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Abstract

The irregularity of a graph is the sum of the absolute values of
the differences of degrees of pairs of adjacent vertices. The extremal
graph with minimal irregularity among trees of order n with maxi-
mum degree ∆ and the second maximum degree ∆1 are determined,
as well as unicyclic graphs of order n with girth g and maximum
degree ∆. Lower and upper bounds are established on irregularity.
Furthermore, the inverse problem for the irregularity of maximally
irregular graphs is solved.

1 Introduction

Let G be a simple connected graph with vertex set V (G) and edge set

E(G). The order of G is denoted by n. Denote by dG(u) the degree of the

vertex u ∈ V (G). The maximum degree of G is denoted by ∆. A pendent

vertex is a vertex of degree one. A tree of order n with maximum degree

2 is called a path and denoted Pn. Denote by Cg a cycle of length g. A
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graph is said to be unicyclic if it is connected and contains exactly one

cycle. The girth of a unicyclic graph is the length of its cycle.

A graph is regular if all its vertices have equal degrees. In mathematical

chemistry, the importance of regular graphs has much increased after the

discovery of fullerenes and nanotubes. A graph that is not regular is said

to be irregular . In various applications of graph theory (including chemical

applications), it is necessary to know that how irregular a given graph is.

In other words, there is a need to have a measure of irregularity.

The imbalance of an edge xy ∈ E(G) is denoted by imbG(xy) and is

defined as |dG(x) − dG(y)| [6, 10]. Albertson [5] defined the irregularity a

graph G as

irr = irr(G) =
∑

xy∈E(G)

imbG(xy) .

If the number of distinct elements in the degree sequence of a connected

graph G is equal to the maximum degree, then G is said to be maximally

irregular . In other words, a graph is maximally irregular if it possesses ver-

tices of degree i, for all i = 1, 2, . . . ,∆. Properties of maximally irregular

graphs were studied in [20,23,25].

For general graphs of order n, Albertson [5] obtained an asymptotically

tight upper bound on irr. He also found sharp upper bounds on irr for

bipartite and triangle-free graphs. Abdo et al. [1] solved the analogous

problem for all graph with a given order. Hansen and Melot [18] charac-

terized the graphs of order n and size m that have maximal irr-value. The

irregularity of trees and unicyclic graphs was studied in [12] and [26], re-

spectively. Recently, Lin et al. [22] introduced the general Albertson irreg-

ularity index of a connected graph and presented lower and upper bounds

on this index. For more results on irregularity, Albetson index, and related

measures, we refer the reader to [2–4, 7, 9, 11, 13–17, 19, 24, 27–32] and the

references cited therein.

In this paper, we determine the extremal graphs with minimal irreg-

ularity among all trees of order n with maximum degree ∆ and second

maximum degree ∆1. Also, we characterize the extremal graphs with

minimal irregularity among all unicyclic graphs of order n with girth g

and maximum degree ∆. Furthermore, we establish two lower bounds on
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irregularity in terms of maximum degree and the number of pendent ver-

tices. Finally, we give bounds and solve the inverse problem for irregularity

of maximally irregular graphs.

2 Graphs with minimal irregularity

A tree is said to be starlike if it has exactly one vertex of degree greater

than two. This maximum degree vertex is called the center of the starlike

tree. Denote by Sn,∆ the set of all starlike trees of order n with maximum

degree ∆. Let Sn,∆,∆1
be the set of trees of order n obtained by adding a

new edge between the centers of two starlike trees with maximum degrees

∆ and ∆1. If ∆1 ≤ 2 then Sn,∆,∆1
≡ Sn,∆.

Let u0u1 · · ·ut be a path in G which will be denoted by (u0, ut). Let

(u, v) be a path in G. If dG(u) ≥ 3, dG(v) = 1 and all internal vertices of

(u, v) are of degree two, then it is called a pendent path.

We define the imbalance of the path (u0, ut) in G as

imbG(u0, ut) =

t−1∑
i=0

|dG(ui)− dG(ui+1)| .

The following lemma is useful for characterizing graphs with minimal ir-

regularity.

Lemma 1. Let (u0, ut) = u0u1 · · ·ut be a path in a graph G. Then

imbG(u0, ut) ≥ |dG(u0) − dG(ut)| with equality holding if and only if the

sequence dG(u0), dG(u1), . . . , dG(ut) is monotonic.

Proof. By the property of subadditivity of the absolute value, we have

imbG(u0, ut) =

t−1∑
i=0

|dG(ui)−dG(ui+1)| ≥

∣∣∣∣∣
t−1∑
i=0

(dG(ui)−dG(ui+1))

∣∣∣∣∣
= |dG(u0)−dG(ut)|

with equality holding if and only if the sequence dG(u0), dG(u1), . . . , dG(ut)

is monotonic.
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A set of paths of a graph G is edge-disjoint if every two paths have no

edges in common.

Theorem 1. Let T be a tree of order n with maximum degree ∆ and

second maximum degree ∆1. Then irr(T ) is minimum in the class of trees

of order n with maximum degree ∆ and second maximum degree ∆1 if and

only if T ∈ Sn,∆,∆1 ∪ Pn.

Proof. If T ∈ Sn,∆,∆1 ∪ Pn, then one can easily check that irr(T ) =

(∆− 1)2 + (∆1 − 1)2 +∆−∆1. Therefore, it is sufficient to prove that

irr(G) ≥ (∆− 1)2 + (∆1 − 1)2 +∆−∆1 (1)

with equality holding if and only if T ∈ Sn,∆,∆1
∪ Pn.

If ∆ = 2, then ∆1 = 2 or ∆1 = 1. Then T is isomorphic to Pn and the

equality in (1) holds. Therefore, we suppose that ∆ > 2.

Let w be a maximum degree vertex and u be a second maximum degree

vertex of T . Then there exist ∆ − 1 edge-disjoint paths (w,wi), 1 ≤ i ≤
∆ − 1 and ∆1 − 1 edge-disjoint paths (u, ui), 1 ≤ i ≤ ∆1 − 1, such that

dT (wi) = 1 and dT (ui) = 1. Note that the path (w, u) is edge-disjoint

with regard to all the above mentioned paths. Then by the definition of

irregularity and Lemma 1, we get

irr(T ) ≥
∆−1∑
i=1

imbT (w,wi) +

∆1−1∑
i=1

imbT (u, ui) + imbT (w, u)

≥
∆−1∑
i=1

|dT (w)− dT (wi)|+
∆1−1∑
i=1

|dT (u)− dT (ui)|+ |dT (w)− dT (u)|

= (∆− 1)2 + (∆1 − 1)2 +∆−∆1 .

If T ∈ Sn,∆,∆1
, then one can easily check that equality holds in (1). Sup-

pose that T /∈ Sn,∆,∆1
and that the equality in (1) holds. If dT (w, u) ≥ 2

and the number of all pendent paths in T is exactly ∆ + ∆1 − 2 then

imbT (w, u) > |dT (w)−dT (u)| by Lemma 1 and a contradiction. Therefore

since T /∈ Sn,∆,∆1 , there exists a pendent path (v, v1), such that v ̸= w, u

and v ̸= wi, uj for all 1 ≤ i ≤ ∆−1, 1 ≤ j ≤ ∆1−1. Then by the definition
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of irregularity and Lemma 1, we have

irr(T ) = irr(T ′) + imbT (v, v1) ≥ irr(T ′) + |dT (v)− dT (v1)|

≥ irr(T ′) + 2 , (2)

where T ′ is a tree of order less than n that has maximum degree ∆ and

second maximum degree ∆1. Thus, irr(T
′) ≥ (∆−1)2+(∆1−1)2+∆−∆1

and from (2) it follows that irr(T ) ≥ (∆− 1)2 + (∆1 − 1)2 +∆−∆1 + 2.

This contradicts the fact that the equality in (1) holds and therefore all

paths (w,wi), (u, uj), 1 ≤ i ≤ ∆ − 1, 1 ≤ j ≤ ∆1 − 1 are pendent. It is

easy to check that the length of the path (w, u) is one. This completes the

proof.

Corollary 1. Let n and ∆ be positive integers greater than one and T

be a tree. Then irr(T ) is minimum in the class of trees of order n with

maximum degree ∆ if and only if T ∈ Sn,∆ ∪ Pn.

Proof. Let ∆1 be the second maximum degree of T . Then by Theorem 1,

irr(T ) ≥ (∆− 1)2 + (∆1 − 1)2 +∆−∆1 .

Consider the function f(x) = (∆ − 1)2 + (x − 1)2 + ∆ − x. It is easy to

see that f(x) is increasing on x ≥ 2. Therefore,

irr(T ) ≥ (∆− 1)2 + (∆1 − 1)2 +∆−∆1

= f(∆1) ≥ min(f(1), f(2)) = ∆(∆− 1)

with equality holding if and only if T ∈ Sn,∆ ∪ Pn. This completes the

proof.

Corollary 2. [33] Let T be a tree of order n > 2. Then irr(T ) ≥ 2 with

equality holding if and only if T is isomorphic to Pn.

The following classes of graphs were defined in [21]. Denote byAn(g,∆)

the set of graphs of order n obtained by attaching ∆ − 2 paths to one

vertex of Cg. In addition, Bn(g,∆) denotes the set of unicyclic graphs

obtained by identifying a pendent vertex of a starlike tree in Sn−g+1,∆
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with one vertex of Cg. If G ∈ An(g,∆), then irr(G) = (∆ − 2)(∆ −
1) + 2(∆ − 2) = ∆2 − ∆ − 2. Let G ∈ Bn(g,∆) and ℓ be the length of

the shortest path from the maximum degree vertex to the cycle of G. If

ℓ = 1, then irr(G) = (∆ − 1)2 + (∆ − 3) + 2 = ∆2 − ∆. If ℓ > 1, then

irr(G) = (∆− 1)2 + (∆− 2) + 3 = ∆2 −∆+2. This implies the following

lemma.

Lemma 2. Let G be a unicyclic graph of order n with maximum degree

∆ and girth g. Let ℓ be the length of the shortest path from the maximum

degree vertex to the cycle of G. Then

irr(G) =


∆2 −∆− 2, if G ∈ An(g,∆)

∆2 −∆, if G ∈ Bn(g,∆), ℓ = 1

∆2 −∆+ 2, if G ∈ Bn(g,∆), ℓ ≥ 2 .

We now give a sharp upper bound on the irregularity for this class of

graphs and characterize the corresponding extremal graphs.

Theorem 2. Let G be a unicyclic graph of order n with maximum degree

∆ and girth g. Then irr(G) is minimum in the class of unicyclic graphs of

order n with maximum degree ∆ and girth g if and only if G ∈ An(g,∆).

Proof. Bearing in mind Lemma 2 , it is sufficient to prove that

irr(G) ≥ ∆2 −∆− 2 (3)

with equality holding if and only if G ∈ An(g,∆).

Let w be the maximum degree vertex of G and v be the nearest vertex

from w which lies on the cycle. Also, let x and y be the neighbor vertices

of v on the cycle. If dG(x) ≥ 3, then there exist dG(x) − 2 edge-disjoint

paths (x, xi), 1 ≤ i ≤ dG(x)− 2 in G such that dG(xi) = 1 and each path

does not contain any edge of the cycle. Similarly, if dG(y) ≥ 3, then there

exist dG(y) − 2 edge-disjoint paths (y, yi), 1 ≤ i ≤ dG(y) − 2 in G such

that dG(yi) = 1 and each path does not contain any edge of the cycle.

Let ℓ be the length of the shortest path from w to the vertex v. Then we

distinguish the following two cases.
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Case (i): ℓ ≥ 1. Then there exist at least ∆ − 1 edge-disjoint paths, say

(w,wi), 1 ≤ i ≤ ∆− 1, that are all edge-disjoint from the path (w, v) and

dG(wi) = 1. From the definition of the irregularity and Lemma 1, we have

irr(G) ≥
∆−1∑
i=1

imbG(w,wi) +

dG(x)−2∑
i=1

imbG(x, xi) +

dG(y)−2∑
i=1

imbG(y, yi)

+ imbG(w, v) + imbG(vx) + imbG(vy)

≥
∆−1∑
i=1

|dG(w)− dG(wi)|+
dG(x)−2∑

i=1

|dG(x)− dG(xi)|

+

dG(y)−2∑
i=1

|dG(y)− dG(yi)|+ |dG(w)− dG(v)|

+ |dG(v)− dG(x)|+ |dG(v)− dG(y)|

= (∆− 1)2 + (dG(x)− 2)(dG(x)− 1) + (dG(y)− 2)(dG(y)− 1)

+ ∆− dG(v) + |dG(v)− dG(x)|+ |dG(v)− dG(y)|

≥ (∆− 1)2 + (dG(x)− 2)(dG(x)− 1) + (dG(y)− 2)(dG(y)− 1)

+ ∆− dG(v) + (dG(v)− dG(x)) + (dG(v)− dG(y))

= ∆2 −∆+ (dG(x)− 2)2 + (dG(y)− 2)2 + dG(v)− 3

≥ ∆2 −∆

since dG(x) ≥ 2, dG(y) ≥ 2, and dG(v) ≥ 3.

Case (ii): ℓ = 0, i.e., v ≡ w. Then there exist ∆−2 edge-disjoint paths, say

(w,wi), 1 ≤ i ≤ ∆ − 2, that are all edge-disjoint from the cycle of G and

w1, w2, . . . , w∆−2 are pendent vertices. From the definition and Lemma 1,

we have

irr(G) ≥
∆−2∑
i=1

imbG(w,wi) +

dG(x)−2∑
i=1

imbG(x, xi) +

dG(y)−2∑
i=1

imbG(y, yi)

+ imbG(wx) + imbG(wy)
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≥
∆−2∑
i=1

|dG(w)−dG(wi)|+
dG(x)−2∑

i=1

|dG(x)−dG(xi)|

+

dG(y)−2∑
i=1

|dG(y)−dG(yi)|+ |dG(w)−dG(x)|+ |dG(w)−dG(y)|

= (∆− 2)(∆− 1) + (dG(x)− 2)(dG(x)− 1)

+ (dG(y)− 2)(dG(y)− 1) + ∆− dG(x) + ∆− dG(y)

= ∆2 −∆− 2 + (dG(x)− 2)2 + (dG(y)− 2)2

≥ ∆2 −∆− 2 (4)

since dG(x) ≥ 2, dG(y) ≥ 2, and dG(w) = ∆.

From the above two cases, we get the required inequality. Suppose

now that the equality holds in (3). Then w lies on the cycle and dG(x) =

dG(y) = 2, it follows that each vertex on the cycle of G, different from w,

has degree two. We also must have

∆−2∑
i=1

imbG(w,wi) =

∆−2∑
i=1

|dG(w)− dG(wi)| .

Then, similarly as in the proof of Theorem 1, we can show that all paths

(w,wi), 1 ≤ i ≤ ∆ − 2 are pendent. Hence G ∈ An(g,∆). On the other

hand, if G ∈ An(g,∆), then by Lemma 2, irr(G) = ∆2 − ∆ − 2. This

completes the proof.

Theorem 3. Let G be a unicyclic graph of order n with maximum degree

∆. Then

irr(G) ≥ ∆2 −∆− 2 (5)

with equality holding if and only if G ∈
n−∆+2⋃
g=3

An(g,∆).

Proof. Let g be the girth of G. Then 3 ≤ g ≤ n−∆+ 2. By Theorem 2,

irr(G) ≥ ∆2 − ∆ − 2 with equality holding if and only if G ∈ An(g,∆).

Hence, the equality holds in (5) if and only if G ∈
n−∆+2⋃
g=3

An(g,∆).

Corollary 3. Let G be a unicyclic graph of order n with girth g which is



379

different from Cn. Then irr(G) ≥ 4 with equality holding if and only if G

is isomorphic to the graph obtained by attaching one pendent vertex of a

path Pn−g+1 to one vertex of Cg.

Proof. Let ∆ be the maximum degree in G. Since G is different from Cn,

we have ∆ ≥ 3. By Theorem 2, irr(G) ≥ ∆2 −∆ − 2 ≥ 4 with equality

holding if and only if G ∈ An(g, 3). Clearly, An(g, 3) consists of only one

graph that is isomorphic to the graph obtained by attaching one pendent

vertex of Pn−g+1 to one vertex of Cg.

We now establish a lower bound on the irregularity of graphs in terms

of the number of pendent vertices and the maximum degree.

Theorem 4. Let G be a graph of order n with k pendent vertices and

maximum degree ∆, different from Pn. Then irr(G) ≥ 2k +∆− 3.

Proof. Let v1, v2, . . . , vk be the pendent vertices of G. Denote by ui,

1 ≤ i ≤ k the nearest vertex from vi that has degree greater than two.

Clearly, we can always find the vertices ui, because G is different from Pn.

Let w be the maximum degree vertex. Then one can easily see that the

paths (w, u1), (u1, v1), (u2, v2), . . . , (uk, vk) are edge-disjoint. Then by the

definition and Lemma 1, we have

irr(G) ≥
k∑

i=1

imbG(ui, vi) + imbG(w, u1)

≥ |dG(u1)− 1|+
k∑

i=2

|dG(ui)− 1|+ |∆− dG(u1)|

≥ dG(u1)− 1 + (k − 1)(3− 1) + ∆− dG(u1)

= 2k +∆− 3

since dG(ui) ≥ 3 for 1 ≤ i ≤ k and ∆ is the maximum degree of G.

Denote by Gn,k the class of graphs of order n with k pendent vertices

and maximum degree three in which every vertex of degree two lies on a

pendent path. If 1 ≤ k ≤ (n + 2)/2, then Gn,k ̸= ∅. For example, the
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graph obtained by attaching k− 2 pendent edges to the consecutive k− 2

non-pendent vertices of Pn−k+2 belongs to Gn,k.

Tavakoli et al. [33] proved that if G is a graph of order n with k pendent

vertices, then irr(G) ≥ k with equality if and only if G is isomorphic to

Pn. We now improve this result and give a sharp lower bound on the

irregularity of graphs.

Theorem 5. Let G be a graph of order n with k pendent vertices, different

from Pn. Then

irr(G) ≥ 2k (6)

with equality holding if and only if G ∈ Gn,k, 1 ≤ k ≤ (n+ 2)/2.

Proof. Let v1, v2, . . . , vk be the pendent vertices of G. Denote by ui, 1 ≤
i ≤ k the nearest vertex from vi that has degree greater than two. Then

similarly as in the proof of Theorem 4, we get

irr(G) ≥
k∑

i=1

imbG(ui, vi) ≥
k∑

i=1

|dG(ui)− 1| ≥ k(3− 1) = 2k (7)

since dG(ui) ≥ 3 for 1 ≤ i ≤ k.

Suppose that the equality holds in (7). Then ∆ = 3 by Theorem 4.

Also for all 1 ≤ i ≤ k, we have dG(ui) = 3 and it follows that imbG(e) = 0

for all e /∈ (ui, vi), 1 ≤ i ≤ k. If G /∈ Gn,k, then there exists a vertex x

of degree two that has two neighbors y and z of degree three. Then xy /∈
(ui, vi), imbG(xy) = 1 and we get a contradiction. Therefore, G ∈ Gn,k.

If k > (n+ 2)/2, then we have 2(n− 1) ≤ 2|E(G)| ≤ k +∆(n− k) and it

follows that

∆ ≥ 1 +
n− 2

n− k
> 1 +

n− 2

n− (n+ 2)/2
= 3 .

Thus, Gn,k = ∅.
Conversely, if G ∈ Gn,k then imb of all pendent paths are two and imb

of all other edges are zero. Hence, it is easy to see that the equality holds

in (6).
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3 Irregularity of maximally irregular graphs

In this section, we study the irregularity of maximally irregular graphs.

Albertson [5] proved that the irregularity of a graph is an even number.

Theorem 6. Let G be a maximally irregular graph with maximum degree

∆. Then irr(G) ≥ 2⌊∆/2⌋ and the bound is tight.

Proof. Since G is a maximally irregular graph, there exists a path (u, v)

with dG(u) = ∆ and dG(v) = 1. We thus get

irr(G) ≥ imbG(u, v) ≥ |dG(u)− dG(v)| = ∆− 1 (8)

by Lemma 1. Therefore, since the irregularity of G is even, we obtain the

required bound.

We now show that the above bound is tight. If ∆ = 1 or ∆ = 2, then

irr(P2) = 0 and irr(P3) = 2. Therefore, we assume that ∆ ≥ 3. Let t be

an odd positive integer. Let M be a maximum matching in Kt+2 and e an

edge of Kt+2 such that one end vertex of e is M -unsaturated. Denote by

Ht the graph obtained from Kt+2 by deleting the edges in M and e. Note

that Ht is the graph with one vertex of degree t− 1 and all other vertices

of degree t. Also, K ′
i denotes the graph obtained from Ki by deleting an

edge. We denote by xi and yi the vertices of degree i− 2 in K ′
i.

Case (i). ∆ is odd. Then, we construct a new graph G from the graphs

P2, K
′
4, . . . ,K

′
∆ and H∆ as shown in Figure 1.

P2 K ′
4 K ′

5 K ′
6 K ′

7 H7

x4 y4 x5 y5x6 y6 x7 y7 x8

Figure 1. A maximally irregular graph G with maximum degree 7 and
irr(G) = 6
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P2 K ′
4 K ′

5 K ′
6 K ′

7 H5

x4 y4 x5 y5 x6 y6 x7 y7 x8

Figure 2. A maximally irregular graph G with maximum degree 6 and
irr(G) = 6

Case (ii). ∆ is even. Then we construct a new graph G from the graphs

P2, K
′
4, . . . ,K

′
∆+1 and H∆−1 as shown in Figure 2.

In the above two cases, one can easily see that G is the maximally

irregular graph with maximum degree ∆ such that irr(G) = 2⌊∆/2⌋.

From the proof of Theorem 6, we obtain the following result which is

the inverse problem for the irregularity of maximally irregular graphs.

Theorem 7. For any even positive integer t, there exists a maximally

irregular graph G such that irr(G) = t.

A graph is quasiperfect if it has exactly two vertices of same degree.

In [8], it was shown that for any positive integer n, there exists a unique

quasiperfect graph of order n. We denote it by QPn. One can easily check

that irr(QPn) = ⌊n2/4⌋.

Lemma 3. [20, 23] Let G be a maximally irregular graph of order n.

Then |E(G)| ≤ ⌊n2/4⌋.

We now give an upper bound on the irregularity of maximally irregular

graphs.

Theorem 8. Let G be a maximally irregular graph of order n with maxi-

mum degree ∆. Then

irr(G) ≤ 1

48

(
6n2 ∆+ 3∆2 n− 2∆3 − 4∆

)
.

Proof. Let ni be the number of vertices of degree i in G, 1 ≤ i ≤ ∆. Then

n1 + n2 + · · · + n∆ = n and ni ≥ 1 for 1 ≤ i ≤ ∆ since G is maximally
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irregular. This implies

⌊∆/2⌋∑
i=1

ni ≤ n− ⌈∆/2⌉ . (9)

If 1 ≤ i ≤ ⌊∆/2⌋, then imbG(e) ≤ ∆ − i for all edges e incident with

vertices of degree i. In addition, the imbalance of the remaining edges is

at most ⌊∆/2⌋. Therefore,

irr(G) ≤
⌊∆/2⌋∑
i=1

i ni(∆− i) + ⌊∆/2⌋

|E(G)| −
⌊∆/2⌋∑
i=1

ini


= ⌈∆/2⌉

⌊∆/2⌋∑
i=1

i−
⌊∆/2⌋∑
i=1

i2 + ⌊∆/2⌋|E(G)|

+

⌊∆/2⌋∑
i=1

(ni − 1)i(⌈∆/2⌉ − i) . (10)

On the other hand, one can easily see that

⌈∆/2⌉
⌊∆/2⌋∑
i=1

i−
⌊∆/2⌋∑
i=1

i2 =


(∆ + 3)(∆2 − 1)

48
, ∆ is odd

∆(∆2 − 4)

48
, ∆ is even

(11)

and

⌊∆/2⌋∑
i=1

(ni − 1)i(⌈∆/2⌉ − i) ≤ 1

4
⌈∆/2⌉2

⌊∆/2⌋∑
i=1

(ni − 1)

≤


(n−∆)(∆ + 1)2

16
, ∆ is odd

(n−∆)∆2

16
, ∆ is even

(12)

because of inequality (9). Then, substituting (11) and (12) back into (10),
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we obtain

irr(G) ≤ ⌊∆/2⌋|E(G)|+


3n(∆ + 1)2−2∆3−3∆2−4∆−3

48
, ∆ is odd

3∆2n−2∆3−4∆

48
, ∆ is even

(13)

and it follows that

irr(G) ≤


n2(∆− 1)

8
+

3n(∆ + 1)2−2∆3−3∆2−4∆−3

48
, ∆ is odd

n2∆

8
+

3∆2n−2∆3−4∆

48
, ∆ is even

by Lemma 3. Hence, we get the required inequality.

4 Conclusion

A natural issue is to characterize the graphs with maximum irregularity

in the class of graphs with given order. We pose the following conjecture.

Conjecture 1. Among maximally irregular graphs of order n, the quasi-

perfect graph QPn is the unique graph with maximal irregularity.

By using the SageMath software, the validity of Conjecture 1 could be

confirmed for the first few values of n, that is n ≤ 10. We conclude this

paper by giving an additional support on this conjecture.

Lemma 4. [20] Let G be a maximally irregular graph of order n with

maximum degree ∆. If

∆ ≤ n− 1

2

(√
4n+ 3− 2(−1)n − 1

)
,

then |E(G)| ≤ ⌊∆(2n−∆+ 1)/4⌋.

Theorem 9. Let G be a maximally irregular graph of order n. If ∆ ≤
3n/5, then Conjecture 1 holds.
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Proof. If n ≤ 10 then Conjecture 1 is found to be true by using the Sage-

Math software. Let therefore n > 10. Then, since ∆ ≤ 3n/5, we have

∆ ≤ n− 1
2

(√
4n+ 3− 2(−1)n − 1

)
. From (13), we get

irr(G) ≤ ⌊∆/2⌋|E(G)|+


3n(∆ + 1)2−2∆3−3∆2−4∆−3

48
, ∆ is odd

3∆2n−2∆3−4∆

48
, ∆ is even

≤ ∆

2
· ∆(2n−∆+ 1)

4
+

3∆2n− 2∆3 − 4∆

48

=
∆

48
(15n∆− 8∆2 + 6∆− 4)

by Lemma 4. Therefore from the above inequality, we obtain

irr(G) ≤ n(153n2 + 90n− 100)

2000
(14)

because ∆ ≤ 3n/5 and the function f(x) = x(15nx − 8x2 + 6x − 4) is

increasing for all 1 ≤ x < n. On the other hand, we easily see that

irr(QPn) =


1

12
(n3 − n), n is odd

1

12
(n3 − 4n), n is even

. (15)

By (14) and (15), we get irr(G) < irr(QPn) for n > 10 which is our

required result.
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[29] T. Réti, A. Ali, I. Gutman, On bond-additive and atoms-pair-additive
indices of graphs, El. J. Math. 2 (2021) 52–61.
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