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Abstract

Let G be a simple graph with order n, n ≥ 5, and adjacency ma-
trix A(G). In this paper, we determine the number of all substruc-
tures having at most four edges in terms of its adjacency matrix
A(G) together with some graph invariants determined by A(G).
Then, as applications, we provide an algebraic expression for the
second Zagreb index and ||A4|| of a graph.

1 introduction

For the purposes of this paper, we assume that all graphs are finite and

simple. Let G be a graph with order n and size m. As usual, we use V (G)

and E(G) to denote the vertex set and edge set of G, respectively. For

v ∈ V (G), let NG(v) (or N(v) for short) be the neighbors of v in G and

let dv = |N(v)|, the degree of v. The cycle, the star and the path of order

n are denoted by Cn, Sn and Pn, respectively.

Let G = (V (G), E(G)) be a graph with vertex set V (G) = {1, 2, . . . , n}.
The adjacency matrix A = A(G) = (aij)n×n associated to G is defined as

aij = 1 if and only if i is adjacent to j, and aij = 0 otherwise. The matrix
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diag{d1, d2, . . . , dn}, denoted by D(G), is referred as the degree diagonal

matrix of G. Obviously, for each i, di is the i-th row (or column) sum

of A. L(G) := D(G) −A(G) and Q(G) := D(G) + A(G) are called the

Laplacian matrix and the signless Laplacian matrix of G, respectively. For

any given graph G, the degree diagonal matrix, D(G), is determined by

its adjacency matrix, A(G), then both of L(G) and Q(G) are determined

by A(G).

Given two disjoint graphs G1 = (V (G1), E(G1)) and G2 = (V (G2),

E(G2)), the graph G = (V (G), E(G)) is called the sum of G1 and G2

if V (G) = V (G1) ∪ V (G2) and E(G) = E(G1) ∪ E(G2). We shall write

simply G1 ∪ G2 ∪ · · · ∪ Gk as kG1 if G1 = G2 = · · · = Gk. Usually, the

subgraph kP2 of the graph G is called a k-matching of G. A graph G is

called H-free if G does not contain the graph H as its subgraph.

It is well known that the computation of the number of general sub-

structures, such as kP2 and kP3, may be very difficult, and is known to

be NP-Complete; see e.g., [12, 13]. Therefore it is interesting to use some

graph invariants or topological indices to determine the number of sub-

structures of a graph that have specific graph properties. From Lemma

8.1.2 in [5] (or Corollary 8.1.3 in [5]), the number of the triangles of any

graph can be obtained from the trace of the 3-moment (or the third ad-

jacency coefficient) of its adjacency matrix. Recently, Lei et al. [16] com-

puted the numbers of various subgraphs of order 4 in several common

lattice graphs. Lemma 2.1 in [1] tells us that the number of P3 and of 2P2

substructures are determined by the degree sequence of such a graph. In

2009, Farrell and Guo (see [4]) found a formula that calculates the number

of 3-matchings in graphs in terms of its degrees sequence and the number

of triangles. Then Behmaram [1] established a formula for the number of

4-matchings in triangular-free graph in terms of its order, degrees sequence

and the number of quadrangles. For more results on the number of other

substructures such as 5-matchings and 6-matchings of some special classes

of graphs, one can see [7, 14,18,19].

In this paper, we continue to investigate the number of substructures

having few edges. Especially, we will deduce formulas on the number of

all substructures having at most four edges in terms of the invariants and
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indices determined by its adjacency matrix A(G). In this paper we assume

the degree sequence, the degree diagonal matrix, the Laplacian matrix and

the signless Laplacian matrix of a given graph are known, as the degree

diagonal matrix is determined by its adjacency matrix. Therefore, our

formulas include the degrees sequence, the k-moment of the adjacency

matrix, adjacency coefficients, Laplacian coefficients and signless Laplacian

coefficients of such a graph, all which will be defined in below.

The paper is organized as follows. In Section 2, we will introduce

some preliminary results and some lemmas. Especially, we will introduce

a matrix operation, from which we can obtain the number of substructures

S4 ∪ P2, the sum of the star S4 and the path P2. In addition, we will

provide an algorithm for computing the number of S4 ∪ P2 substructures

contained in any given graph G in this section. In Section 3, we first

study the number of substructures having at most three edges. Then we

determine the number of all substructures containing exactly four edges.

In Section 4 as applications, we provide an algebraic expression for the

second Zagreb index of graphs and an expression for ||A4|| in terms of the

degree sequence of such a graph.

2 Preliminary

For a square matrix A, we use Ak, (Ak)ij , tr(A) and ||A|| to denote the k-

moment of A, the (i, j)-element of Ak, the trace and the sum of all entries

of A, respectively. Let G be a graph with vertex set V = {v1, v2, · · · , vn}
and W = v0v1 · · · vk (perhaps vi = vj for i ̸= j) be a walk joining vertices

v1 and vk. The integer k is referred as the length of the walkW . We begin

our investigation with the following well known result.

Lemma 1. ( [6, Lemma 2.2.1], or [5, Lemma 8.1.2]) Let G be a graph
with order n, vertex set V = {1, 2, · · · , n} and adjacency matrix A. Then

(Ak)ij

denotes the number of walks with length k from the vertex i to the vertex

j.

For convenience, denote by nH the number of the substructures H
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contained in G. Denote by P ∗
4 and C∗

3 graphs obtained from P4 and C3

by adding a pendent edge to one of those 2-degree vertices, respectively.

Applying lemma 1, some concise relationships between tr(Ak) (or ||Ak||)
and the number of some substructures, when k is small, can be obtained

as follows.

Corollary. Let G be a graph with order n, size m and adjacency matrix

A. Then

(i). tr(A2) = 2m = 2nP2 ;

(ii). tr(A3) = 6nC3 ;

(iii). tr(A4) = 8nC4 + 4nP3 + 2nP2 ;

(iv). tr(A5) = 10nC5 + 30nC3 + 10nC∗
3
;

(v). ||A3|| = 6nC3 + 2nP4 + 2nP2 + 4nP3 ;

(vi). ||A4|| = 8nC4 + 2nP2 + 8nP3 + 2nP5 + 4nP4 + 4nC∗
3
+ 18nC3 + 6nS4 .

Proof. (i) is trivial; (ii) follows from Corollary 8.1.3 in [5] directly.
(iii). Note that tr(A4) =

∑n
i=1(A

4)ii, then tr(A
4) denotes the sum of

all number of walks with length 4 from i to i by lemma 1. In view of each
walk with length 4, from i to i, may be formed by C4, P2 or P3, thus we
assume that

tr(A4) = xnC4
+ ynP3

+ znP2
.

Let C4 = ijkli be a given 4-cycle. Then there are exactly 8 walks with
length 4 related to such a cycle, named as ijkli, jklij, klijk, lijkl, ilkji,
jilkj, kjilk and lkjil. Let P3 = ijk be a given 3-path. Then there are
exactly 4 walks with length 4 related to such a 3-path, named as ijkji,
kjijk, jijkj and jkjij. Let P2 = ij be a given 2-path. Then there are
exactly 2 walks, ijiji and jijij, with length 4 related to such a 2-path.
Thus x = 8, y = 4 and z = 2. Consequently, we have

tr(A4) = 8nC4
+ 4nP3

+ 2nP2
.

(iv). By lemma 1, tr(A5) denotes the sum of all number of walks with
length 5 from i to i for i = 1, 2, . . . , n. In view of each walk of length 5,
from i to i, may be formed by C5, C3 or C∗

3 , we assume that

tr(A5) = xnC5
+ ynC3

+ znC∗
3
.

By the discussion similar to above, we have x = 10, y = 30 and z = 10.
Thus

tr(A5) = 10nC5
+ 30nC3

+ 10nC∗
3
.

(v). Likewise, we have
∑

i ̸=j(A
3)ij = 2nP4

+ 2nP2
+ 4nP3

. Conse-
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quently, combining with (ii), we have

||A3|| = tr(A3) +
∑
i ̸=j

(A3)ij = 6nC3
+ 2nP4

+ 2nP2
+ 4nP3

.

(vi). Note that ||A4|| = tr(A4) +
∑

i ̸=j(A
4)ij and by lemma 1 (A4)ij

(i ̸= j) denotes the sum of the number of walks with length 4 from the
vertex i to the vertex j with i ̸= j, then we assume that∑

i ̸=j

(A4)ij = xnP5 + ynP4 + znC∗
3
+ pnC3 + qnS4 + rnP3 ,

in view of each walk of length 4, from i to j, i ̸= j, is formed by one of
the subgraphs P5, P4, C

∗
3 , C3, S4 and P3. By a similar approach, we have

x = 2, y = 4, z = 4, p = 18, q = 6 and r = 4. Consequently, we have

||A4|| − tr(A4) = 2nP5
+ 4nP4

+ 4nC∗
3
+ 18nC3

+ 6nS4
+ 4nP3

.

Therefore, the proof is complete. ■
Let G be a graph with order n, adjacency matrixA and degree diagonal

matrix D. The adjacency polynomial, the Laplacian polynomial and the
signless Laplacian polynomial of G are defined as

ϕ(G;λ) = det(λI−A) =
∑n

i=0 aiλ
n−i;

φ(G;λ) = det(λI− L) = det(λI−D+A) =
∑n

i=0(−1)iliλ
n−i;

ψ(G;λ) = det(λI−Q) = det(λI−D−A) =
∑n

i=0(−1)iqiλ
n−i,

(2.1)

respectively. Hereafter, ai, li and qi are called the i-th adjacency coef-

ficient, i-th Laplacian coefficient and i-th signless Laplacian coefficient of

G, respectively.

A subgraph H of G is called an elementary subgraph if each component

of H is either an edge or a cycle. For an elementary subgraph H, denote

by c(H) and c1(H) the number of components which are cycles and edges,

respectively. The following result determines all adjacency coefficients of

graphs in terms of elementary subgraphs.

Lemma 2. [6, Theorem 3.10] Let G be a graph with order n and adjacency

polynomial ϕ(G;λ) =
∑n

i=0(−1)iaiλn−i, defined as Eq.(2.1). Then

ai =
∑

(−1)c1(H)+c(H)2c(H),

where the summation is over all the elementary subgraphs H of G having

i vertices, i = 1, 2, . . . , n.
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Note that each elementary subgraph of order 5 is either C5 or C3 ∪P2,

then applying Lemma 2, we have the following result immediately.

Corollary. Let G be a graph with the fifth adjacency coefficient a5. Then

a5 = 2nC3∪P2
− 2nC5

. (2.2)

Suppose that F is a spanning forest of the graph G with k components,

Ti(i = 1, 2, . . . , k). For each i, denote by ni the number of vertices con-

tained in Ti. Let γ(F ) =
∏k

i=1 ni. Due to Kelmans and Chelnokov, the

Laplacian coefficient ln−k is given as follows.

Lemma 3. [15, p203] Let G be a graph with order n and Laplacian poly-
nomial φ(G;λ) =

∑n
i=0(−1)iliλn−i, defined as Eq.(2.1). Then

ln−k =
∑

F∈Fk

γ(F ),

where Fk denotes the set of all spanning forests of G with exactly k com-

ponents.

As a consequence of Lemma 3, we have

Corollary. Let G be a graph with the fourth Laplacian coefficient l4. Then

l4 = 5nS5
+8nS4∪P2

+9n2P3
+12nP3∪2P2

+8nP4∪P2
+5nP5

+5nP∗
4
+16n4P2

. (2.3)

Proof. Since each spanning forest having n − 4 components has exactly
four edges, by direct verification we can see the components make up one
of the following graphs

{S5, S4 ∪ P2, 2P3, P3 ∪ 2P2, P4 ∪ P2, P5, P
∗
4 , 4P2}

together with isolated vertices appropriately. Then applying Lemma 3,

the result follows. ■

Let G be a graph. A spanning subgraph of G whose each connected

component is either a tree or an odd unicyclic graph is called a TU -

subgraph of G. Suppose that a TU -subgraph H of G contains c odd

unicyclic graphs and s trees named as T1, T2, . . . , Ts. Then the weight of

H, denoted by W (H), is defined by W (H) = 4c
∏s

i=1 ni, in which ni is

the number of the vertices of Ti. Due to Cvetković, Rowlinson and Simić,

the signless Laplacian coefficient qi is deduced in terms of the weight of

TU -subgraphs of G as follows.
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Lemma 4. [3, Theorem 4.4] Let G be a connected graph with order n
and signless Laplacian polynomial ψ(G;λ) =

∑n
i=0(−1)iqiλn−i, defined as

Eq.(2.1). Then for each i(i = 0, 1, 2, . . . , n)

qi =
∑
Hi

W (Hi),

where the summation runs over all TU -subgraphs Hi of G having i edges.

As a consequence of Lemma 4, we have

Corollary. Let G be a simple graph with the fourth Laplacian coefficient
l4 and the fourth signless Laplacian coefficient q4. Then

q4 − l4 = 4nC∗
3
+ 8nC3∪P2

. (2.4)

Proof. According to Lemma 4, we know

q4 =
∑
H4

W (H4),

where the summation runs over all TU -subgraphs of G having 4 edges.
By direct verification, each TU -subgraph of G with 4 edges is one of the
graphs

{S5, S4 ∪ P2, 2P3, P3 ∪ 2P2, P4 ∪ P2, P5, P
∗
4 , 4P2, C

∗
3 , C3 ∪ P2},

in which there has exactly two graphs C∗
3 and C3 ∪ P2 are non-bipartite.

Consequently, combining with Corollary 2, we have

q4 = l4 + 4nC∗
3
+ 8nC3∪P2

.

Thus the proof is complete. ■
In addition, we need to introduce a matrix operation, from which we

can count the number of the subgraphs S4 ∪ P2. Let G be a graph with
vertex set V (G) = {1, 2, . . . , n} and adjacency matrixA. Suppose that, for
each i, the vertex i corresponds to the i-th row, as well as the i-th column,
of A. Let i be a vertex with degree at least 3 and let the vertices j, k and l
be the neighbors of i. Denote byG\{i; j, k, l} the graph obtained fromG by
deleting vertices {i, j, k, l} and all edges incident to them. We should point
out that the subgraph G\{i; j, k, l} is different slightly from the subgraph
G\{i, j, k, l}. In G\{i, j, k, l}, the degree of the vertex i may be less than 3,
that is, G\{i, j, k, l} = G\{j, i, k, l}. However, from the definition above,
G\{i; j, k, l} and G\{j; i, k, l} are two distinct graphic representations even
if di ≥ 3, {j, k, l} ⊆ Ni and dj ≥ 3, {i, k, l} ⊆ Nj , although the resultant
graphsG\{i; j, k, l} andG\{j; i, k, l} have no distinction. Correspondingly,
the adjacency matrix associated to G\{i; j, k, l} is denoted by A{i; j, k, l}.
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For simplicity, let

α(G) :=
1

2

∑
di≥3,{j,k,l}⊆Ni

||A{i; j, k, l}||,

where the summation runs over all vertices i whose degree is at least 3

and {j, k, l} ⊆ Ni. Then we have

Theorem 1. Let G be a graph with vertex set V (G) = {1, 2, . . . , n} and
adjacency matrix A. Then

nS4∪P2 = α(G).

Proof. Obviously, the expression 1
2 ||A{i; j, k, l}|| denotes the number of

edges contained in the subgraph G\{i; j, k, l}. By the definition above,

G\{i; j, k, l} is the graph by removing the subgraph S4, the star with

central vertex i and pendent vertices j, k, l, and all edges incident to them.

So 1
2 ||A{i; j, k, l}|| is the number of S4∪P2, where the star S4 is fixed whose

central vertex is i and pendent vertices are vertices j, k, l. On the other

hand, each star S4 corresponds a vertex with degree at least 3 together

with its three neighbors. Consequently, the proof is complete. ■

In the final of this section, we give an algorithm for computing the

graph invariant α(G) as follows:

Algorithm.

Input: The adjacency matrix A = A(G) = (aij)n×n with respect to a

given graph G of order n.

Output: 2α(G).

Step1. Constructing vectors R = (r1, r2, . . . , rk) and C
i = (ci1, c

i
2, . . . , c

i
si)

(i = 1, . . . , k).

(1.1) Initially k = 0 and si = 0, i = 1, . . . , k.

(1.2) Traverse each row of the matrix A and obtain the degree di of

the vertex i for i = 1, 2, . . . , n.

(1.3) k ← k + 1 and rk ← i if di ≥ 3; otherwise, return nothing and

continue loop. When i = n, stop.

(1.4) si ← si+1 and cis ← j if ari,j = 1; otherwise, return nothing and

continue loop. When i = k and j = n, stop.

Step2.

(2.1) Initially a = 0.
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(2.2) For an arbitrary triple array (p, q, h) of the vector Ci, a = a +

A{ri; p, q, h}, where p, q and h are three distinct entries of Ci;

(2.3) When all the triple arrays of Ci, (i = 1, . . . , k), are traversed,

the loop ends and the whole algorithm is complete.

Remark. In this algorithm, the traversal of step 1 does not involve nest-

ing, the algorithm complexity of this step is O(k), and the traversal of

step 3 is nested in step 2, so the algorithm complexity of these two steps

is O(k|C|3). Therefore, the final algorithm complexity is O(k|C|3).

3 The number of all substructures contain-

ing at most four edges

Let G be a graph with degree sequence (d1, d2, . . . , dn) and size m. We in
the following sometimes set

βk(G) :=
n∑

i=1

(di
k

)
(k = 2, . . . , n− 1)

for simplicity.

3.1 The number of all substructures containing

at most three edges

From the definition of the adjacency matrix, we have

nP2
= m =

1

2
tr(A2). (3.1)

We can see there are exactly two types of graphs, P3 and 2P2, having
exactly two edges, then we have

nP3
=

n∑
i=1

(di
2

)
= β2(G). (3.2)

and
n2P2

=
(m
2

)
− β2(G). (3.3)

Furthermore, one can see that there are exactly five graphs containing
three edges, named as

{S4, C3, P4, P3 ∪ P2, 3P2}.
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The following proposition tells us the number of those substructures.

Proposition 2. Let G be a graph with order n and size m. Then

(i). nC3 = 1
6
tr(A3);

(ii). nS4 = β3(G);

(iii). nP4 = 1
2
||A3|| − 1

2
tr(A3)− 2β2(G)−m;

(iv). nP3∪P2 = −||A3||+ 1
2
tr(A3)− 3β3(G) + (m+ 2)β2(G) + 2m;

(v). n3P2 =
(m
3

)
+ 1

2
||A3|| − 1

6
tr(A3) + 2β3(G)−mβ2(G)−m.

Proof. (i). The result follows from (ii) of Corollary 2, or Corollary 8.1.3

in [5] directly.

(ii). The result follows from the fact that all edges of the star S4 have

exactly one central vertex and the number of the stars S4 formed by the

fixed vertex i is
(
di

3

)
.

(iii). From Corollary 2 (v), we have

nP4
=

1

2
||A3|| − 3nC3

− nP2
− 2nP3

.

Then, combining Eq.s (3.1), (3.2) and (i), we have

nP4
=

1

2
||A3|| −

1

2
tr(A3)−m− 2β2(G).

(iv). The expression

(m− 2)

n∑
i=1

(
di
2

)

has a combinatorial interpretation as follows: we first select two edges
having a common vertex, a path P3, and then select an arbitrary edge
from the remaining m − 2 edges. In view of the resultant graph may be
one of the graphs {C3, P4, S4, P3 ∪ P2}, we assume that

(m− 2)

n∑
i=1

(di
2

)
= xnP4 + ynC3 + znS4 + wnP3∪P2 .

Let ie1je2ke3l be a given path P4. Then the path P4 has two different
structures: first select the path ie1je2k and then select the edge e3, or first
select the path je2ke3l and then select the edge e1. Consequently, x = 2.
Similarly, we have y = 3, z = 3 and w = 1. Therefore, we have

(m− 2)β2(G) = 2nP4 + 3nC3 + 3nS4 + nP3∪P2 ,
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which implies that

nP3∪P2
= (m− 2)β2(G)− 2nP4

− 3nC3
− 3nS4

.

Then, combining with (i), (ii) and (iii), the result follows. (v). Applying

Theorem 2.3 in [1] and Corollary 2, we have

n3P2
=

(m
3

)
− nP3∪P2

− nP4
− nS4

− nC3
.

Then, combining with (i), (ii), (iii) and (iv), the result follows. ■

3.2 The number of all substructures having exactly

four edges

By a direct verification, we find that there are exactly eleven graphs con-
taining four edges, named as

{C4, C
∗
3 , C3 ∪ P2, S5, S4 ∪ P2, P5, P

∗
4 , 2P3, P3 ∪ 2P2, P4 ∪ P2, 4P2}.

From Theorem 1, we have nS4∪P2
= α(G), where the invariant α(G) is

defined in section 2. Moreover, we have

Theorem 3. Let G be a graph with order n and size m. Then

(i). nC∗
3
= 1

5
tr(A5)− tr(A3) + 1

4
(l4 − q4) + a5;

(ii). nC3∪P2
= − 1

10
tr(A5) + 1

2
tr(A3) + 1

4
(q4 − l4)− 1

2
a5;

(iii). nS5
= β4(G);

(iv). nC4
= 1

8
tr(A4)− 1

2
β2(G)− 1

4
m;

(v). nP5
= 1

2
||A4|| − ||A3|| − 2

5
tr(A5)− 1

2
tr(A4) + 3

2
tr(A3)− 1

2
(l4 − q4)

−2a5 − 3β3(G) + 2β2(G) + 2m.

Proof. (i)-(ii). From Eq.s (2.2), (2.4) and Corollary 2 (iv), we have
q4 − l4 = 4nC∗

3
+ 8nC3∪P2

a5 = 2nC3∪P2 − 2nC5

tr(A5) = 10nC5
+ 30nC3

+ 10nC∗
3
.

Then nC∗
3
and nC3∪P2 can be solved directly, we omit the details.

(iii). The formula is established in a routine manner to Proposition 2

(ii), we also omit the detail.
(iv). From corollary 2 (iii), we have

nC4
=

1

8
tr(A4)−

1

4
nP2

−
1

2
nP3

.
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Combining with (3.1) and (3.2), we have

nC4 =
1

8
tr(A4)−

1

4
m−

1

2
β2(G).

(v). From corollary 2 (vi), we have

nP5
=

1

2
||A4|| − 4nC4

− nP2
− 4nP3

− 2nP4
− 2nC∗

3
− 9nC3

− 3nS4

Combining with (i), (iv), proposition 2 (i) and (iii), we have

nP5
=

1

2
||A4|| − ||A3|| −

2

5
tr(A5)−

1

2
tr(A4) +

3

2
tr(A3)−

1

2
(l4 − q4)

−2a5 − 3β3(G) + 2β2(G) + 2m.

Therefore, the proof is complete. ■

Up to now, the formulas on the number of five graphs {C∗
3 , C3 ∪

P2, S5, C4, P5, S4 ∪ P2} are given. To determine the number of the re-

maining five subgraphs having 4 edges, we need the following equations.

Lemma 5. Let G be a graph having n vertices and m edges. Then the
following equations hold

n∑
i=1

(m− di)
(di
3

)
= nP∗

4
+ nS4∪P2

+ nC∗
3
;

(m− 3)nP4
= nP4∪P2

+ 2nP5
+ 2nP∗

4
+ 4nC4

+ 2nC∗
3
;∑

1≤i<j≤n

(di
2

)(dj
2

)
= n2P3

+ nP5
+ 2nC4

+ nP4
+ 2nC∗

3
+ nP∗

4
+ 3nC3

;

n∑
i=1

(m− di

2

)(di
2

)
= nP3∪2P2

+3nP5
+2nP4∪P2

+2n2P3
+4nC4

+2nC∗
3
+nP∗

4
+3nC3∪P2

;

(m− 3)n3P2
= 4n4P2

+ 2nP3∪2P2
+ nP4∪P2

.

Proof. the proof of all those equations are analogous, we only give the
proof of the first one and omit all others. A combinatorial interpretation
on the expression

n∑
i=1

(m− di)
(di
3

)
is: we first select three edges incident to the vertex i and then select an ar-
bitrary edge from E(G)\Ni. Then using the method similar to Proposition
2 (iv) we have

n∑
i=1

(m− di)
(di
3

)
= nP∗

4
+ nS4∪P2

+ nC∗
3
.

Thus the first equation follows. ■

Consequently, we have
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Theorem 4. Let G be a graph with order n, size m and adjacency matrix
A. Then we have

(i). nP∗
4

=
∑n

i=1(m− di)
(di
3

)
− 1

5
tr(A5) + tr(A3)− l4−q4

4
− a5 − α(G);

(ii). nP4∪P2
= −||A4||+ 1

2
(m+ 1)||A3||+ 4

5
tr(A5) + 1

2
tr(A4) + l4 − q4

− 1
2
(m+ 3)tr(A3) + 4a5 −m2 − 2

∑n
i=1(m− di)

(di
3

)
+ 2α(G) + 6β3(G)− (2m− 4)β2(G);

(iii). n2P3
= − 1

2
||A4||+ 1

2
||A3||+ 1

5
tr(A5) + 1

4
tr(A4)− 1

2
tr(A3) + a5

+ 1
4
(l4 − q4)− 1

2
m+

∑
1≤i<j≤n

(di
2

)(dj
2

)
+ α(G) + 3β3(G) + β2(G)−

∑n
i=1(m− di)

(di
3

)
;

(iv). nP3∪2P2 = 3
2
||A4|| − (m− 1)||A3|| − 7

10
tr(A5)− 1

2
tr(A4)

− 1
2
(l4 − q4) +

∑n
i=1

(m−di
2

)(di
2

)
+ 5

∑n
i=1(m− di)

(di
3

)
− 2

∑
1≤i<j≤n

(di
2

)(dj
2

)
− 5α(G) + (4m− 14)β2(G)

+ (m− 1)tr(A3) + 2m2 − 4m− 7
2
a5 − 9β3(G);

(v). n4P2
= − 1

2
||A4||+ 1

2
(m− 2)||A3||+ 3

20
tr(A5) + 1

8
tr(A4) + 3

4
a5

+ 1
12

(12− 5m)tr(A3)− 1
2

∑n
i=1

(m−di
2

)(di
2

)
+ 2α(G)

+
∑

1≤i<j≤n

(di
2

)(dj
2

)
− 2

∑n
i=1(m− di)

(di
3

)
+ 1

2
(m+ 3)β3(G)

− 1
4
(m2 + 3m− 24)β2(G) + 1

4
(m− 3)

(m
3

)
−m2 + 11m

4
.

Proof. From Lemma 5, we have

nP∗
4

=

n∑
i=1

(m− di)
(di
3

)
− nS4∪P2 − nC∗

3
;

nP4∪P2
+ 2nP∗

4
= (m− 3)nP4

− 2nP5
− 4nC4

− 2nC∗
3
;

n2P3
+ nP∗

4
=

∑
1≤i<j≤n

(di
2

)(dj
2

)
− nP5

− 2nC4
− nP4

− 2nC∗
3
− 3nC3

;

nP3∪2P2+2nP4∪P2+2n2P3+nP∗
4

=

n∑
i=1

(m− di

2

)(di
2

)
−3nP5−4nC4−2nC∗

3
−3nC3∪P2 ;

4n4P2
+ 2nP3∪2P2

+ nP4∪P2
= (m− 3)n3P2

.

Combining with Proposition 2 and Theorem 3, the number of each graph

of {P ∗
4 , P4 ∪P2, 2P3, P3 ∪ 2P2, 4P2} can be obtained one by one. Thus the

proof is complete. ■

4 Another expression on ||A3|| and ||A4||

Corollary 2 has deduced an expression on ||A3|| and ||A4|| in terms of the

number of some substructures with small order, respectively.
Let G be a graph with n vertices and degree sequence (d1, d2, . . . , dn).
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The first Zagreb index and the second Zagreb index are defined as

M1 =M1(G) =

n∑
i=1

d2i and M2 =M2(G) =
∑

ij∈E(G)

didj .

The two Zagreb indices are the oldest vertex degree based molecular

structure descriptors, invented in the 1970s [10,11]. Details of their theory

can be found in the recent reviews [2, 8].
One can easily verify that

||A2|| = 2nP2
+ nP3

=

n∑
i=1

d2i =M1(G).

Interestingly, as by-product, we in the following show that ||A3|| =
2M2(G), which provides an algebraic expression for the second Zagreb

index of graphs. Moreover, we establish an expressions on ||A4|| in terms

of the degree sequence of such a graph.

Proposition 5. Let G be a graph with degree sequence (d1, d2, . . . , dn) and

adjacency matrix A. Then

1). ||A3|| = 2M2(G);

2). ||A4|| =
∑

u∈V (G)(2
∑

i,j∈N(u) didj + d3u).

Proof. 1). Let e = uv be an arbitrary edge of G with u1 ∈ N(u)\{v}
and v1 ∈ N(v)\{u}. Then we find that if u1 = v1, say u1 = v1 =: w,
then G[u, v, w] forms a triangle of G; and if u1 ̸= v1, then the edge set
{u1u, uv, vv1} forms a path P4. Therefore, path P4 has exactly one central
edge and each edge of a triangle, C3 ,can be considered as its central edge,
we have ∑

uv∈E(G)

(du − 1)(dv − 1) = 3nC3 + nP4 .

On the other hand, we find that∑
uv∈E(G)

(du − 1)(dv − 1) =
∑

uv∈E(G)

(dudv − du − dv + 1) =M2(G)−M1(G) + np2 .

Consequently, the result follows applying Corollary 2(v).
2). Let i, j ∈ N(u) be two neighbors, not necessarily distinct, of u with

i∗ ∈ N(i) and j∗ ∈ N(j). In view of ||A4|| equals the number of all walks
having length 4 from i∗ to j∗ with i∗, j∗ ∈ V (G), then ||A4|| equals the
number of walks i∗iujj∗, where u runs over all vertices of G, i∗ runs over
all neighbors of i and j∗ runs over all neighbors of i. Furthermore, we find
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that if i ̸= j, then the number of those walks is

2
∑

u∈V (G)

∑
i,j∈N(u)

didj ,

and if i = j, then the number of those walks is∑
u∈V (G)

d3u.

Consequently, the result follows. ■

5 Concluding remarks

For any graph G with adjacency matrix A(G), we established formulas

on the number of all substructures having at most four edges in terms of

A(G) together with those graph invariants determined by A(G), including

the degree sequence, k-moment of A(G), adjacency coefficients, Laplacian

coefficients and signless Laplacian coefficients. Especially, we introduce a

new matrix operation and the invariant α(G); see Section 2, avoiding all

known equations are dependent.
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molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975)
3399–3405.
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