large order essentially,
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as explained in Subsection 1.1). We do so by induction. In Section 2 we

compute some extremal graphs for small size. These are the base cases for

the induction. Then by taking a vertex of minimum degree and relating

hc(G) with hc(G\v), we perform the induction in Section 3. Besides a

few exceptions, the extremal graphs turn out to be the star, contrary to

the extremal graphs for h(G) when only the graph size is given, for which

the extremal graphs are colex graphs, see [2]. The precise statement is

formulated in Theorem 1. At the end of the section, in Subsection 3.1,

we apply Theorem 1 to characterize the graphs minimizing the entropy

among (n,m)-graphs when n− 1 ≤ m ≤ 2n− 3, thus proving an extended

version of the conjecture formulated by Yan [19, Conj. 6].

The main ideas of the proof are given in Section 3. Some necessary

tools and computations are gathered in Subsection 1.1 and Section 4.

1.1 Definitions and notation

In this paper, we will express the entropy in terms of other functions and

use help functions in the computations. These are defined here.

Definition 2. For any constant c ≥ 0, we define the function fc(x) =

(x + c) · log(x + c). For a graph G with degree sequence (di)1≤i≤n, we

define hc(G) =
∑

i fc(di). When c = 0, we just write h(G) for h0(G) =∑
i di log(di).

When c ≥ 2, the function hc(G) depends on the number of vertices as

well, since isolated vertices contribute fc(0) = c log c > 0. Thus, we will

compare graphs with a different order by extending the order, i.e. adding

isolated vertices in such a way that the graphs have the same order. If

the orders of two graphs to be compared were N and n, with N ≥ n, we

could have defined hN
c (G) =

∑
i fc(di)+(N −n)fc(0) and used hN

c for the

comparison, but we preferred to keep the notation light.

We remark here that it will be sufficient to focus on connected graphs.

Remark. When omitting the isolated vertices, the graph maximizing hc(G)

among all graphs of size m is a connected graph. For this, note that iden-

tifying two vertices in different components with strictly positive degrees
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du, dv leads to an increase of the value hc(G) since fc is a strictly convex

function, i.e. fc(du + dv) + fc(0) > fc(du) + fc(dv).

In some proofs, we will also make use of the following function.

Definition 3. The function ∆c is defined by ∆c(x) = fc(x)− fc(x− 1) =

log(e) +
∫ x+c

x+c−1
log tdt.

Note that ∆c is a strictly concave, increasing function.

Throughout the paper, we will use the following notation: Sk, Pk, and

Kk denote respectively the star, the path, and the complete graph with k

vertices, and K−
k is Kk with one edge removed.

2 Extremal graphs for small size

In this section, we compute the extremal graphs maximizing h1(G) for

m ≤ 10 and for hc(G) with c ≥ 2 for m ≤ 6.

Lemma 1. For m ≤ 10, among all graphs with m edges, h1(G) is maxi-

mized by

G =



Sm+1 if m ̸∈ {3, 5, 6}

K3 if m = 3

K−
4 and S6 if m = 5

K4 if m = 6.

Proof. A computer program can verify this claim†. Since h1(G) only de-

pends on the degree sequence of the graph, for a given m ≤ 10, it is enough

to list all degree sequences of graphs of size m and then compute h1 for

each sequence. To list all degree sequences, it is sufficient to list all integer

partitions of 2m and then to establish which of these are valid degree se-

quences using one of several existing criteria (see, e.g., [17]). For example,

one can use the function parts() from the R-package partitions [12] to

list all partitions of 2m and check which ones are degree sequences using

is_graphical() from the R-package igraph [6].

†https://github.com/MatteoMazzamurro/extrema-graph-entropy/blob/main/

minimal_entropy_small_size.R

https://github.com/MatteoMazzamurro/extrema-graph-entropy/blob/main/minimal_entropy_small_size.R
https://github.com/MatteoMazzamurro/extrema-graph-entropy/blob/main/minimal_entropy_small_size.R
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Lemma 2. For c ≥ 2 and m ≤ 6, among all graphs with m edges, hc(G)

is maximized by

G =

Sm+1 if m ̸= 3

K3 if m = 3.

Remark that in this Lemma, one has to take into account isolated

vertices when comparing graphs with different order.

Proof. For m ∈ {1, 2} nothing needs to be done, as there is only one

connected graph of size m. When m = 3, there are precisely 3 connected

graphs and we observe that

hc(P4) = 2fc(1) + 2fc(2) < hc(S4) = 3fc(1) + fc(3)

< hc(K3) = 3fc(2) + fc(0).

The first inequality is true due to the strict convexity of the function fc.

The second inequality is true since ∆c (Definition 3) is strictly concave

and thus ∆c(3) + ∆c(1) < 2∆c(2).

By the inequality of Karamata, it is sufficient to consider the degree

sequences of graphs with size m that are not majorized by the degree

sequences of other such graphs. With a simple computer program‡, we

verify those.

For m = 4, these non-majorized degree sequences are

−→
v41 = {4, 1, 1, 1, 1} and

−→
v42 = {3, 2, 2, 1, 0}.

For m = 5, they are

−→
v51 = {5, 1, 1, 1, 1, 1},

−→
v52 = {4, 2, 2, 1, 1, 0}, and

−→
v53 = {3, 3, 2, 2, 0, 0}.

For m = 6, the sequences are

−→
v61 = {6, 1, 1, 1, 1, 1, 1},

−→
v62 = {5, 2, 2, 1, 1, 1, 0},

‡https://github.com/StijnCambie/EntropyGraphs/blob/main/ExtrG_h_c_

forsmallm.py

https://github.com/StijnCambie/EntropyGraphs/blob/main/ExtrG_h_c_forsmallm.py
https://github.com/StijnCambie/EntropyGraphs/blob/main/ExtrG_h_c_forsmallm.py
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−→
v63 = {4, 3, 2, 2, 1, 0, 0}, and

−→
v64 = {3, 3, 3, 3, 0, 0, 0}.

Now we verify that hc

(−→
d
)
=
∑

i fc(di) is always maximized by the

first degree sequence.

For 4 ≤ m ≤ 6, we have

hc

(−→
vm1

)
− hc

(−→
vm2

)
= ∆c(m) + ∆c(1)− 2∆c(2)

≥
∫ c

c−1

log

(
(t+ 1)(t+ 4)

(t+ 2)2

)
dt > 0,

the last inequality is true since (t+ 1)(t+ 4) > (t+ 2)2 whenever t ≥ 1.

For m ∈ {5, 6} we analogously have

hc

(−→
vm1

)
− hc

(−→
vm3

)
= ∆c(m) + ∆c(m− 1) + 2∆c(1)−∆c(3)− 3∆c(2)

≥
∫ c

c−1

log

(
(t+ 5)(t+ 4)(t+ 1)2

(t+ 3)(t+ 2)3

)
dt

> 0.

The last inequality being true since (t+5)(t+4)(t+1)2 > (t+3)(t+2)3

whenever t ≥ 1.

For the final case, we have

hc

(−→
v61

)
− hc

(−→
v64

)
= ∆c(6) + ∆c(5) + ∆c(4) + 3∆c(1)− 3∆c(3)− 3∆c(2)

=

∫ c

c−1

log

(
(t+ 6)(t+ 5)(t+ 4)(t+ 1)3

(t+ 3)3(t+ 2)3

)
dt

> 0.

When c = 2, this can be computed§. For c ≥ 3, this is due to

(t+ 6)(t+ 5)(t+ 4)(t+ 1)3 > (t+ 3)3(t+ 2)3

for t ≥ 2. Finally, it is also clear that the extremal degree sequences do

correspond to the star Sm+1.

§It is approximately 0.0908
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3 Graphs maximizing hc(G) given the size

In this section, we prove the following theorem that gives the precise char-

acterization of extremal graphs for hc(G) where c ≥ 1 is an integer (for

c = 0, this was done in [2]).

Theorem 1. Among all graphs with m edges, h1(G) is maximized by

G =



Sm+1 if m ̸∈ {3, 5, 6}

K3 if m = 3

K−
4 and S6 if m = 5

K4 if m = 6.

For any c ≥ 2, among all graphs with m edges and n > m vertices, hc(G)

is maximized by

G =

Sm+1 if m ̸= 3

K3 if m = 3.

Proof. Assume we know the extremal graphs with size at most m− 1. By

Lemmas 1 and 2, this has been done for m ≤ 6 and m ≤ 10 when c = 1. So

we assume m ≥ 7, and even m ≥ 11 if c = 1. Let G be an extremal graph

with size m for which the minimum (non-zero) degree is equal to b. The

latter implies that there are at least b + 1 vertices with degree at least b

and thus m ≥
(
b+1
2

)
. Let v be a vertex with degree b and let d1, d2, . . . , db

be the degrees of the neighbours of v.

If b = 1, we have

hc(G) = hc(G\v) + fc(1)− fc(0) + ∆c(d1)

≤ hc(Sm) + fc(1)− fc(0) + ∆c(m)

= hc(Sm+1)

and equality occurs if and only if G = Sm+1.

Now assume b ≥ 2. Note that
∑b

i=1 di ≤ m+
(
b
2

)
by the analog of the

handshaking lemma since every edge which is not part of the subgraph

G[N(v)] induced by the neighbours of v can be counted at most once.



398

Since ∆c is strictly concave, we have

hc(G)− hc(G\v) = fc(b)− fc(0) +

b∑
i=1

∆c(di)

≤ fc(b)− fc(0) + b ·∆c

(
m+

(
b
2

)
b

)
:= LHS(m, b, c).

On the other hand, we also have

hc(Sm+1)− hc(Sm−b+1) = fc(m)− fc(m− b) + b∆c (1)

:= RHS(m, b, c).

By computations performed in Section 4, we know that the first is smaller

than the second, i.e. LHS(m, b, c) < RHS(m, b, c). Hence

hc(G) < hc(Sm+1)− hc(Sm−b+1) + hc(G\v).

Now, G\v has m − b edges, here m − b ≥ 4 (for c ≥ 2) and m − b ≥ 7

(for c = 1). Due to Lemmas 1 and 2, we have hc(G\v) ≤ hc(Sm−b+1).

Therefore we conclude that hc(G) < hc(Sm+1).

By complete induction, we have the whole characterization.

3.1 Proof of Yan’s Conjecture

We now prove an extended version of Yan’s conjecture [19, Conj.6].

Theorem 2. When n− 1 ≤ m ≤ 2n− 3, the extremal (n,m)-graph mini-
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mizing the entropy has a degree sequence of the form

(n− 1,m− n+ 2, 2m−n+1, 12n−m−3) if 2n− 3 ≥ m ≥ n+ 6

or m ∈ {n, n+ 1, n+ 3},

(n− 1, 44, 1n−5) if m = n+ 5,

(n− 1, 42, 32, 1n−5) or (n− 1, 6, 25, 1n−7) if m = n+ 4,

(n− 1, 33, 1n−4) if m = n+ 2,

(n− 1, 1n−1) if m = n− 1.

These graphs are presented in Table 1.

In other words, when n ≤ m ≤ 2n − 3, the extremal (n,m)-graph

minimizing the entropy is such that, deleting its universal vertex, one

obtains the (n− 1,m− n+1)-graph G maximizing h1(G), as described in

Theorem 1.

Proof of Theorem 2. By [19, Theorem 4], we know the extremal (n,m)-

graph is a threshold graph. This implies in particular that it has a universal

vertex v with degree n− 1. Now G′ = G\v is a (n− 1,m− n+ 1)-graph.

Taking into account that dG(u) = dG′(u) + 1 for every vertex u ̸= v, we

note that

h(G) = f(n− 1) + h1(G
′).

Now since m− n+ 1 ≤ n− 2, we note that the extremal structure for G′

is determined in Theorem 1 and the conclusion is immediate.

4 Computational lemmas

In this section, we prove that

LHS(m, b, c) = fc(b)− fc(0) + b ·

(
fc

(
m+

(
b
2

)
b

)
− fc

(
m+

(
b
2

)
b

− 1

))

and

RHS(m, b, c) = fc(m)− fc(m− b) + b · (fc(1)− fc(0))
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satisfy LHS(m, b, c) < RHS(m, b, c) for every b ≥ 2 and m ≥
(
b+1
2

)
when-

ever m ≥ 7 and c ≥ 1, or m ≥ 4 and c ≥ 2.

We do this by means of the following lemmas. In Lemma 3, we show

that for fixed b and c, it is sufficient to prove the inequality for the smallest

m in the range. After that, we prove it in the cases for which m =
(
b+1
2

)
in Lemma 4 and for the remaining cases in Lemma 5.

The proofs are mainly computational and there are alternative compu-

tations that lead to the same conclusion ¶.

Lemma 3. Fix b ≥ 2 and c ≥ 1. Then RHS(m, b, c)−LHS(m, b, c) is an

increasing function in m.

Proof. We want to prove that the derivative of this quantity with respect

to m is positive. To compute the derivative, taking into account the chain

rule and d
dxfc(x) = log(x+ c) + log(e), we have that

d

dm
(RHS(m, b, c)− LHS(m, b, c))

= log

(
m+ c

m− b+ c

)
− log

(
m+

(
b
2

)
+ bc

m+
(
b
2

)
+ bc− b

)
> 0.

The inequality now follows the fact that whenever 0 < b < y < z, we have
y

y−b > z
z−b . Here it is enough to take y = m+ c and z = m+

(
b
2

)
+ bc.

Lemma 4. Fix b ≥ 2 and c ≥ 1. Let

LL(b, c) = (b+ 1)fc(b)− fc(0)− bfc(b− 1)

and

RL(b, c) = fc

((
b+ 1

2

))
− fc

((
b

2

))
+ b · (fc(1)− fc(0)) .

Then

LL(b, c) < RL(b, c)

if c = 1 and b ≥ 4, or c ≥ 2 and b ≥ 3.

¶See, for example, https://arxiv.org/abs/2205.03357 for an alternative proof of
Lemma 4

https://arxiv.org/abs/2205.03357
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Proof. The cases 1 ≤ c ≤ 3 can be verified directly using the formulae:

solving numerically the resulting inequalities in the variable b, one finds

that the inequality holds as long as b > 3.24, b > 2.53, and b > 2.35 for

c = 1, c = 2, and c = 3, respectively‖.

For c ≥ 4 and b ≥ 3, write

RL(b, c) = fc

((
b

2

)
+ b

)
− fc

((
b

2

))
+ b∆c(1)

=

b∑
i=1

[
fc

((
b

2

)
+ i

)
− fc

((
b

2

)
+ i− 1

)]
+ b∆c(1)

=

b∑
i=1

∆c

((
b

2

)
+ i

)
+ b∆c(1),

and

LL(b, c) = b (fc(b)− fc(b− 1)) + fc(b)− fc(0)

= b∆c(b) + fc(b)− fc(0)

= b∆c(b) +

b∑
i=1

[fc(i)− fc(i− 1)]

= b∆c(b) +
b∑

i=1

∆c(i).

Then

RL(b, c)− LL(b, c) =

b∑
i=1

[
∆c

((
b

2

)
+ i

)
−∆c(i)

]
− b (∆c(b)−∆c(1))

> b

[
∆c

((
b

2

)
+ b

)
−∆c(b)

]
− b (∆c(b)−∆c(1))

(1)

= b

[
∆c

((
b+ 1

2

))
+∆c(1)− 2∆c(b)

]
where inequality (1) follows from b ≥ 2 and the strict concavity of ∆c(x).

‖https://github.com/MatteoMazzamurro/extrema-graph-entropy/blob/main/

lemma_4_base_cases.R

https://github.com/MatteoMazzamurro/extrema-graph-entropy/blob/main/lemma_4_base_cases.R
https://github.com/MatteoMazzamurro/extrema-graph-entropy/blob/main/lemma_4_base_cases.R
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Then, by definition 3,

RL(b, c)− LL(b, c)

≥ b

∫ c

c−1

[
log

(
t+

(
b+ 1

2

))
+ log(t+ 1)− 2 log(t+ b)

]
dt

For the integral to be positive, it is enough that, for c− 1 < t < c,(
t+

(
b+ 1

2

))
(t+ 1)− (t+ b)2 > 0,

which is equivalent to

t(b− 2)(b− 1) > b(b− 1). (2)

Now, since b ≥ 3, inequality (2) holds if and only if t > b
b−2 . Furthermore,

b ≥ 3 also implies b
b−2 ≤ 3. But c ≥ 4 so t > c − 1 = 3 ≥ b

b−2 . Therefore

RL(b, c) > LL(b, c) for c ≥ 4 and b ≥ 3 as well.

Lemma 5. It is true that LHS(7, 3, 1) < RHS(7, 3, 1) and LHS(7, 2, 1) <

RHS(7, 2, 1). For any c ≥ 2, it is true that LHS(4, 2, c) < RHS(4, 2, c).

Proof. By direct computation, RHS(7, 3, 1) − LHS(7, 3, 1) ≈ 0.26 and

RHS(7, 2, 1)−LHS(7, 2, 1) ≈ 0.52 and thus LHS(7, 3, 1) < RHS(7, 3, 1),

and LHS(7, 2, 1) < RHS(7, 2, 1). LHS(4, 2, c) < RHS(4, 2, c) is equiva-

lent to

2∆c(2.5) + ∆c(2) < ∆c(4) + ∆c(3) + ∆c(1).

This is true for every c ≥ 2 since

∫ c

c−1

log

((
t+

5

2

)2

(t+ 2)

)
dt <

∫ c

c−1

log ((t+ 4)(t+ 3)(t+ 1)) dt,

as
(
t+ 5

2

)2
(t+ 2) < (t+ 4)(t+ 3)(t+ 1) for every t ≥ 1.
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