Linear Spaces of Permutomers and Symmetry Itemized Isomers Numbers of $C_{2 V}$-Based Cuneane Derivatives and Heteroanalogues. II

Robert Martin Nemba ${ }^{a, *}$, Thomas B. Makon ${ }^{a}$, Aline Nodem ${ }^{a}$
${ }^{a}$ Faculty of Science, Laboratory of Physical and Theoretical Chemistry, Yaounde I University, PO. Box 812 Yaounde, Cameroon. nembarobertmartin@yahoo.com, tmakon@yahoo.com, nguimkiealine@gmail.com

(Received February 28, 2022)

Abstract

In application of part I this paper presents (a) 4- and 5-dimensional permutomers and symmetry itemized isomers count vectors $\left(P C V_{s}\right.$ and $\left.I I C V_{s}\right)$. (b) the collection of these vectors in the form of permutomers count matrices (PCMs) and itemized isomers count matrices $\left(I I C M_{s}\right)$ (c) the structure of the V_{4} and V_{5} multidimensional vector spaces of isomers numbers of substituted $C_{2 v}$-based cuneane derivatives and cuneane heteroanalogues.

1 Introduction

The chemistry of cage shaped eight carbon hydrocarbons and their derivatives has been developed since the successful synthesis of cubane $[1,2]$. Cuneane or Pentacyclo [3.3.0.0 $0^{2,4} .0^{3,7} .0^{6,8}$] octane, a saturated $C_{8} H_{8}$ hydrocarbon belongs to this group of chemical compounds. It is obtined

[^0]from cubane by metal-ion catalyzed σ - bond rearrangement $[3,5]$. Some cuneane derivatives more stable than the corresponding cubanes manifest liquid crystal properties [6]. NMR studies [7] have shown that the geometry of cuneane molecule is a hexahedron of $C_{2 V}$ symmetry which displays one pair of edge fused 5 -gonal faces, one pair of edge-fused 4 -gonal faces and 23 -gonal faces at eclipsed position.

2 Classification of coisomeric substituted cuneane derivatives and cuneane heteroanalogues

Let us consider the substitutions replacing hydrogen atoms by achiral substituents or the replacements of $C H$ groups by trivalent heteroatoms as arrangements in distinct ways of objects of the same kind or different kinds among 8 positions of cuneane molecule submitted to permutations induced by the $C_{2 V}$ group. Substituted cuneane derivatives and cuneane heteroanalogues derived from such arrangements may be classified into 4 groups as follows:

1- Homosubstituted cuneane derivatives with the molecular formula $C_{8} H_{8-q} X_{q}$ (or $C_{8} H_{q_{0}} X_{q_{1}}$) issued from homogeneous arrangements of q achiral substituents of the same kind X among 8 substitution positions occupied by hydrogen atoms submitted to permutations induced by distinct symmetry operations of $C_{2 V}$.

2- Cuneane homo-heteroanalogues $(\mathrm{CH})_{8-q} X_{q}$ (or $(\mathrm{CH})_{q_{0}} X_{q_{1}}$) issued from homogeneous arrangements putting in accord with the obligatory minimum valency (OMV) restriction $(\mathrm{OMV}=3)$, qX trivalent heteroatoms of the same kind among 8 CH positions permuted by distinct symmetry operations of $C_{2 V}$.

3- Heteropolysubstituted cuneane derivatives $C_{8} H_{q_{0}} X_{q_{1}} \ldots Y_{q_{i}} \ldots Z_{q_{k}}$ issued from heterogeneous arrangements of $q_{0} H$ and $q_{1} X, \ldots q_{i} Y, \ldots, q_{k} Z$ and achiral substituents of different kinds among 8 substitution sites permuted by distinct symmetry operations of $C_{2 V}$.

4- cuneane hetero-heteroanalogues $(\mathrm{CH})_{q_{0}} X_{q_{1}} \ldots Y_{q_{i}} \ldots Z_{q_{k}}$ are obtained
from heterogeneous arrangements putting in accord with the obligatory minimum valency restriction $(\mathrm{OMV}=3) q_{0} H$ and $q_{1} X, \ldots q_{i} Y, \ldots, q_{k} Z$ trivalent heteroatoms of different kinds among 8 CH positions permuted by distinct symmetry operations of $C_{2 V}$. We recall that throughout this study the indices of the molecular formula have the following significance:
$\mathrm{I}-q_{0}$ is the number of unsubstituted hydrogen atoms while the indices $\left(q_{1}, \ldots q_{i}, \ldots, q_{k}\right)$ are partial degrees of substitution i.e. numbers of non hydrogen achiral substituents of different kinds $\mathrm{X}, \mathrm{Y}, \ldots . ., \mathrm{Z}$.

II-The sub-indices $1 \leq i \leq k$ indicate the substitution order i which is the number of distinct types of non H substituents.

III-The set of indices $\left(q_{0}, q_{1}, \ldots q_{i}, \ldots, q_{k}\right)$ satisfy the restriction

$$
\begin{equation*}
\sum_{i=0}^{k} q_{i}=8 \tag{1}
\end{equation*}
$$

The mathematical properties presented in part I are applied in this paper to derive 4- and 5-dimensional permutomers and symmetry itemized isomers count vectors (PCVs and IICVs) and construct the structure of V_{4} and V_{5} multidimensional vector spaces of isomers numbers of substituted $C_{2 V}$-based cuneane derivatives and cuneane heteroanalogues.

3 Formulation of the denumerants of $C_{2 v}$ group for symmetry itemized enumeration of cuneane derivatives and heteroanalogues

3.1 1 Permutations of carbon and hydrogen atoms of cuneane under the $C_{2 v}$ group action

Let us represent the structure of cuneane by a tridimensional hydrogen depleted graph given in fig. 1 where 8 black vertices of degree 3 symbolize carbon atoms indicated by alphabetical labels of the set $C_{8}=$ $\left(a, b, c, d, a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right)$. These 8 interconnected carbon atoms are attached to 8 hydrogen atoms (not indicated in the graph) which compose the set H_{8}. These attachments form a cluster of 8 CH groups which gives rise to a

Figure 1. 3D-hydrogen depleted graph of cuneane
unicage shaped hydrocarbon of $C_{2 v}$ symmetry with 4 symmetry operations given in eq. 2 .

$$
\begin{equation*}
C_{2 V}=E, C_{2}, \sigma_{v_{1}} ; \sigma_{v_{2}} \tag{2}
\end{equation*}
$$

The $C_{2 v}$ group action on cuneane skeleton consisting to apply the abovementioned symmetry operations $g_{i} \epsilon C_{2 v}$ to the cluster of 8 CH groups generates the permutations representations $P^{C_{2 v}} H_{8}$ and $P^{C_{2 v}} C_{8}$ given in eqs. 1 and 4, respectively.

$$
\begin{align*}
& P^{C_{2_{v}}} \boldsymbol{H}_{8}=P^{E} \boldsymbol{H}_{8}, P^{C_{2}} \boldsymbol{H}_{8}, P^{\sigma_{v_{1}}} \boldsymbol{H}_{8}, P^{\sigma_{v_{2}}} \boldsymbol{H}_{8} \tag{3}\\
& P^{C_{2 v}} \boldsymbol{C}_{8}=P^{E} \boldsymbol{C}_{8}, P^{C_{2}} \boldsymbol{C}_{8}, P^{\sigma_{v_{1}}} \boldsymbol{C}_{8}, P^{\sigma_{v_{2}}} \boldsymbol{C}_{8} \tag{4}
\end{align*}
$$

The right hand side terms of eqs. 3 and 4 are permutations induced by 4 distinct conjugacy classes of symmetry operations of $C_{2 v}$. These
permutations are written in cycle structure notation[8] as follows :

$$
\begin{align*}
& P^{E} \boldsymbol{H}_{8}=1^{8}, P^{C_{2}} \boldsymbol{H}_{8}=2^{4}, P^{\sigma_{v_{1}}} \boldsymbol{H}_{8}=2^{4}, P^{\sigma_{v_{2}}} \boldsymbol{H}_{8}=1^{2} 2^{3} \tag{5}\\
& P^{E} \boldsymbol{C}_{8}=1^{8},{ }_{P} C_{2} \boldsymbol{C}_{8}=2^{4}, P^{\sigma_{v_{l}}} \boldsymbol{C}_{8}=P^{\sigma_{v_{2}}} \boldsymbol{C}_{8}=1^{2} 2^{3} \tag{6}
\end{align*}
$$

One may notice that the right-hand side terms in eqs.5-6 are equivalent. Therefore $P^{C_{2 v}} H_{8}$ and $P^{C_{2 v}} C_{8}$ have the same cycle structure notations as follows:

$$
\begin{equation*}
P^{C_{2 v}} H_{8} \equiv P^{C_{2 v}} C_{8}=\left[1^{8}\right],\left[2^{4}\right],\left[1^{2} 2^{3}\right],\left[1^{2} 2^{3}\right] \tag{7}
\end{equation*}
$$

Hence, cuneane substituted derivatives and cuneane heteroanalogues issued from equivalent sets of arrangements regulated by the permutations given in eq. 7 are coisomeric structures [9].

3.2 Permutational isomers numbers of homo-and he-te-ropolysubstituted cuneane derivatives and cuneane heteroanalogues

Let $\left(N_{E}, N_{C_{2}}, N_{\sigma_{v_{1}}}, N_{\sigma_{v_{2}}}\right)$ denote permutomers numbers of cuneane substituted derivatives or corresponding cuneane heteroanalogues issued from arrangements regulated by the terms given in eq.7. Such numbers are calculated as follows :

Rule 1: Permutational isomers numbers $N_{E}, N_{C_{2}}, N_{\sigma_{v_{1}}}, N_{\sigma_{v_{2}}}$ for a homopolysubstituted $C_{2 v}$-based cuneane derivative $C_{8} H_{8-q} X_{q}$ or its cuneane homo hetero-analogue $(\mathrm{CH})_{8-q} X_{q}$ are numbers of distinct ways of putting q achiral substituents of the same kind X among 8 positions submitted to permutations of classes $1^{8}, 2^{4}, 1^{2} 2^{3}$ and $1^{2} 2^{3}$. They are derived from binomial theorem as follows :

$$
\begin{array}{r}
1^{8} \rightarrow N_{E}=\binom{8}{q} \\
2^{4} \rightarrow N_{C 2}=\binom{4}{q / 2} \tag{9}
\end{array}
$$

$$
\begin{equation*}
1^{2} .2^{3} \rightarrow N_{\sigma_{v_{1}}}=N_{\sigma_{v_{2}}}=\sum_{\alpha=0}^{2}\binom{2}{\alpha}\binom{3}{4 q-\alpha) / 2} \tag{10}
\end{equation*}
$$

Rule 2 : Permutational isomers numbers $\left(N_{E}, N_{C_{2}}, N_{\sigma_{v_{1}}}, N_{\sigma_{v_{2}}}\right)$ for a heteropolysubstituted cuneane derivative $C_{8} H_{q_{0}} X_{q_{1}} \ldots Y_{q_{i}} \ldots Z_{q_{k}}$ or its cuneane hetero hetero-analogues $(\mathrm{CH})_{q_{0}} X_{q_{1}} \ldots Y_{q_{i}} \ldots Z_{q_{k}}$ are numbers of placements in distinct ways of $q_{0} H$ and $q_{1} X, \ldots q_{0} Y, \ldots, q_{k} Z$ achiral substituents of diffe-rent kinds among 8 positions submitted to permutations of classes $1^{8}, 2^{4}, 1^{2} 2^{3}$ and $1^{2} 2^{3}$. These numbers are derived from multinomial theorem as follows:

$$
\begin{gather*}
1^{8} \rightarrow N_{E}=\binom{8}{q_{0}, \ldots, q_{i}, \ldots, q_{k}} \tag{11}\\
2^{4} \rightarrow N_{C_{2}}=\binom{4}{\frac{q_{0}}{2}, \ldots, \frac{q_{i}}{2}, \ldots, \frac{q_{k}}{2}} \tag{12}\\
1^{2} .2^{4} \rightarrow N_{\sigma_{V_{1}}}=N_{\sigma_{V_{2}}}=\sum_{\lambda}\binom{2}{p_{0}^{\prime}, \ldots, p_{i}^{\prime}, \ldots, p_{k}^{\prime}}\binom{3}{q_{0}^{\prime}, \ldots, q_{i}^{\prime}, \ldots, q_{k}^{\prime}} \tag{13}
\end{gather*}
$$

with the restrictions

$$
\begin{equation*}
\sum_{i=0}^{k} p_{i}^{\prime}=2, \quad \sum_{i=0}^{k} q_{i}^{\prime}=3, \quad q_{i}^{\prime}=\frac{q_{i}-p_{i}^{\prime}}{2} \tag{14}
\end{equation*}
$$

The numbers $N_{E}, N_{C_{2}}, N_{\sigma_{v_{1}}}, N_{\sigma_{v_{2}}}$ derived from eqs.8-10 or eqs.11-13 are collected to form a 4 entries permutomers count vector (PCV) for a substituted cuneane which is expressed as follows :

$$
\begin{equation*}
\operatorname{PCV}(M X)=\left(N_{E}, N_{C_{2}}, N_{\sigma_{v_{1}}}, N_{\sigma_{v_{2}}}\right) \tag{15}
\end{equation*}
$$

where $=C_{8} H_{8-q} X_{q},(C H)_{8-q} X_{q},(C H)_{q_{0}} X_{q_{1}} \ldots Y_{q_{i}} \ldots Z_{q_{k}}$ or $C_{8} H_{q_{0}} X_{q_{1}} \ldots$ $Y_{q_{i}} \ldots Z_{q_{k}}$.

3.3 The Sylvester's denumerants of $C_{2 V}$ group applied to cuneane

The Sylvester's denumerants [10,11] of $C_{2 v}$ group (see eq. 16 part I) applied for deriving symmetry itemized isomers numbers $a_{c_{1}}, a_{c_{2}}, a_{c_{s}}, a_{c_{s}^{\prime}}, a_{c_{2 v}}$ are given as follows:
-For a homopolysubstituted cuneane derivative and its cuneane homo-hetero-analogue $(\mathrm{CH})_{8-q} X_{q}$

$$
\begin{gather*}
N_{E}=\left(4 a_{c_{1}}+2 a_{c_{2}}+2 a_{c_{s}}+2 a_{c_{s}^{\prime}}+a_{c_{2 v}}\right)=\binom{8}{q} \tag{16}\\
N_{C_{2}}=\left(2 a_{c_{2}}+a_{c_{2 v}}\right)=\binom{4}{q / 2} \tag{17}\\
N_{\sigma_{v_{1}}}=N_{\sigma_{v_{2}}}=2 a_{c_{s}}+a_{c_{2 v}}=2 a_{c_{s}^{\prime}}+a_{c_{2 v}}=\sum\binom{2}{\alpha}\binom{3}{(q-\alpha) / 2} \tag{18}
\end{gather*}
$$

For a heteropolysubstituted cuneane derivative $C_{8} H_{q_{0}} X_{q_{1}} \ldots Y_{q_{i}} \ldots Z_{q_{k}}$ and its cuneane hetero heteroanalogue $(\mathrm{CH})_{q_{0}} X_{q_{1}} \ldots Y_{q_{i}} \ldots Z_{q_{k}}$:

$$
\begin{gather*}
N_{E}=\left(4 a_{c_{1}}+2 a_{c_{2}}+2 a_{c_{s}}+2 a_{c_{s}^{\prime}}+a_{c_{2 v}}\right)=\binom{8}{q_{0}, \ldots q_{i}, \ldots q_{k}} \tag{19}\\
N_{C_{2}}=\left(2 a_{c 2}+a_{c_{2 v}}\right)=\binom{4}{q_{0} / 2, \ldots q_{i} / 2, \ldots q_{k} / 2} \tag{20}\\
N_{\sigma_{v_{1}}}=N_{\sigma_{v_{2}}}=2 a_{c_{s}}+a_{c_{2 v}}=2 a_{c_{s}^{\prime}}+a_{c_{2 v}}=\sum_{\lambda}\binom{2}{p_{0}, \ldots, p_{i}, \ldots, p_{k}}\binom{3}{q_{0}^{\prime}, \ldots, q_{i}^{\prime}, \ldots, q_{k}^{\prime}} \tag{21}\\
q_{i}^{\prime}=\frac{q_{i}-p_{i}}{2}, \sum_{i} p_{i}=2, \text { and } \sum_{i} q_{i}^{\prime}=3 \tag{22}
\end{gather*}
$$

Applications to symmetry itemized enumeration and construction of the linear spaces of $C_{2 v}$-based isomers numbers for coisomeric series of substituted cuneane derivatives and heteroanalogues

Example 1 : Symmetry itemized enumeration and determination of linear spaces of isomers numbers of homopolysubstituted $C_{2 v}$-based cuneane derivatives $\mathrm{C}_{8} \mathrm{H}_{8-q} X_{q}$ and cuneane homo heteroanalogues $(\mathrm{CH})_{8-q} X_{q}$ where $1 \leq q \leq 8$. By applying eqs.8-10 and 16-18 to these series one derives the $P C V_{s}$ and the denumerants generating the linear mapping between $P C V_{s}$ and $I I C V_{s}(P C V s \rightarrow I I C V s)$ calculated for each degree of substitution q. These vectors are collected to form the PCM and the IICM representing the V_{4} and V_{5} linear spaces of permutomers and symmetry itemized isomers numbers for these coisomeric series. The calculations are as follows: For q=1 in the series $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{X}$ and $(\mathrm{CH})_{7} \mathrm{X}$,

$$
\begin{aligned}
& N_{E}=4 a_{c_{1}}+2 a_{c_{2}}+2 a_{c_{s}}+2 a_{c_{s}^{\prime}}+a_{c_{2 v}}=\binom{8}{1} \\
& N_{C_{2}}=2 a_{c_{2}}+a_{c_{2 v}}=0 \\
& N_{\sigma_{1}}=2 a_{c_{s}}+a_{c_{2 v}}=\binom{2}{1}\binom{3}{0}=2 \\
& N_{\sigma_{v_{2}}}=2 a_{c_{s}^{\prime}}+a_{c_{2 v}}=\binom{2}{1}\binom{3}{0}=2 \\
& a_{c_{1}}=1, a_{c_{2}}=0, a_{c_{s}}=1, a_{c_{2 v}}=0, a_{c_{s}^{\prime}}=1,
\end{aligned}
$$

$$
\operatorname{IICV}\left(C_{8} H_{7} X\right)=(1,0,1,1,0) \rightarrow P C V\left(C_{8} H_{7} X\right)=(8,0,2,2)
$$

For q=2 in the series $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{X}$ and $(\mathrm{CH})_{6} \mathrm{X}_{2}$,

$$
\begin{aligned}
& N_{E}=4 a_{c_{1}}+2 a_{c_{2}}+2 a_{c_{s}^{\prime}}+a_{c_{2 v}}=\binom{8}{2}=28 \\
& N_{C_{2}}=2 a_{c_{2}}+a_{c_{2 v}}=\binom{4}{1}=4 \\
& N_{\sigma_{1}}=2 a_{c s}+a_{c_{2 v}}=\binom{2}{0}\binom{3}{1}+\binom{2}{2}\binom{3}{0}=4 \\
& N_{\sigma_{v 2}}=2 a_{c^{\prime} s}+a_{c_{2 v}}=\binom{2}{0}\binom{3}{1}+\binom{2}{2}\binom{3}{0}=4 \\
& a_{c_{1}}=5, a_{c_{2}}=1, a_{c_{s}}=1, a_{c_{s}^{\prime}}=1, a_{c_{2 v}}=2, \\
& \operatorname{PCV}\left(C_{8} H_{6} X_{2}\right)=(28,4,4,4) \rightarrow I I C V\left(C_{8} H_{7} X\right)=(5,1,1,1,2)
\end{aligned}
$$

For q=3 in the series $C_{8} H_{5} X_{3}$ and $(\mathrm{CH})_{5} X_{3}$
$N_{E}=4 a_{c_{1}}+2 a_{c_{s}}+2 a_{c_{s}^{\prime}}+a_{c_{2 v}}=\binom{8}{3}=56$
$N_{C_{2}}=2 a_{c_{2}}+a_{c_{2 v}}=0$

$$
\begin{aligned}
& N_{\sigma_{1}}=2 a_{c_{s}}+a_{c_{2 v}}=\binom{2}{1}\binom{3}{1}=6 \\
& N_{\sigma_{v_{2}}}=2 a_{c_{s}}^{\gamma_{1}}+a_{c_{2 v}}^{\gamma_{2}}=\binom{2}{1}\binom{3}{1}=6 \\
& a_{c_{1}}=2, a_{c_{2}}=0, a_{c_{s}}=3, a_{C_{s}^{\prime}}=3, a_{c_{2 v}}=0, \\
& P C V\left(C_{8} H_{5} X_{3}\right)=(56,0,6,6) \rightarrow I I C V\left(C_{8} H_{5} X_{3}\right)=(2,0,1,1,0)
\end{aligned}
$$

For q=4 in the series $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{X}_{4}$ and $(\mathrm{CH})_{4} X_{4}$

$$
\begin{aligned}
& N_{E}=4 a_{c_{1}}+2 a_{c_{s}}+2 a_{c^{\prime} s}+a_{c_{2 v}}=\binom{8}{4}=70 \\
& N_{C_{2}}=2 a_{c_{2}}+a_{c_{2 v}}=\binom{4}{2}=6 \\
& N_{\sigma_{1}}=2 a_{c_{s}}+a_{c_{2 v}}=\binom{2}{0}\binom{3}{1}+\binom{2}{2}\binom{3}{1}=6 \\
& N_{\sigma_{v 2}}=2 a_{c^{\prime} s}+a_{c_{2 v}}=\binom{2}{0}\binom{3}{1}+\binom{2}{2}\binom{3}{1}=6 \\
& a_{c_{1}}=14, a_{c_{2}}=2, a_{c s}=2, a_{c^{\prime} s}=2, a_{c_{2 v}}=2, \\
& P C V\left(C_{8} H_{4} X_{4}\right)=(70,6,6,6) \rightarrow \text { IICV }\left(C_{8} H_{4} X_{4}\right)=(14,2,2,2,2)
\end{aligned}
$$

For q=8 in the series $C_{8} X_{8}$,

$$
\begin{aligned}
& N_{E}=\binom{8}{8}, N_{C_{2}}=N_{\sigma_{v 1}}=\binom{4}{4}=1, N_{\sigma_{v 2}}=\binom{2}{2}\binom{3}{3}=1 \\
& N_{E}=4 a_{c_{1}}+2 a_{c_{s}}+2 a_{c_{s}^{\prime}}+a_{c_{2 v}}=1 \\
& N_{C_{2}}=2 a_{c_{2}}+a_{c_{2 v}}=1 \\
& N_{\sigma_{1}}=2 a_{c_{s}}+a_{c_{2 v}}=1 \\
& N_{\sigma_{v_{2}}}=2 a_{c^{\prime} s}+a_{c_{2 v}}=1 \\
& a_{c_{1}}=a_{c_{2}}=a_{c s}=a_{c_{s}^{\prime}}=0, a_{c_{2 v}}=1
\end{aligned}
$$

$\operatorname{PCV}\left(C_{8} X_{8}\right.$ or $\left.X_{8}\right)=(1,1,1,1) \rightarrow \operatorname{IICV}\left(C_{8} X_{8}\right.$ or $\left.X_{8}\right)=(0,0,0,0,1)$,
We collect 4 -dimensional $P C V_{s}$ and 5 -dimensional IICVs to form the PCM and the IICM that construct the V_{4} and V_{5} associated vector spaces of permutomers numbers and symmetry itemized isomers numbers for these coisomeric series as follows:

The row vectors entries of the PCM and IICM are interpreted as follows : for coisomeric series $C_{8} H_{q_{0}} X_{q_{1}}$) and $(\mathrm{CH})_{q_{0}} X_{q_{1}}$ where $\left(q_{0}, q_{1}\right)=(8,0)$, $(7,1),(6,2),(5,3),(4,4)$ the linear mappings between 4 entries PCVs and 5 entries $I I C V_{s}$ are :

$$
(1,1,1,1) \rightarrow(0,0,0,0,1) ;(8,0,2,2) \rightarrow(1,0,1,1,0)
$$

$(28,4,4,4) \rightarrow(5,1,1,1,2) ;(56,0,6,6) \rightarrow(11,0,3,3,0)$;
$(70,6,6,6) \rightarrow(14,2,2,2,2)$.
These transformations of 4 -tuples of permutomers numbers $N_{E}, N_{C_{2}}$, $N_{\sigma_{v 1}}, N_{\sigma_{v 2}}$ into 5-tuples of symmetry itemized isomers numbers $a_{c s}, a_{c_{2}}$, $a_{c s}, a_{c^{\prime} s}, a_{c_{2 v}}$ predict the occurrences of :
$\left(0,0,0,0, C_{2 v}\right) ;\left(C_{1}, 0, C_{s}, C_{s}^{\prime}, 0\right) ;\left(5 C_{1}, C_{2}, C_{s}, C_{s}^{\prime}, 2 C_{2 v}\right) ;$
$\left(11 C_{1}, 0,3 C_{s}, 3 C_{s}^{\prime}, 0\right)$; $\left(14 C_{1}, 2 C_{2}, 2 C_{s}, 2 C_{s}^{\prime}, 2 C_{2 v}\right)$ isomers for coisomeric series $\mathrm{C}_{8} \mathrm{H}_{8} / \mathrm{C}_{8} \mathrm{X}_{8},\left(\mathrm{C}_{8} H_{7} \mathrm{X}\right) /(\mathrm{CH})_{7} X, \mathrm{C}_{8} H_{6} \mathrm{X}_{2} /(\mathrm{CH})_{6} X_{2}$, $\left.\left.\mathrm{C}_{8} H_{5} \mathrm{X}_{3} /(\mathrm{CH})_{5} X_{3},\left(\mathrm{C}_{8} H_{4} X_{4}\right) /(\mathrm{CH})_{4} X_{4}\right)\right)$, respectively.

The illustration of these results is given in fig. 2 .

Figure 2. Graphs of $C_{1}+C_{s}+C_{s}^{\prime}, 5 C_{1}+C_{2}+C_{s}+C_{s}^{\prime}+2 C_{2 v}$, $3 C_{s}+3 C_{s}^{\prime}, 2 C_{s}+2 C_{s}^{\prime}+2 C_{2 v}$ isomers of homopolysubstituted cuneanes and cuneane homo-heteroanalogues for coisomeric series $\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{X}\right) /(\mathrm{CH})_{7} \mathrm{X}, \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{X}_{2} /(\mathrm{CH})_{6} \mathrm{X}_{2}$, $\left.\left.\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{X}_{3} /(\mathrm{CH})_{5} \mathrm{X}_{3},\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{X}_{4}\right) /(\mathrm{CH})_{4} \mathrm{X}_{4}\right)\right)$.

Example 2: Symmetry itemized enumeration and vector spaces of isomers numbers of coisomeric series of heteropolysubstituted $C_{2 v}$-based
cuneane derivatives and their cuneane hetero-heteroanalogues symbolized by the molecular formulas given in table 1 hereafter and where $\sum_{i=0}^{k} q_{i}=8$.

Table 1. Molecular formulas of coisomeric series of heteropolysubstituted $C_{2 v}$-based cuneane derivatives and their cuneane hetero-heteroanalogues .

$\left.C_{8} H_{q_{0}} X_{q_{1}} Y_{q_{2}} /(C H)_{q_{0}} X_{q_{1}} Y_{q_{2}}\right)$	$C_{8} H_{q_{0}} V_{q_{1}} W_{q_{3}} X_{q_{1}} Y_{q_{4}} Z_{q_{5}} /$ $C_{8} H_{q_{0}} X_{q_{1}} Y_{2} Z_{q_{3}} /(C H)_{q_{0}} X_{q_{1}} Y_{q_{2}} Z_{q_{3}}$
$C_{8} H_{q_{0}} W_{q_{1}} X_{q_{2}} Y_{q_{3}} Z_{q_{4}} /(C H)_{q_{0}} W_{q_{1}} W_{q_{3}} X_{q_{2}} Y_{q_{1}} Y_{q_{3}} Z_{q_{4}} Y_{q_{4}} U_{q_{1}} V_{q_{2}} W_{q_{3}} X_{q_{4}} Y_{q_{5}} Z q_{6} /$	
	$(C H)_{q_{0}} U_{q_{1}} V_{q_{2}} W_{q_{3}} X_{q_{4}} Y_{q_{5}} Z_{q_{6}}$

By applying eqs.16-18 and 19-21 to these series one obtains the $P C V_{s}$ and the denumerants calculated for each sequence of substitution indices $\left(q_{0}, q_{1}, \ldots, q_{K}\right)$. The resolution of these denumerants generates the $I I C V_{s}$ and the linear mappings $P C V_{s} \rightarrow I I C V_{s}$ for distinct heteropolysubstitutions. The calculations are as follows :

In the series $\left.C_{8} H_{q_{0}} X_{q_{1}} Y_{q_{2}} /(C H)_{q_{0}} X_{q_{1}} Y_{q_{2}}\right)$ where $\left(q_{0}, q_{1}, q_{2}\right)=(6,1,1)$, $(5,2,1),(4,3,1),(4,2,2),(3,3,2)$, the denumerants solved are:

For $q_{0}, q_{1}, q_{2}=(6,1,1)$ in $C_{8} H_{6} X Y$
$N_{E}=4 a_{c_{1}}+2 a_{c_{s}}+2 a_{c_{s}^{\prime}}+a_{c_{2 v}}=\binom{8}{6,1,1}=56$
$N_{C_{2}}=2 a_{c_{2}}+a_{c_{2 v}}=0$
$N_{\sigma_{1}}^{\gamma}=2 a_{c_{s}}+a_{c_{2 v}}=\binom{2}{0,1,1}\binom{3}{3,0,0}=2$
$N_{\sigma_{v_{2}}}=2 a_{c_{s}^{\prime}}+a_{c_{2 v}}=\binom{2}{0,1,1}\binom{3}{3,0,0}=2$
$a_{c_{1}}=2, a_{c_{2}}=0, a_{c s}=1, a_{c_{s}^{\prime}}=1, a_{c_{2 v}}=0$,
$\operatorname{PCV}\left(C_{8} H_{6} X Y\right)=(56,0,2,2) \rightarrow I I C V\left(C_{8} H_{6} X Y\right)=(13,0,1,1,0)$
For $q_{0}, q_{1}, q_{2}=(5,2,1)$ in $C_{8} H_{5} X_{2} Y$
$N_{E}=4 a_{c_{1}}+2 a_{c s}+2 a_{c_{s}^{\prime}}+a_{c_{2 v}}=\binom{8}{5,2,1}=168$
$N_{C_{2}}=2 a_{c_{2}}+a_{c_{2 v}}=0$
$N_{\sigma_{1}}=2 a_{c_{s}}+a_{c_{2 v}}=\binom{2}{1,0,1}\binom{3}{2,1,0}=6$
$N_{\sigma_{v_{2}}}=2 a_{c_{s}^{\prime}}+a_{c_{2 v}}=\binom{2}{1,0,1}\binom{3}{2,1,0}=6$
$a_{c_{1}}=39, a_{c_{2}}=0, a_{c s}=a_{c^{\prime} s}=3, a_{c_{2 v}}=0$,
$\operatorname{PCV}\left(C_{8} H_{5} X_{2} Y\right)=(168,0,6,6) \rightarrow \operatorname{IICV}\left(C_{8} H_{5} X_{2} Y\right)=(39,0,3,3,0)$
For $q_{0}, q_{1}, q_{2}=(4,3,1)$ in $C_{8} H_{4} X_{3} Y$
$N_{E}=4 a_{c_{1}}+2 a_{c s}+2 a_{c^{\prime} s}+a_{c_{2 v}}=\binom{8}{4,3,1}=280$
$N_{C_{2}}=2 a_{c_{2}}+a_{c_{2 v}}=0$

$$
\begin{aligned}
& N_{\sigma_{1}}=2 a_{c_{s}}+a_{c_{2 v}}=\binom{2}{0,1,1}\left(\begin{array}{c}
3 \\
2,1,0 \\
2
\end{array}\right)=6 \\
& N_{\sigma_{v_{2}}}=2 a_{c_{s}^{\prime}}+a_{c_{2 v}}=\binom{2}{0,1,1}\binom{(, 1,0}{2}=6 \\
& a_{c_{1}}=67, a_{c_{2}}=0, a_{c s}=a_{c^{\prime} s}=3, a_{c_{2 v}}=0,
\end{aligned}
$$

$$
\operatorname{PCV}\left(C_{8} H_{4} X_{3} Y\right)=(280,0,6,6) \rightarrow I I C V\left(C_{8} H_{4} X_{3} Y\right)=(67,0,3,3,0)
$$

For $q_{0}, q_{1}, q_{2}=(4,2,2)$ in $C_{8} H_{4} X_{2} Y_{2}$

$$
\begin{aligned}
& N_{E}=4 a_{c_{1}}+2 a_{c_{s}}+2 a_{c_{s}^{\prime}}+a_{c_{2 v}}=\binom{8}{4,2,2}=420 \\
& N_{C_{2}}=2 a_{c_{2}}+a_{c_{2 v}}=\binom{4}{2,1,1}=12 \\
& N_{\sigma_{1}}=2 a_{c_{s}}+a_{c_{2 v}}=\binom{2}{2,0.0}\binom{3}{1,1,1}+\binom{2}{0,2,0}\binom{3}{2,0,1}+\binom{2}{0,0,2}\binom{3}{2,1,0}=12 \\
& N_{\sigma_{v 2}}=2 a_{c_{s}^{\prime}}+a_{c_{2 v}}=\binom{2,0,0}{2,}\binom{3,1,1}{0}+\left(\begin{array}{c}
2,2,0
\end{array}\right)\binom{2,0,1}{2,0,2}+\binom{0,1}{0,0,0}=12 \\
& a_{c_{1}}=97, a_{c_{2}}=a_{c_{s}}=a_{c_{s}^{\prime}}=5, a_{c_{2 v}}=2,
\end{aligned}
$$

$$
\operatorname{PCV}\left(C_{8} H_{4} X_{2} Y_{2}\right)=(420,12,12,12) \rightarrow \operatorname{IICV}\left(C_{8} H_{4} X_{2} Y 2\right)=(97,5,5,5,2)
$$

For $q_{0}, q_{1}, q_{2}=(3,3,2)$ in $C_{8} H_{3} X_{3} Y_{2}$

$$
\operatorname{PCV}\left(C_{8} H_{3} X_{3} Y_{2}\right)=(560,0,12,12) \rightarrow I I C V\left(C_{8} H_{3} X_{3} Y 2\right)=(134,0,6,6,0)
$$

We collect 4-dimensional $P C V_{s}$ and 5-dimensional $I I C V_{s}$ to form the PCM and the IICM composing the V_{4} and V_{5} associated vector spaces of permutomers and symmetry itemized isomers numbers for these coisomeric series as follows:

$$
\begin{aligned}
& P C M\left(\begin{array}{l}
C_{8} H_{q_{o}} X_{q_{1}} Y_{q_{2}} \\
\text { or } \\
(C H)_{q_{o}} X_{q_{I}} Y_{q_{2}}
\end{array}\right)=\left(\begin{array}{c}
q_{0} q_{1} q_{2} \\
6,1,1 \\
5,2,1 \\
4,3,1 \\
4,2,2 \\
3,3,2
\end{array}\right) \underbrace{\left.\begin{array}{llll}
N_{E} & N_{C_{2}} & N_{\sigma_{\boldsymbol{v}_{1}}} & N_{\sigma_{\boldsymbol{v}_{2}}} \\
56 & 0 & 2 & 2 \\
168 & 0 & 6 & 6 \\
280 & 0 & 6 & 6 \\
420 & 12 & 12 & 12 \\
560 & 0 & 12 & 12
\end{array}\right)}_{\downarrow} \\
& \text { IICM }\left(\begin{array}{l}
C_{8} H_{q_{0}} X_{q_{1}} Y_{q_{2}} \\
\text { or } \\
(C H)_{q_{0}} X_{q_{1}} Y_{q_{2}}
\end{array}\right)=\left(\begin{array}{c}
q_{0}, q_{1}, q_{2} \\
6,1,1 \\
5,2,1 \\
4,3,1 \\
4,2,2 \\
3,3,2
\end{array}\right) \underbrace{V_{5}}_{\left.\begin{array}{lllll}
a_{C_{1}} & a_{C_{2}} & a_{C_{s}} & a_{C_{s}^{\prime}} & a_{C_{2 v}} \\
13 & 0 & 1 & 1 & 0 \\
39 & 0 & 3 & 3 & 0 \\
67 & 0 & 3 & 3 & 0 \\
97 & 5 & 5 & 5 & 2 \\
134 & 0 & 6 & 6 & 0
\end{array}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& N_{E}=4 a_{c_{1}}+2 a_{c_{s}}+2 a_{c_{s}^{\prime}}+a_{c_{2 v}}=\binom{8}{4,2,2}=420 \\
& N_{C_{2}}=2 a_{c_{2}}+a_{c_{2 v}}=\binom{4}{2,1,1}=12 \\
& N_{\sigma_{1}}=2 a_{c_{s}}+a_{c_{2 v}}=\binom{2,0,0}{2,0}\binom{3}{1,1,1}+\binom{2}{0,2,0}\binom{3}{2,0,1}+\binom{2}{0,0,2}\binom{3}{2,1,0}=12 \\
& N_{\sigma_{v_{2}}}=2 a_{c_{s}^{\prime}}+a_{c_{2 v}}=\binom{2,0}{2,0,0}\binom{3}{1,1,1}+\binom{2}{0,2,0}\left(\begin{array}{c}
3,0,1
\end{array}\right)+\left(\begin{array}{c}
2 \\
0 \\
0,0,2
\end{array}\right)\left(\begin{array}{c}
3,1,0
\end{array}\right)=12 \\
& a_{c_{1}}=134, a_{c_{2}}=0, a_{c s}=a_{c^{\prime} s}=6, a_{c_{2 v}}=0 \text {, }
\end{aligned}
$$

For coisomeric series $C_{8} H_{q_{0}} X_{q_{1}} Y_{q_{2}}$ and $\left.(\mathrm{CH})_{q_{0}} X_{q_{1}} Y_{q_{2}}\right)$ where q_{0}, q_{1}, q_{2} $=(6,1,1),(5,2,1),(4,3,1),((4,2,2)(3,3,2)$ the data of linear mappings between 4 entries $P C V_{s}$ and 5 entries IICVs are as follows : (56, 0, $2,2) \rightarrow(13,0,1,1,0) ;(168,0,6,6) \rightarrow(39,0,3,3,0) ;(280,0,6,6) \rightarrow(67,0,3,3,0)$; $(420,12,12,12) \rightarrow(97,5,5,5,2) ;(560,0,12,12) \rightarrow(134,0,6,6,0)$. These transformations of 4-tuples of permutomers numbers $N_{E}, N_{C_{2}}, N_{\sigma_{v_{1}}}, N_{\sigma_{v_{2}}}$ into 5tuples of symmetry itemized isomers numbers $a_{c_{s}}, a_{c_{2}}, a_{c_{s}}, a_{c_{s}^{\prime}}, a_{c_{2 v}}$ predict the occurrences of $\left(13 C_{1}, 0, C_{s}, C_{s}^{\prime}, 0\right) ;\left(39 C_{1}, 0,3 C_{s}, 3 C_{s}^{\prime}, 0\right) ;\left(67 C_{1}, 0\right.$, $\left.3 C_{s}, 3 C_{s}^{\prime}, 0\right) ;\left(97 C_{1}, 5 C_{2}, 5 C_{s}, 5 C_{s}^{\prime}, 2 C_{2 v}\right) ;\left(134 C_{1}, 0,6 C_{s}, 6 C_{s}^{\prime}, 0\right)$ isomers for $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{XY}, \mathrm{C}_{8} \mathrm{H}_{5} \mathrm{X}_{2} Y, \mathrm{C}_{8} \mathrm{H}_{4} X_{3} Y, \mathrm{C}_{8} H_{4} X_{2} Y_{2}, \mathrm{C}_{8} H_{3} X_{3} Y_{2}$ and their corresponding hetero-heteroanalogues $(\mathrm{CH})_{6} X Y,(\mathrm{CH})_{5} X_{2} Y,(\mathrm{CH})_{4} X_{3} Y$, $(\mathrm{CH})_{4} X_{2} Y_{2},(\mathrm{CH})_{3} X_{3} Y_{2}$. The graphs depicting $13 C_{1}+C_{s}+C_{s}^{\prime}, 3 C_{s}+$ $3 C_{s}^{\prime}, 3 C_{s}+3 C_{s}^{\prime}, 5 C_{2}+5 C_{s}+5 C_{s}^{\prime}+2 C_{2 v}$ skeletons of coisomeric series $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{XY} /(\mathrm{CH})_{6} \mathrm{XY}, \mathrm{C}_{8} H_{5} X_{2} Y /(\mathrm{CH})_{5} X_{2} Y, C_{8} H_{4} X_{3} Y /(\mathrm{CH})_{4} X_{3} Y \quad$ and $C_{8} H_{4} X_{2} Y_{2} /(C H)_{4} X_{2} Y_{2}$ are given in Fig. 3.

In the series $\left.C_{8} H_{q_{0}} X_{q_{1}} Y_{q_{2}} Z q_{3} /(C H)_{q_{0}} X_{q_{1}} Y_{q_{2}} Z q_{3}\right)$ where $\left(q_{0}, q_{1}, q_{2}, q_{3}\right)$ $=(5,1,1,1),(4,2,1,1),(3,3,1,1),(3,2,2,1),(2,2,2,2)$, the denumerants are as follows:

For $q_{0}, q_{1}, q_{2}, q_{3}=(5,1,1,1)$ in $C_{8} H_{5} X Y Z$
$N_{E}=4 a_{c_{1}}+2 a_{c_{s}}+2 a_{c_{s}^{\prime}}+a_{c_{2 v}}=\binom{8}{5,1,1,1}=336$
$N_{C_{2}}=2 a_{c_{2}}+a_{c_{2 v}}=0$
$N_{\sigma_{1}}=2 a_{c s}+a_{c_{2 v}}=0$
$N_{\sigma_{v_{2}}}=2 a_{c^{\prime} s}+a_{c_{2 v}}=0$
$a_{c_{1}}=84, a_{c_{2}}=a_{c s}=a_{c_{s}^{\prime}}=a_{c_{2 v}}=0$,
$P C V\left(C_{8} H_{5} X Y Z\right)=(336,0,0,0) \rightarrow I I C V\left(C_{8} H_{5} X Y Z\right)=(84,0,0,0,0)$
For $q_{0}, q_{1}, q_{2}, q_{3}=(4,2,1,1)$ in $C_{8} H_{4} X_{2} Y Z$
$N_{E}=4 a_{c_{1}}+2 a_{c_{2}}+2 a_{c_{s}}+2 a_{c_{s}^{\prime}}+a_{c_{2 v}}=\binom{8}{4,2,1,1}=840$
$N_{C_{2}}=2 a_{c_{2}}+a_{c_{2 v}}=0$
$N_{\sigma_{1}}=2 a_{c_{s}}+a_{c_{2 v}}=\binom{2}{0,0,1,1}\left(\begin{array}{c}3,1,0,0\end{array}\right)=6$
$N_{\sigma_{v_{2}}}=2 a_{c_{s}^{\prime}}+a_{c_{2 v}}=\binom{2}{0,0,1,1}\binom{3}{2,1,0,0}=6$
$a_{c_{1}}=207, a_{c_{2}}=0, a_{c s}=a_{c_{s}^{\prime}}=3, a_{c_{2 v}}=0$,
$\operatorname{PCV}\left(C_{8} H_{4} X_{2} Y Z\right)=(840,0,6,6) \rightarrow I I C V\left(C_{8} H_{4} X_{2} Y Z\right)=(207,0,3,3,0)$
For $q_{0}, q_{1}, q_{2}, q_{3}=(3,3,1,1)$ in $C_{8} H_{3} X_{3} Y Z$
$N_{E}=4 a_{c_{1}}+2 a_{c s}+2 a_{c_{s}^{\prime}}+a_{c_{2 v}}=\binom{8}{3,3,1,1}=1120$
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{XY} /(\mathrm{CH})_{6} \mathrm{XY} \quad 13 \mathrm{C}_{1}+\mathrm{C}_{\mathrm{s}}+\mathrm{C}^{\prime}{ }^{\prime}$

$\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{X}_{3} \mathrm{Y} /(\mathrm{CH})_{4} \mathrm{X}_{3} \mathrm{Y} \quad 3 \mathrm{C}_{\mathrm{s}}+3 \mathrm{C}^{\prime}{ }_{s}^{\prime}$

Figure 3. Graphs $13 C_{1}+C_{s}+C_{s}^{\prime}, 3 C_{s}+3 C_{s}^{\prime}, 3 C_{s}+3 C_{s}^{\prime}$, $5 C_{2}+5 C_{s}+5 C_{s}^{\prime}+2 C_{2 v}$ isomers of heteropolysubstituted cuneanes and cuneane hetero-heteroanalogues of coisomeric series $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{XY} /(\mathrm{CH})_{6} \mathrm{XY}, \mathrm{C}_{8} \mathrm{H}_{5} \mathrm{X}_{2} \mathrm{Y} /(\mathrm{CH})_{5} \mathrm{X}_{2} Y$, $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{X}_{3} \mathrm{Y} /(\mathrm{CH})_{4} \mathrm{X}_{3} \mathrm{Y}$ and $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{X}_{2} Y_{2} /(\mathrm{CH})_{4} \mathrm{X}_{2} Y_{2}$

$$
\begin{aligned}
& N_{C_{2}}=2 a_{c_{2}}+a_{c_{2 v}}=0 \\
& N_{\sigma_{1}}=2 a_{c s}+a_{c_{2 v}}=0 \\
& N_{\sigma_{v 2}}=2 a_{c_{s}^{\prime}}+a_{c_{2 v}}=0 \\
& a_{c_{1}}=280, a_{c_{2}}=0, a_{c s}=a_{c_{s}^{\prime}}=3, a_{c_{2 v}}=0 \\
& P C V\left(C_{8} H_{4} X_{2} Y Z\right)=(1120,0,0,0) \rightarrow \operatorname{IICV}\left(C_{8} H_{4} X_{2} Y Z\right)=(280,0,0,0,0)
\end{aligned}
$$

For $q_{0}, q_{1}, q_{2}, q_{3}=(3,2,2,1)$ in $C_{8} H_{3} X_{2} Y_{2} Z$

$$
\left.\begin{array}{l}
N_{E}=4 a_{c_{1}}+2 a_{c s}+2 a_{c_{s}^{\prime}}+a_{c_{2 v}}=\binom{8}{3,2,2,1}=1680 \\
N_{C_{2}}=2 a_{c_{2}}+a_{c_{2 v}}=0 \\
N_{\sigma_{v_{1}}}=2 a_{c s}+a_{c_{2 v}}=\binom{2}{1,0,0,1}\left(\begin{array}{c}
3 \\
2 \\
2
\end{array}\right)=12,1,0 \\
3
\end{array}\right)=12, \begin{gathered}
3 \\
N_{\sigma_{v 2}}=2 a_{c^{\prime} s}+a_{c_{2 v}}=\left(\begin{array}{c}
1,0,0,1,0
\end{array}\right)=12 \\
a_{c_{1}}=414, a_{c_{2}}=0, a_{c_{s}}=a_{c^{\prime} s}=6, a_{c_{2 v}}=0
\end{gathered}
$$

$$
P C V\left(C_{8} H_{3} X_{2} Y_{2} Z\right)=(1680,0,12,12) \rightarrow I I C V\left(C_{8} H_{3} X_{2} Y 2 Z\right)=(414,0,6,6,0)
$$

For $q_{0}, q_{1}, q_{2}, q_{3}=(2,2,2,2)$ in $C_{8} H_{2} X_{2} Y_{2} Z_{2}$
$N_{E}=4 a_{c_{1}}+2 a_{c s}+2 a_{c_{s}^{\prime}}+a_{c_{2 v}}=\binom{8}{2,2,2,2}=2520$
$N_{C_{2}}=2 a_{c_{2}}+a_{c_{2 v}}=\binom{4}{1,1,1,1}=24$
$N_{\sigma_{v_{1}}}=N_{\sigma_{v_{2}}}=2 a_{c_{s}}+a_{c_{2 v}}=2 a_{c_{s}^{\prime}}+a_{c_{2 v}}=\left[(\underset{2,0,0,0}{2})\binom{3}{0,1,1,1}+\binom{2}{0,2,0,0}\binom{3}{1,0,1,1}+\right.$ $\left.(\underset{0,0,2,0}{2})(\underset{1,1,0,1}{3})+(\underset{0,0,0,2}{2})\left(\begin{array}{c}3,1,1,0\end{array}\right)\right]=24$

$$
a_{c_{1}}=612, a_{c_{2}}=a_{c s}=a_{c^{\prime} s}=6, a_{c_{2 v}}=0
$$

$\operatorname{PCV}\left(C_{8} H_{2} X_{2} Y_{2} Z_{2}\right)=(2520,24,24,24) \rightarrow I I C V\left(C_{8} H_{2} X_{2} Y 2 Z_{2}\right)=$ $(612,12,12,12,0)$

The PCM and the IICM composing the V_{4} and V_{5} associated vector spaces of permutomers and symmetry itemized isomers numbers for these coisomeric series are as follows:

$$
\begin{aligned}
& P C M\left(\begin{array}{c}
C_{8} H_{q_{0}} X_{q_{1}} Y_{q_{2}} Z_{q_{3}} \\
o r \\
(C H)_{q_{0}} X_{q_{1}} Y_{q_{2}} Z_{q_{3}}
\end{array}\right)=\left(\begin{array}{c}
q_{0} q_{1} q_{2} q_{3} \\
5,1,1,1 \\
4,2,1,1 \\
3,3,1,1 \\
3,2,2,1 \\
2,2,2,2
\end{array}\right) \underbrace{\left(\begin{array}{llll}
N_{E} & N_{C_{2}} & N_{\sigma_{v 1}} & N_{\sigma_{n 2}} \\
336 & 0 & 0 & 0 \\
840 & 0 & 6 & 6 \\
11120 & 0 & 0 & 0 \\
1680 & 0 & 12 & 12 \\
2520 & 24 & 24 & 24
\end{array}\right)}_{V_{4}} \\
& \text { IICM }\left(\begin{array}{c}
C_{8} H_{q_{0}} X_{q_{1}} Y_{q_{2}} Z_{q_{3}} \\
\text { or } \\
(\mathrm{CH})_{q_{0}} X_{q_{1}} Y_{q_{2}} Z_{q_{3}}
\end{array}\right)=\left(\begin{array}{c}
q_{0} q_{1} q_{2} q_{3} \\
5,1,1,1 \\
4,2,1,1 \\
3,3,1,1 \\
3,2,2,1 \\
2,2,2,2
\end{array}\right) \underbrace{\left.\begin{array}{ccccc}
a_{C_{1}} & a_{C_{2}} & a_{C_{s}} & a_{C_{s}^{\prime}} & a_{C_{2 v}} \\
84 & 0 & 0 & 0 & 0 \\
207 & 0 & 3 & 3 & 0 \\
280 & 0 & 0 & 0 & 0 \\
414 & 0 & 6 & 6 & 0 \\
612 & 12 & 12 & 12 & 0
\end{array}\right)}_{V_{5}}
\end{aligned}
$$

The data of linear mappings between 4 entries $P C V_{s}$ and 5 entries $I I C V_{s}$ for coisomeric series $C_{8} H_{q_{0}} X_{q_{1}} Y_{q_{2}} Z_{q_{3}}$ and $\left.(\mathrm{CH})_{q_{0}} X_{q_{1}} Y_{q_{2}} Z_{q_{3}}\right)$ where $q_{0}, q_{1}, q_{2}, q_{3}=(5,1,1,1),(4,2,1,1),(3,3,1,1),(3,2,2,1),(2,2,2,2)$ are : $(336,0$, $0,0) \rightarrow(84,0,0,0,0) ;(840,0,6,6) \rightarrow(207,0,3,3,0) ;(1120,0,0,0) \rightarrow(280,0,0,0,0)$; $(1680,0,12,12) \rightarrow(414,0,6,6,0) ;(2520,24,24,24) \rightarrow(612,12,12,12,0)$, respectively. These transformations of 4 -tuples of permutomers numbers $N_{E}, N_{C_{2}}$, $N_{\sigma_{v 1}}, N_{\sigma_{v 2}}$ into 5 -tuples of symmetry itemized isomers numbers $a_{c_{1}}, a_{c_{2}}$, $a_{c s}, a_{c^{\prime} s}, a_{c_{2 v}}$ predict the occurrences of : $\left(84 C_{1}, 0,0,0,0\right) ;\left(207 C_{1}, 0,3 C_{s}\right.$, $\left.3 C_{s}^{\prime}, 0\right) ;\left(280 C_{1}, 0,0,0,0\right) ;\left(414 C_{1}, 0,6 C_{s}, 6 C_{s}^{\prime}, 0\right) ;\left(612 C_{1}, 12 C_{2}, 12 C_{s}\right.$, $\left.12 C_{s}^{\prime}, 0\right)$ isomers for $C_{8} H_{5} X Y Z, C_{8} H_{4} X_{2} Y Z, C_{8} H_{3} X_{3} Y Z, C_{8} H_{3} X_{2} Y_{2} Z$, $C_{8} H_{2} X_{2} Y_{2} Z_{2}$ and their corresponding heteroanalogues respectively. The graphs depicting reduced numbers of isomers of these series are given in Fig. 4.

In the series $C_{8} H_{q_{0}} W_{q_{1}} X_{q_{2}} Y_{q_{3}} Z_{q_{4}}$ and $\left.(\mathrm{CH})_{q_{0}} W_{q_{1}} X_{q_{2}} Y_{q_{3}} Z_{q_{4}}\right)$ where $\left(q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right)=(4,1,1,1,1),(3,2,1,1,1),(2,2,2,1,1)$ the denumerants are:

For $\left(q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right)=(4,1,1,1,1)$, in $C_{8} H_{4} W X Y Z$

$$
\begin{aligned}
& N_{E}=4 a_{c_{1}}+2 a_{c_{s}}+2 a_{c_{s}^{\prime}}+a_{c_{2 v}}=\left(\begin{array}{c}
8,1,1,1
\end{array}\right)=1680 \\
& N_{C_{2}}=2 a_{c_{2}}+a_{c_{2 v}}=0 \\
& N_{\sigma_{v_{1}}}=N_{\sigma_{v_{2}}}=N_{C_{2}}=2 a_{c_{2}}+a_{c_{2 v}}=2 a_{c_{s}}+a_{c_{2 v}}=2 a_{c_{s}^{\prime}}+a_{c_{2 v}}=0 \\
& a_{c_{1}}=420, a_{c_{2}}=a_{c s}=a_{c^{\prime} s}=a_{c_{2 v}}=0 \\
& P C V\left(C_{8} H_{4} W X Y Z\right)=(1680,0,0,0) \rightarrow I I C V\left(C_{8} H_{4} W X Y Z\right)=(420,0,0,0,0)
\end{aligned}
$$

For $\left(q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right)=(3,2,1,1,1)$
$N_{E}=4 a_{c_{1}}+2 a_{c_{s}}+2 a_{c_{s}^{\prime}}+a_{c_{2 v}}=\binom{8}{3,2,1,1,1}=3360$
$N_{C_{2}}=2 a_{c_{2}}+a_{c_{2 v}}=0$
$N_{\sigma_{v_{1}}}=N_{C_{2}}=N_{\sigma_{v_{2}}}=2 a_{c_{2}}+a_{c_{2 v}}=2 a_{c_{s}}+a_{c_{2 v}}=2 a_{c_{s}^{\prime}}+a_{c_{2 v}}=0$
$a_{c_{1}}=420, a_{c_{2}}=a_{c_{s}}=a_{c_{s}^{\prime}}=a_{c_{2 v}}=0$,
$\operatorname{PCV}\left(C_{8} H_{3} W_{2} X Y Z\right)=(3360,0,0,0) \rightarrow I I C V\left(C_{8} H_{3} W_{2} X Y Z\right)=(840,0,0,0,0)$
For $\left(q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right)=(2,2,2,1,1)$ in $C_{8} H_{2} W_{2} X_{2} Y Z$
$N_{E}=4 a_{c_{1}}+2 a_{c_{s}}+2 a_{c_{s}^{\prime}}+a_{c_{2 v}}=\left(\begin{array}{c}8,2,2,1,1\end{array}\right)=5040$
$N_{C_{2}}=2 a_{c_{2}}+a_{c_{2 v}}=0$
$N_{\sigma_{v_{1}}}=N_{\sigma_{v_{2}}}=2 a_{c_{s}}+a_{c_{2 v}}=2 a_{c_{s}^{\prime}}+a_{c_{2 v}}=\binom{2}{0,0,0,1,1}\binom{3}{1,1,1,0,0}=12$
$a_{c_{1}}=1254, a_{c_{2}}=0, a_{c s}=a_{c^{\prime} s}=6, a_{c_{2 v}}=0$,
$\operatorname{PCV}\left(C_{8} H_{2} W_{2} X_{2} Y Z\right)=(5040,0,12,12) \rightarrow I I C V\left(C_{8} H_{2} W_{2} X_{2} Y Z\right)=(1260,0,6,6,0)$
The PCM and the IICM composing the V_{4} and V_{5} associated vector
$\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{X}_{2} \mathrm{YZ}$

$\mathrm{C}_{8} \mathrm{H}_{2} \mathrm{X}_{2} \mathrm{Y}_{2} \mathrm{Z}_{2}$ $(\mathrm{CH})_{2} \mathrm{X}_{2} \mathrm{Y}_{2} \mathrm{Z}_{2}$
(20)
$\mathrm{C}_{8} \mathrm{H}_{2} \mathrm{X}_{2} \mathrm{Y}_{2} \mathrm{Z}_{2}$ $(\mathrm{CH})_{2} \mathrm{X}_{2} \mathrm{Y}_{2} \mathrm{Z}_{2}$

$\mathrm{C}_{8} \mathrm{H}_{2} \mathrm{X}_{2} \mathrm{Y}_{2} \mathrm{Z}_{2}$
$(\mathrm{CH})_{2} \mathrm{X}_{2} \mathrm{Y}_{2} \mathrm{Z}_{2}$

Figure 4. Graphs of $3 C_{s}+3 C_{s}^{\prime}, 6 C_{s}+6 C_{s}^{\prime}, 12 C_{2}+12 C_{s}+12 C_{s}^{\prime}$ coisomeric series of heteropolysubstituted cuneanes and their hetero-heteroanalogues of the series $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{X}_{2} \mathrm{YZ} /(\mathrm{CH})_{4} \mathrm{X}_{2} \mathrm{YZ}, \mathrm{C}_{8} \mathrm{H}_{3} \mathrm{X}_{2} Y_{2} \mathrm{Z} /(\mathrm{CH})_{3} \mathrm{X}_{2} Y_{2} \mathrm{Z}$, $\mathrm{C}_{8} \mathrm{H}_{2} \mathrm{X}_{2} \mathrm{Y}_{2} \mathrm{Z}_{2} /(\mathrm{CH})_{2} \mathrm{X}_{2} Y_{2} \mathrm{Z}_{2}$.
spaces of permutomers and symmetry itemized isomers numbers for these coisomeric series are as follows:

$$
\begin{aligned}
& P C M\left(\begin{array}{c}
C_{8} H_{q_{0}} W_{q_{1}} X_{q_{2}} Y_{q_{3}} Z_{q_{4}} \\
\text { or } \\
(\mathrm{CH})_{q_{0}} W_{q_{1}} X_{q_{2}} Y_{q_{3}} Z_{q_{4}}
\end{array}\right)=\left(\begin{array}{ccccc}
q_{0} & q_{1} & q_{2} & q_{3} & q_{4} \\
4 & 1 & 1 & 1 & 1 \\
3 & 2 & 1 & 1 & 1 \\
2 & 2 & 2 & 1 & 1
\end{array}\right) \underbrace{\downarrow}_{\left.\begin{array}{llll}
N_{E} & N_{C_{2}} & N_{\sigma_{\boldsymbol{v}_{1}}} & N_{\sigma_{\boldsymbol{v}_{2}}} \\
1680 & 0 & 0 & 0 \\
3360 & 0 & 0 & 0 \\
5040 & 0 & 12 & 12
\end{array}\right)} \\
& \operatorname{IICM}\left(\begin{array}{c}
C_{8} H_{q_{0}} W_{q_{1}} X_{q_{2}} Y_{q_{3}} Z_{q_{4}} \\
\text { or } \\
(C H)_{q_{8}} W_{q_{4}} X_{q_{2}} Y_{q_{2}} Z_{q_{0}}
\end{array}\right)=\left(\begin{array}{ccccc}
q_{0} & q_{1} & q_{2} & q_{3} q_{4} \\
4 & 1 & 1 & 1 & 1 \\
3 & 2 & 1 & 1 & 1 \\
2 & 2 & 2 & 1 & 1
\end{array}\right) \underbrace{\left.\begin{array}{lllll}
a_{C_{1}} & a_{C_{2}} & a_{C_{s}} & a_{C_{s}^{\prime}} & a_{C_{2 v}} \\
420 & 0 & 0 & 0 & 0 \\
840 & 0 & 0 & 0 & 0 \\
1254 & 0 & 6 & 6 & 0
\end{array}\right)}_{V_{5}}
\end{aligned}
$$

The data of linear mappings between 4 entries $P C V_{s}$ and 5 entries $I I C V_{s}$ for coisomeric series $C_{8} H_{q_{0}} X_{q_{1}} Y_{q_{2}} Z q_{3}$ and $\left.(\mathrm{CH})_{q_{0}} X_{q_{1}} Y_{q_{2}} Z q_{3}\right)$ where $\left(q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right)=(4,1,1,1,1),(3,2,1,1,1),(2,2,2,1.1)$ are as follows::

$$
(1680,0,0,0) \rightarrow(420,0,0,0,0),(3360,0,0,0) \rightarrow(840,0,0,0,0)
$$ $(5040,0,12,12) \rightarrow(1254,0,6,6,0)$ These transformations of 4-tuples of permutomers numbers into 5 -tuples of symmetry itemized isomers numbers predict the occurrences of $420 C_{1}$, and $840 C_{1}$ isomers for $C_{8} H_{4} W X Y Z /$ $(\mathrm{CH})_{4} W X Y Z$ and $C_{8} H_{3} W_{2} X Y Z /(C H)_{3} W_{2} X Y Z$ then $\left(1254 C_{1}, 0,6 C_{s}\right.$, $\left.6 C_{s}^{\prime}, 0\right)$ isomers for $C_{8} H_{2} W_{2} X_{2} Y Z /(C H)_{2} W_{2} X_{2} Y Z$. The graphs depicting $6 C_{s}$ and $6 C_{s}^{\prime}$ isomers of the series $C_{8} H_{2} W_{2} X_{2} Y Z /(C H)_{2} W_{2} X_{2} Y Z$ are given in Fig. 5.

Figure 5. Graphs of $6 C_{s}+6 C_{s}^{\prime}$ isomers of heteropolysubstituted cuneanes derivatives and their hetero-heteroanalogues of the series $\mathrm{C}_{8} \mathrm{H}_{2} W_{2} \mathrm{X}_{2} \mathrm{YZ}$ and $(\mathrm{CH})_{2} W_{2} \mathrm{X}_{2} Y Z$.

In the series $C_{8} H_{q_{0}} V_{q_{1}} W_{q_{2}} X_{q_{3}} Y_{q_{4}} Z q_{5}$ and $\left.(\mathrm{CH})_{q_{0}} V_{q_{1}} W_{q_{2}} X_{q_{3}} Y_{q_{4}} Z q_{5}\right)$ where $\left(q_{0}, q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right)=(3,1,1,1,1,1),(2,2,1,1,1,1)$, the denumerants
are:
For $\left(q_{0}, q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right)=(3,1,1,1,1,1)$, in $C_{8} H_{3} V W X Y Z$
$N_{E}=4 a_{c_{1}}+2 a_{c_{s}}+2 a_{c_{s}^{\prime}}+a_{c_{2 v}}=\binom{8}{3,1,1,1,1}=6720$
$N_{C_{2}}=2 a_{c_{2}}+a_{c_{2 v}}=0$
$N_{\sigma_{v_{1}}}=2 a_{c_{s}}+a_{c_{2 v}}=0$
$N_{\sigma_{v_{2}}}=2 a_{c_{s}^{\prime}}+a_{c_{2 v}}=0$
$a_{c_{1}}=6720, a_{c_{2}}=a_{c_{s}}=a_{c_{s}^{\prime}}=a_{c_{2 v}}=0$,
$\operatorname{PCV}\left(C_{8} H_{3} V W X Y Z\right)=(6720,0,0,0) \rightarrow I I C V\left(C_{8} H_{3} V W X Y Z\right)=(1680,0,0,0,0)$
For $\left(q_{0}, q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right)=(2,2,1,1,1,1)$, in $C_{8} H_{2} V_{2} W X Y Z$
$N_{E}=4 a_{c_{1}}+2 a_{c_{2}}+2 a_{c_{s}}+2 a_{c_{s}^{\prime}}+a_{c_{2 v}}=\binom{8}{2,2,1,1,1}=10080$
$N_{C_{2}}=N_{\sigma_{1}}=N_{\sigma_{v 2}}=2 a_{c_{2}}+a_{c_{2 v}}=2 a_{c_{s}^{\prime}}+a_{c_{2 v}}=0$
$a_{c_{1}}=2420, a_{c_{2}}=a_{c_{s}}=a_{c_{s}^{\prime}}=a_{c_{2 v}}=0$,
$P C V\left(C_{8} H_{2} V_{2} W X Y Z\right)=(10080,0,0,0) \rightarrow I I C V\left(C_{8} H_{2} V_{2} W X Y Z\right)=(1680,0,0,0,0)$
The collection of $P C V_{s}$ and $I I C V_{s}$ for these series gives rise to:

$$
\operatorname{IICM}\binom{C_{8} H_{2} V_{2} W X Y Z}{o r(C H)_{2} V_{2} W X Y Z}=\left(\begin{array}{l}
q_{0} q_{1} q_{2} q_{3} q_{4} q_{5} \\
3,1,1,1,1,1 \\
2,2,1,1,1,1
\end{array}\right) \underbrace{\left.\begin{array}{lllll}
a_{c_{t}} & a_{c_{2}} & a_{c_{4}} & a_{c_{;}^{\prime}} & a_{c_{s}} \\
1680 & 0 & 0 & 0 & 0 \\
2420 & 0 & 0 & 0 & 0
\end{array}\right)}_{V_{5}}
$$

The linear mappings between 4 entries $P C V_{s}$ and 5 entries $I I C V_{s}$ are $:(6720,0,0,0) \rightarrow(1680,0,0,0,0)$ and $(10080,0,0,0) \rightarrow(2420,0,0,0,0)$. These data predict the occurrences of $1680 C_{1}$ and $2420 C_{1}$ isomers for coisomeric series $\mathrm{C}_{8} \mathrm{H}_{3} \mathrm{VWXYZ} /(\mathrm{CH})_{3} V W X Y Z$ and $\mathrm{C}_{8} \mathrm{H}_{2} \mathrm{~V}_{2} W X Y Z /(\mathrm{CH})_{2}$ $V_{2} W X Y Z$ respectively. In the series $C_{8} H_{q_{0}} U_{q_{1}} V_{q_{2}} W_{q_{3}} X_{q_{4}} Y_{q_{5}} Z_{q_{6}}$ and $(C H)_{q_{0}} U_{q_{1}} V_{q_{2}} W_{q_{3}} X_{q_{4}} Y_{q_{5}} Z_{q_{6}}$ their heteroanalogues where ($q_{0}, q_{1}, q_{2}, q_{3}, q_{4}$, $\left.q_{5}, q_{6}\right)=(2,1,1,1,1,1,1)$ the denumerants are:

$$
\begin{aligned}
& N_{E}=4 a_{c_{1}}+2 a_{c_{s}}+2 a_{c_{s}^{\prime}}+a_{c_{2 v}}=\left(\begin{array}{c}
2,1,1,1,1,1,1
\end{array}\right)=20180 \\
& N_{C_{2}}=N_{\sigma_{v 1}}=N_{\sigma_{v 2}}=2 a_{c_{2}}+a_{c_{2 v}}=2 a_{c_{s}^{\prime}}+a_{c_{2 v}}=0
\end{aligned}
$$

$$
a_{c_{1}}=5040, a_{c_{2}}=a_{c_{s}}=a_{c_{s}^{\prime}}=a_{c_{2 v}}=0
$$

$$
\operatorname{PCV}\left(C_{8} H_{2} U V W X Y Z\right)=\binom{q_{0} q_{1} q_{2} q_{3} q_{4} q_{5} q_{6}}{2,1,1,1,1,1,1} \underbrace{\left.\begin{array}{llll}
N_{E} & N_{C_{2}} & N_{\sigma_{v_{1}}} & N_{\sigma_{v_{2}}} \\
20160 & 0 & 0 & 0
\end{array}\right)}_{\substack{V 4 \\
\downarrow}}
$$

$$
\operatorname{IICV}\left(C_{8} H_{2} U V W X Y Z\right)=\binom{q_{0} q_{1} q_{2} q_{3} q_{4} q_{5} q_{6}}{2,1,1,1,1,1,1} \underbrace{\left.\begin{array}{ccccc}
a_{C_{l}} & a_{C_{2}} & a_{C_{s}} & a_{C_{s}^{\prime}} & a_{C_{2 v}} \\
5040 & 0 & 0 & 0 & 0
\end{array}\right)}_{V_{5}}
$$

In the series $C_{8} H_{q_{0}} T_{q_{1}} U_{q_{2}} V_{q_{3}} W_{q_{4}} X_{q_{5}} Y_{q_{6}} Z_{q_{7}}$ and $(\mathrm{CH})_{q_{0}} T_{q_{1}} U_{q_{2}} V_{q_{3}} W_{q_{4}}$ $X_{q_{5}} Y_{q_{6}} Z_{q_{7}}$ their heteroanalogues where $\left(q_{0}, q_{1}, q_{2}, q_{3}, q_{4}, q_{5}, q_{6}, q_{7}\right)=(1,1,1$, $1,1,1,1,1)$ the denumerants are :

$$
\begin{aligned}
& N_{E}=4 a_{c_{1}}+2 a_{c_{s}}+2 a_{c_{s}^{\prime}}+a_{c_{2 v}}=\binom{8}{1,1,1 n 1,1,1,1,1}=40320 \\
& N_{C_{2}}=N_{\sigma_{v 1}}=N_{\sigma_{v_{2}}}=2 a_{c_{2}}+a_{c_{2 v}}=2 a_{c_{s}^{\prime}}+a_{c_{2 v}}=0 \\
& a_{c_{1}}=10080, a_{c_{2}}=a_{c_{s}}=a_{c_{s}^{\prime}}=a_{c_{2 v}}=0
\end{aligned}
$$

$$
\operatorname{PCV}\left(C_{8} H T U V W X Y Z\right)=\binom{q_{0} q_{1} q_{2} q_{3} q_{4} q_{5} q_{6} q_{7}}{1,1,1,1,1,1,1,1} \underbrace{N_{\sigma_{1}}}_{\substack{V_{4} \\
\nu_{E} \\
40320 \\
N_{C_{2}} \\
N_{v_{1}}}} \begin{array}{lll}
N_{\sigma_{2}} \\
\hline
\end{array})
$$

$$
\operatorname{IICV}\left(C_{8} H T U V W X Y Z\right)=\binom{q_{0} q_{1} q_{2} q_{3} q_{4} q_{5} q_{6} q_{7}}{1,1,1,1,1,1,1,1} \underbrace{\left(\begin{array}{lllll}
a_{C_{1}} & a_{C_{2}} & a_{C_{s}} & a_{C_{s}} & a_{C_{2 v}} \\
10080 & 0 & 0 & 0 & 0
\end{array}\right)}_{V_{5}}
$$

The linear mappings : $\mathrm{PCV}\left(\mathrm{C}_{8} \mathrm{H}_{2} U V W X Y Z\right) \rightarrow \mathrm{IICV}\left(\mathrm{C}_{8} \mathrm{H}_{2} U V W X\right.$ $Y Z)=(20160,0,0,0) \rightarrow(5040,0,0,0,0)$ and PCV $\left(C_{8} H T U V W X Y Z\right) \rightarrow$ IICV $\left(C_{8} H T U V W X Y Z\right)=(40320,0,0,0) \rightarrow(10080,0,0,0,0)$ predict the occurrences of $5040 C_{1}$ and $10080 C_{1}$ isomers for coisomeric series $C_{8} H_{2} U V$ $W X Y Z /(C H)_{2} U V W X Y Z$ and $C_{8} H T U V W X Y Z /(C H) T U V W X Y Z$. Table 3 presents $J_{i} \times 4$ entries PCMs and $J_{i} \times 5$ entries $I I C M_{s}$ composing the associated V_{4} and V_{5} mutidimensional vector spaces of permutomers and symmetry itemized isomers numbers for homo- and heteropolysubstituted cuneane derivatives and cuneane heteroanalogues. For the
sake of comparison columns 6 and 7 of table 4 present the numbers of chiral and achiral isomers skeletons $A_{c}=a_{c_{1}}+a_{c_{2}}, A_{a c}=a_{c_{s}}+a_{c_{s}^{\prime}}+a_{c_{2 v}}$ obtained from bipartite enumeration [12] and the numbers of diastereo isomers $N_{p}=A_{c}+A_{a c}$ derived from Polya cycle indices. [13]

5 Concluding remarks

The enumeration leading to the construction of the linear spaces of permutomers and symmetry itemized isomers numbers of $C_{2 v}$-based cuneane derivatives and heteroanalogues presented in this paper includes the following steps:
(1)-the determination of-4-dimensional permutomers count vectors $\operatorname{PCV}\left(N_{E}, N_{C_{2}}, N_{\sigma_{v 1}}, N_{\sigma_{v 2}}\right)$ whose entries are obtained from multinomial or binomial theorems applied in accordance with 4 classes of permutations regulating the arrangements of substituents among 8 substitution sites.
(2)-the determination of 5 -dimensional itemized isomers count vector IICV $a_{c s}, a_{c_{2}}, a_{c s}, a_{c_{s}^{\prime}}, a_{c_{2 v}}$ whose entries are derived from the resolution of the denumerants of type $N_{g_{l}}=\sum_{G_{j}} a_{G_{j}} w_{G_{j}}, g_{l}$ mapping the permutomers numbers $N_{E}, N_{C_{2}}, N_{\sigma_{v 1}}, N_{\sigma_{v 2}}$ as a sum of symmetry adapted isomers numbers $a_{G_{j}}$ scaled by the weights $w_{G_{j}}, g_{l}$ of the subgroups of $C_{2 v}$.
(3)-The construction of the V_{4} and V_{5} vector spaces of isomers numbers by collecting 4 -dimensional PCVs and 5 -dimensional IICVs to form the permutomers count matrix (PCM) and the itemized isomers count matrix (IICM) for each series of cuneane derivatives $C_{8} H_{q_{0}} X_{q_{1}} \ldots Y_{q_{i}} \ldots Z_{q_{k}}$ or $(C H)_{q_{0}} X_{q_{1}} \ldots Y_{q_{i}} \ldots Z_{q_{k}}$ cuneane heteroanalogues where $\sum_{i=1}^{k} q_{i}=8$ Permutomers and symmetry itemized isomers numbers of substituted $C_{2 v}$-based compounds form 2 associated linear spaces containing 4- and 5-dimensional vectors respectively. Such distribution of isomers populations may open new perspectives of research and teaching in stereochemistry.

Table 2. $\left(J_{i} \times 4\right)-P C M_{s}$ and $\left(J_{i} \times 5\right)-I I C M_{s}$ composing the structure of the V_{4} and V_{5} vector spaces of permutomers and symmetry itemized isomers numbers for substituted cuneane derivatives and heteroanalogues. Note for the sake of comparison that $A_{c}=a_{c_{1}}+a_{c_{2}}, A_{a c}=a_{c_{s}}+a_{c_{s}^{\prime}}+a_{c_{2 v}}$ and $N_{p}=A_{c}+A_{a c}$.

$1 \leq i \leq k$	j_{i}	Cuncane derivatives	$P C M s$ of the V_{4} vector space	IICMs of the Vs vector space	Bipartite Enumeration	Polya Numbers
1	5	$\begin{aligned} & \mathrm{C}_{8} \mathrm{H}_{q_{0}} \mathrm{Xq}_{1} \\ & (\mathrm{CH})_{q_{0}} X_{q 1} \end{aligned}$	$\left(\begin{array}{c}q_{0}, q_{1} \\ 8,0 \\ 7,1 \\ 6,2 \\ 5,3 \\ 4,4\end{array}\right)\left(\begin{array}{llll}N_{E} & N_{C_{2}} & N_{\sigma_{v_{1}}} & N_{\sigma_{\nu_{2}}} \\ 1 & 1 & 1 & 1 \\ 8 & 0 & 2 & 2 \\ 28 & 4 & 4 & 4 \\ 56 & 0 & 6 & 6 \\ 70 & 6 & 6 & 6\end{array}\right)$	$\left(\begin{array}{lllll}a_{C_{1}} & a_{C_{2}} & a_{C_{s}} & a_{C_{s}^{\prime}} & a_{C_{2 v}} \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 5 & 1 & 1 & 1 & 2 \\ 11 & 0 & 3 & 3 & 0 \\ 14 & 2 & 2 & 2 & 2\end{array}\right)$	$\left[\begin{array}{ll}A_{c} & A_{a c} \\ 0 & 1 \\ 1 & 2 \\ 6 & 4 \\ 11 & 6 \\ 16 & 6\end{array}\right]$	$\left[\begin{array}{l}N_{p} \\ I \\ 3 \\ 10 \\ 17 \\ 22\end{array}\right]$
2	5	$\begin{aligned} & C_{8} H q_{0} X_{q_{1}} Y_{q_{2}} \\ & (\mathrm{CH})_{q_{0}} X_{q_{1}} Y_{q_{2}} \end{aligned}$	$\left(\begin{array}{c}q_{0} q_{1} q_{2} \\ 6,1,1 \\ 5,2,1 \\ 4,3,1 \\ 4,2,2 \\ 3,3,2\end{array}\right)\left(\begin{array}{llll}N_{E} & N_{C_{2}} & N_{\sigma_{\eta_{1}}} & N_{\sigma_{v_{2}}} \\ 56 & 0 & 2 & 2 \\ 168 & 0 & 6 & 6 \\ 280 & 0 & 6 & 6 \\ 420 & 12 & 12 & 12 \\ 560 & 0 & 12 & 12\end{array}\right)$	$\left(\begin{array}{c}q_{0} q_{1} q_{2} \\ 6,1,1 \\ 5,2,1 \\ 4,3,1 \\ 4,2,2 \\ 3,3,2\end{array}\right)\left(\begin{array}{lllll}a_{C_{1}} & a_{C_{2}} & a_{C_{j}} & a_{C_{s}^{\prime}} & a_{C_{2 v}} \\ 13 & 0 & 1 & 1 & 0 \\ 39 & 0 & 3 & 3 & 0 \\ 67 & 0 & 3 & 3 & 0 \\ 97 & 0 & 5 & 5 & 2 \\ 134 & 0 & 6 & 6 & 0\end{array}\right)$	$\left[\begin{array}{ll}A_{c} & A_{a c} \\ 13 & 2 \\ 39 & 6 \\ 67 & 6 \\ 102 & 12 \\ 134 & 12\end{array}\right]$	$\left[\begin{array}{l}N_{p} \\ 15 \\ 45 \\ 73 \\ 114 \\ 146\end{array}\right]$

Table 2 continued.

i	j_{i}	Cuneane substituted derivatives and hetero-heteroanaogues	PCMs of the V_{4} vector space	IICMs of the Vs vector space	Bipartite Enumeration	Polya Number s
3	5	$\begin{aligned} & C_{\delta} H_{q_{0}} X_{q_{1}} Y_{q_{2}} Z_{q_{3}} \\ & (C H)_{q_{0}} X_{q_{1}} Y_{q_{2}} Z_{q_{3}} \end{aligned}$	$\left(\begin{array}{l}q_{0} q_{1} q_{2} q_{3} \\ 5,1,1,1 \\ 4,2,1,1 \\ 3,3,1,1 \\ 3,2,2,1 \\ 2,2,2,2\end{array}\right)\left(\begin{array}{llll}N_{E} & N_{C_{2}} & N_{\sigma_{v_{1}}} & N_{\sigma_{v_{2}}} \\ 336 & 0 & 0 & 0 \\ 840 & 0 & 6 & 6 \\ 1120 & 0 & 0 & 0 \\ 1680 & 0 & 12 & 12 \\ 2520 & 24 & 24 & 24\end{array}\right)$	$\left(\begin{array}{lllll}a_{C_{l}} & a_{C_{2}} & a_{C_{s}} & a_{C_{s}^{\prime}} & a_{C_{2 v}} \\ 84 & 0 & 0 & 0 & 0 \\ 207 & 0 & 3 & 3 & 0 \\ 280 & 0 & 0 & 0 & 0 \\ 414 & 0 & 6 & 6 & 0 \\ 612 & 12 & 12 & 12 & 0\end{array}\right)$	$\left(\begin{array}{ll}A_{c} & A_{a c} \\ 84 & 0 \\ 207 & 6 \\ 280 & 0 \\ 414 & 12 \\ 624 & 24\end{array}\right)$	$\left(\begin{array}{l}N_{p} \\ 84 \\ 213 \\ 280 \\ 426 \\ 648\end{array}\right)$
4	3	$\begin{aligned} & C_{8} H_{q_{0}} W_{q_{1}} X_{q_{2}} Y_{q_{3}} Z_{q_{4}} \\ & (\mathrm{CH})_{q_{0}} W_{q_{1}} X_{q_{2}} Y_{q_{3}} Z_{q_{4}} \end{aligned}$	$\left(\begin{array}{lllll}q_{0} & q_{1} & q_{2} & q_{3} & q_{4} \\ 4 & 1 & 1 & 1 & 1 \\ 3 & 2 & 1 & 1 & 1 \\ 2 & 2 & 2 & 1 & 1\end{array}\right)\left(\begin{array}{llll}N_{E} & N_{C_{2}} & N_{\sigma_{v_{1}}} & N_{\sigma_{v_{2}}} \\ 1680 & 0 & 0 & 0 \\ 3360 & 0 & 0 & 0 \\ 5040 & 0 & 12 & 12\end{array}\right)$	$\left(\begin{array}{lllll}a_{C_{I}} & a_{C_{2}} & a_{C_{s}} & a_{C_{s}^{\prime}} & a_{C_{2 v}} \\ 420 & 0 & 0 & 0 & 0 \\ 840 & 0 & 0 & 0 & 0 \\ 1254 & 0 & 6 & 6 & 0\end{array}\right)$	$\left(\begin{array}{ll}A_{c} & A_{a c} \\ 420 & 0 \\ 840 & 0 \\ 1254 & 12\end{array}\right)$	$\left(\begin{array}{l}N_{p} \\ 420 \\ 840 \\ 1266\end{array}\right)$
5	2	$\begin{aligned} & C_{s} H_{q_{e}} V_{q_{e}} W_{q_{2}} X_{q_{s}} Y_{q_{e}} Z_{q_{s}} \\ & (\mathrm{CH})_{q_{s}} V_{q_{s}} W_{q_{2}} X_{q_{s}} Y_{v_{e}} Z_{q_{s}} \end{aligned}$	$\left(\begin{array}{l}q_{0} q_{1} q_{2} q_{3} q_{4} q_{5} \\ 3,1,1,1,1,1 \\ 2,2,1,1,1,1\end{array}\right)\left(\begin{array}{llll}N_{E} & N_{C_{2}} & N_{\sigma_{v_{1}}} & N_{\sigma_{r_{2}}} \\ 6720 & 0 & 0 & 0 \\ 10080 & 0 & 0 & 0\end{array}\right)$	$\left(\begin{array}{lllll}a_{C_{I}} & a_{C_{2}} & a_{C_{s}} & a_{C_{s}^{\prime}} & a_{C_{2 v}} \\ 1680 & 0 & 0 & 0 & 0 \\ 2520 & 0 & 0 & 0 & 0\end{array}\right)$	$\left(\begin{array}{ll}A_{c} & A_{a c} \\ 1680 & 0 \\ 2520 & 0\end{array}\right)$	$\left(\begin{array}{l}N_{p} \\ 1680 \\ 2520\end{array}\right)$
6	1		$\binom{q_{0} q_{1} q_{2} q_{3} q_{4} q_{9} q_{6}}{2,1,1,1,1,1,1}\left(\begin{array}{llll}N_{E} & N_{C_{2}} & N_{\sigma_{v_{1}}} & N_{\sigma_{v_{2}}} \\ 20160 & 0 & 0 & 0\end{array}\right)$	$\left(\begin{array}{lrccc}a_{C_{I}} & a_{C_{2}} & a_{C_{s}} & a_{C_{s}^{\prime}} & a_{C_{2 v}} \\ 5040 & 0 & 0 & 0 & 0\end{array}\right)$	$\left(\begin{array}{ll}A_{c} & A_{a c} \\ 5040 & 0\end{array}\right)$	$\binom{N_{p}}{5040}$
7	1	$\begin{aligned} & C_{8} H_{q_{s}} T_{q_{t}} U_{q_{2}} V_{q_{2}} W_{q_{s}} X_{q_{s}} Y_{q_{6}} Z_{q_{\tau}} \\ & (\mathrm{CH})_{q_{s}} T_{q_{t}} U_{q_{2}} V_{q} W_{q_{s}} X_{q_{s}} X_{q_{s}} Y_{q_{s}} Z_{q_{v}} \end{aligned}$	$\binom{q_{0} q_{1} q_{2} q_{3} q_{4} q_{5} q_{6} q_{7}}{1,1,1,1,1,1,1,1}\left(\begin{array}{llll}N_{E} & N_{C_{2}} & N_{\sigma_{71}} & N_{\sigma_{\nu_{2}}} \\ 40320 & 0 & 0 & 0\end{array}\right)$	$\left(\begin{array}{lllll}a_{C_{t}} & a_{C_{2}} & a_{C_{s}} & a_{C_{s}^{\prime}} & a_{C_{2 v}} \\ 10080 & 0 & 0 & 0 & 0\end{array}\right)$	$\left(\begin{array}{ll}A_{c} & A_{a c} \\ 10080 & 0\end{array}\right)$	$\binom{N_{p}}{10080}$
8	1	$C_{s} S_{q_{q}} T_{q_{t}} U_{q_{2}} V_{q_{s}} W_{q_{t}} X_{q,} Y_{q_{\phi}} Z_{q}$ STUVWXYZ	$\binom{q_{0} q_{1} q_{2} q_{3} q_{4} q_{5} q_{6} q_{7}}{1,1,1,1,1,1,1,1}\left(\begin{array}{llll}N_{E} & N_{C_{2}} & N_{\sigma_{\gamma_{1}}} & N_{\sigma_{v_{2}}} \\ 40320 & 0 & 0 & 0\end{array}\right)$	$\left(\begin{array}{lllll}a_{C_{l}} & a_{C_{2}} & a_{C_{s}} & a_{C_{s}^{\prime}} & a_{C_{2 v}} \\ 10080 & 0 & 0 & 0 & 0\end{array}\right)$	$\left(\begin{array}{ll}A_{c} & A_{a c} \\ 10080 & 0\end{array}\right)$	$\binom{N_{p}}{10080}$

References

[1] P. E. Eaton, T. W. Cole, The Cubane System, J. Am. Chem. Soc. 86 (1964) 962-964.
[2] P. E. Eaton, T. W. Cole, Cubane, J. Am. Chem. Soc. 86 (1964) 3157-3158.
[3] P. E. Eaton, L. Cassar, J. Halpern, Silver (I) and palladium (II) catalyzed isomerizations of cubane. Synthesis and characterization of cuneane, J. Am. Chem. Soc. 92 (1970) 6366-6368.
[4] R. Gleiter, I. Bran, Generation of octamethylcuneane and octamethylcubane from syn-octamethyltricyclo[4.2.0.0 2,5]octa-3,7-diene, Tetrahedron Lett. 35 (1994) 4969-4972.
[5] M. B. Smith, J. March, March's Advanced organic Chemistry, Wiley, New York, 2001, pp. 1459-1472.
[6] G. Benyei, I. Jalsovszky, D. Demus, K. Prasad, R. Shankar, A. Vajda, A. Jakli, K. Fedor-Csorba, First liquid cristalline Cuneane caged derivatives: A structure property relationship study, Liquid Crystals 33 (2006) 689-696.
[7] H. Guenther, W. Herrig, Anwendungen der 13C-resonanz spectroskopie, X13C, 13C-Kopplunskonstanten in Methylencycloalkanen, Chem. Berichte 106 (1973) 3938-3950.
[8] J. Riordan, An Introduction to Combinatorial Analysis, Wiley, New York, 1958.
[9] A. T. Balaban, Valence isomers of heteroannulennes or of substtituted annulenes. Coisomeric multigraphs, Rev. Roumaine Chim. 19 (1974) 1323-1342.
[10] J. J. Sylvester, On a discovery in the partition of numbers, Quarterly J. Math. I (1857) 81-84.
[11] P. Lisonek, Denumerants and their approximations, J. Comb. Math. Comb. Comput. 18 (1995) 225-232.
[12] R. M. Nemba, T. Makon. E. J. Ndobo, Bipartite enumeration of chiral and achiral skeletons of substituted cubane derivatives and heteroanalogues. I, MATCH Commn. Math. Comput. Chem. 84 (2020) 429-448.
[13] (a)-A. Tucker, Polya's enumeration by example, Math Magazine 47 (1974) 248-256. (b) G. Pólya, R. C. Read, Combinatorial Enumeration of Groups, Graphs and Chemical Compounds, Springer, Berlin, 1987.

[^0]: *Corresponding author.

