Vector Spaces of Permutomers and Symmetry Itemized Isomers Numbers for Substituted $C_{2 V}$-Based Compounds. I

Robert Martin Nemba ${ }^{a, *}$
${ }^{a}$ Faculty of Science, Laboratory of Physical and Theoretical Chemistry, Yaounde I University, P.O. Box 812, Yaounde, Cameroon nembarobertmartin@yahoo.com

(Received February 28, 2022)

Abstract

The mathematical properties of isomers numbers of substituted $C_{2 v}$-based compounds presented in this paper includes : -(1) the formulation of 4-dimensional permutomers count vectors $P C V=$ $\left(N_{E}, N_{C_{2}}, N_{\sigma_{v_{1}}}, N_{\sigma_{v_{2}}}\right)$ and 5-dimensional itemized isomers count vectors IICV $=a_{c_{1}}, a_{c_{2}}, a_{c_{s}}, a_{c_{s}^{\prime}}, a_{c_{2 v}}$ which satisfy the dot product $\mathrm{PCV}=I I C V \times W_{C_{2 v}}$. (2)- The expansion of this equation to obtain the denumerants of type $N_{g_{i} \epsilon C_{2 v}}=\sum_{g_{i} \epsilon C_{2 v}} a_{G_{j} \epsilon C_{2 v}} W_{G_{j}}, g_{i}$ mapping permutomers numbers as sum of symmetry itemized isomers numbers $a_{G_{j} \epsilon C_{2 v}}$ scaled by $W_{G_{j}}, g_{i}$ the markaracters of $C_{2 v}$. (3)-The collection of 4 and 5 entries $P C V_{s}$ and $I I C V_{s}$ generating respectively, permutomers count matrices $\left(P C M_{s}\right)$ and itemized isomers count matrices $\left(I I C M_{s}\right)$ that construct two associated vector spaces of isomers numbers for such series of molecules.

1 Introduction

The results of combinatorial enumeration procedures reported in the literature $[1-10]$ are often presented in the form of extended lists of numerical data counting isomers of distinct series of compounds. The structure and

[^0]properties of the linear space of these bulk figure inventories containing numerous integer sequences is a pending mathematical problem.

A vector space also called a linear space in mathematics is a set of objects called vectors which may be added together or multiplied(scaled) by numbers called scalars. The dimension of a vector space V is the cardinality i.e the number of vectors of the basis of V over its base field F. [11] In stereochemistry the vector space of permutational isomers numbers can be visualized as a set of vectors whose entries are numbers of arrangements of substituents derived from distinct classes of permutations induced by the symmetry operations of a point group G acting on a parent molecule M. The aim of this paper is to present the general structure and mathematical properties of the linear space of permutomers numbers and symmetry itemized isomers numbers for substituted $C_{2 v}$-based derivatives.

2 Mathematical formulation

2.1 Permutations of n substitution sites of a parent $C_{2 v}$ hydrocarbon $C_{m} H_{n}$

Consider a parent hydrocarbon $C_{m} H_{n}$ of $C_{2 v}$ symmetry with n substitution sites collected in a set $H_{n}=1,2, \ldots, i, \ldots, n$. The $C_{2 v}$ group action on H_{n} denoted $P^{C_{2 v}} H_{n}$

$$
\begin{equation*}
P^{C_{2 v}} H_{n}=P^{E} H_{n}, P^{C_{2}} H_{n}, P^{\sigma_{V 1}} H_{n}, P^{\sigma_{v 2}} H_{n} \tag{1}
\end{equation*}
$$

is a set of permutations of n substitution sites induced by the symmetry operations $E, C_{2}, \sigma_{v 1}, \sigma_{v 2}$ of $C_{2 v}$. These classes of permutations are expressed in cycle structure notation $[12,13]$ as follows:

$$
P^{E} H_{n}=1^{n}, P^{C_{2}} H_{n}=2^{n / 2}, P^{\sigma_{V 1}} H_{n}=P^{\sigma_{v 2}} H_{n}=\left\{\begin{array}{l}
2^{n / 2} \text { or } \tag{2}\\
1^{\alpha} 2^{(n-\alpha) / 2}
\end{array}\right.
$$

The terms $1^{n}, 2^{n / 2}, 1^{\alpha} 2^{(n-\alpha) / 2}$ correspond to n unitary cycles, $n / 2$ transpositions, and a combination of α unitary cycles and $(n-\alpha) / 2$ transpositions.

2.2 Permutomers numbers for homo and heteropolysubstituted $C_{2 v}$-based hydrocarbons

Let us consider that permutomers of a homopolysubstituted $C_{2 v}$-based hydrocarbon $C_{m} H_{n-q} X_{q}$ (or $C_{m} H_{q_{0}} X_{q_{1}}$) are obtained by putting in distinct ways $q X$ achiral substituents of the same kind $q X$ among n substitution sites submitted to 4 classes of permutations previously indicated. Similarly, permutomers of a heteropolysubstituted $C_{2 v}$-based hydrocarbon $C_{m} H_{q_{0}} X_{q 1} \ldots Y_{q_{i}} \ldots Z_{q_{k}}$ are obtained by putting in distinct ways $\left(q_{0}, q_{1} \ldots q_{i}, \ldots, q_{k}\right)$ achiral substituents of distinct kinds H, X, Y, \ldots, Z among n substitution sites submitted to 4 classes of permutations indicated in Eq. (2). We recall in table 1 some characteristics of the notation of a generic molecular formula $C_{m} H_{q_{0}} X_{q_{1}} \ldots Y_{q_{i}} \ldots Z_{q_{k}}$ where is the number of hydrogen atoms, indicate partial degrees of substitution or numbers of distinct kinds of achiral substituents X, Y, \ldots, Z. The sub-indices $1 \leq i \leq k$ are substitution orders i.e. numbers of distinct types of non hydrogen substituents in the series $M X=C_{m} H_{q_{0}} X_{q_{1}}, C_{m} H_{q_{0}} X_{q_{1}} Y_{q_{2}}, C_{m} H_{q_{0}} X_{q_{1}} Y_{q_{2}} \ldots$ $Z_{q_{i}}, \ldots, C_{m} H_{q_{0}} X_{q_{1}} Y_{q_{2}} \ldots Z_{q_{k}}$ where the indices $q_{0}, q_{1} \ldots q_{i}, \ldots, q_{k}$ satisfy the restriction

$$
\begin{equation*}
\sum_{i=0}^{k} q_{i}=n \tag{3}
\end{equation*}
$$

We put J_{i} as the number of representatives (molecular formulas with non congruent indices $\left(q_{0}, q_{1} \ldots q_{i}, \ldots, q_{k}\right)$) obtained for each series having a substitution order i.

Permutational isomers numbers $N_{E}, N_{C_{2}}, N_{\sigma_{v_{1}}}, N_{\sigma_{v_{2}}}$ for a homopolysubstituted $C_{2 v}$-based hydrocarbon issued from placements of qX substituents among n substitution sites submitted to the permutations $P^{E} H_{n}$, $P^{C_{2}} H_{n}, P^{\sigma_{V 1}} H_{n}, P^{\sigma_{v 2}} H_{n}$ are derived from Eqs. (4-6) as follows :

$$
\begin{gather*}
1^{n} \rightarrow N_{E}=\binom{n}{q} \tag{4}\\
2^{n / 2} \rightarrow N_{c_{2}}=N_{\sigma_{v 1}}=N_{\sigma_{v 2}}= \begin{cases}\binom{n / 2}{q / 2} & q \text { even } \\
0 & q \text { odd }\end{cases} \tag{5}
\end{gather*}
$$

Table 1. Characteristics of the notation of generic molecular formulas of series of substituted $C_{2 v}$-based hydrocarbons $C_{m} H_{q_{0}} X_{q_{1}} \ldots Y_{q_{i}} \ldots Z_{q_{k}}$: (a) sub-indices or substitutions orders $1 \leq i \leq k$, (b) sets of partial degrees of substitution satisfying the restriction (Eq. (3)) above mentioned, (c) number J_{i} of representatives (sets) obtained for each substitution order i.

Generic formulas of series of substituted $\mathrm{C}_{2 \mathrm{v}}$-based hydrocarbons $M X=C_{m} H_{q_{0}} X_{q_{1}} \ldots Y_{q_{i}} \ldots Z_{q_{k}}$	Sub-indices or Substitution Orders $1 \leq i \leq k$	Sets of partial degrees of substitution $q_{0}, q_{1}, . . q_{i}, \ldots, q_{k}$	Numbers j_{i} of representatives for the substitution oder i
$C_{m} H_{q_{o}} X_{q_{t}}=C_{m} H_{n-q} X_{q}$	1	$\left(q_{0}, q_{1}\right)$	j_{1}
$C_{m} H_{q_{o}} X_{q_{l}} Y_{q_{2}}$	2	$\left(q_{0}, q_{1}, q_{2}\right)$	j_{2}
$C_{m} H_{q_{0}} X_{q_{1}} Y_{q_{2}} Z_{q_{3}}$	3	$\left(q_{0}, q_{1}, q_{2}, q_{3}\right)$	j_{3}
..............
$C_{m} H_{q_{0}} X_{q_{1}} Y_{q_{2}} \ldots Z_{q_{i}}$	i	$\left(q_{0}, q_{1}, q_{2}, . ., q_{i}\right)$	j_{i}
...............	
$C_{m} H_{q_{o}} X_{q_{l}} Y_{q_{2}} \ldots Z_{q_{k}}$	k	$\left(q_{0}, q_{l}, . . q_{i}, \ldots, q_{k}\right)$	j_{k}

$$
\begin{equation*}
1^{\alpha} 2^{(n-\alpha) / 2} \rightarrow N_{\sigma_{v 1}}=N_{\sigma_{v 2}}=\sum_{j=0}^{\alpha}\binom{\alpha}{\beta}\binom{(n-\alpha) / 2}{(q-\beta) / 2} \tag{6}
\end{equation*}
$$

α is the number of invariant substitution positions submitted to the inversion $\sigma_{v 1}$ or $\sigma_{v 2}$ while $0 \leq \beta \leq \alpha$ indicates the number of achiral substituents located on these invariant positions. For a heteropolysubstituted $C_{2 v}$-based hydrocarbon $C_{m} H_{q_{0}} X_{q_{1}} Y_{q_{2}} \ldots Z_{q_{k}}$:

$$
\begin{equation*}
1^{n} \rightarrow N_{E}=\binom{n}{q_{0}, q_{1} \ldots q_{i}, \ldots, q_{k}} \tag{7}
\end{equation*}
$$

$$
2^{n / 2} \rightarrow N_{c_{2}}=N_{\sigma_{v 1}}=N_{\sigma_{v 2}}=\left\{\begin{array}{cc}
\binom{n / 2}{q_{0} / 2, q_{1} / 2, \ldots, q_{i} / 2, \ldots, q_{k} / 2} & \text { if } q_{i} \text { even } \tag{8}\\
0 & \text { if } q_{i} \text { odd }
\end{array}\right.
$$

$$
1^{2} 2^{3} \rightarrow N_{\sigma_{v 1}}=N_{\sigma_{v 2}}= \begin{cases}\sum_{\lambda}\left(p_{p_{0}, \ldots, p_{i}, \ldots, p_{k}}^{\alpha}\right)\left(q_{0}^{\prime}, \ldots, q_{i}^{\prime}, \ldots, q_{k}^{\prime}\right) & \text { if } q_{i}^{\prime} \text { even } \tag{9}\\ 0 & \text { if }\left(q_{i}-p_{i}\right) \text { odd }\end{cases}
$$

with the restrictions

$$
\begin{equation*}
\sum_{i=0}^{k} p_{i}=\alpha, q_{i}^{\prime}=\frac{\left(q_{i}-p_{i}\right)}{2}, \sum_{i=0}^{k} q_{i}^{\prime}=\frac{(n-\alpha)}{2} \tag{10}
\end{equation*}
$$

$p_{0}, \ldots, p_{i}, \ldots, p_{k}$ and $q_{0}^{\prime}, \ldots, q_{i}^{\prime}, \ldots, q_{k}^{\prime}$ are numbers of unitary cycles and transpositions of $\mathrm{H}, \mathrm{X}, \mathrm{Y}, \ldots, \mathrm{Z}$.

2.3 The vector space of permutomers numbers for $C_{2 v}$-based compounds

Rule 1 : If Eqs. (4-10) are verified permutational isomers numbers N_{E}, $N_{C_{2}}, N_{\sigma_{v_{1}}}, N_{\sigma_{v_{2}}}$ for α homo- or a hetero polysubstituted $C_{2 v}$-based compound MX can be collected to form a 4 entries row vector called permutomers count vector (PCV) expressed as follows:

$$
\begin{equation*}
\operatorname{PCV}(M X)=\left(N_{E}, N_{C_{2}}, N_{\sigma_{v_{1}}}, N_{\sigma_{v_{2}}}\right) \tag{11}
\end{equation*}
$$

Rule 2 : The collection of 4-dimensional PCVs given in Eq. (11) for a series of substituted $C_{2 v}$-based hydrocarbons $M X=C_{m} H_{q_{0}} X_{q_{1}} \ldots Y_{q_{i}} \ldots Z_{q_{k}}$ possessing the same substitution order i and J_{i} representatives (molecular formulas) with non congruent set of indices $\left(q_{0}, q_{1} \ldots, q_{i} \ldots, q_{k}\right)$ generates a ($J_{i} \times 4$) - permutomers count matrix (PCM) denoted:

Eq. (12) presents the general structure of the vector space V_{4} which is a PCM possessing $j_{i} 4$-dimensional permutomers count vectors $\left(P C V_{s}\right)$. To exemplify this rule let us consider the series $C_{m} H_{q_{0}} X_{q_{1}} Y_{q_{2}}$ possessing the substitution order $\mathrm{i}=2$ and suppose that its set of indices $\left(q_{0}, q_{1}, q_{2}\right)$ satisfy the restriction $\sum_{i=0}^{2} q_{i}=8$. Non congruent (non permuted) set of indices verifying this condition are $\left(q_{0}, q_{1}, q_{2}\right)=(6,1,1),(5,2,1),(4,3,1),(4,2,2)$, $(3,3,2)$. From this sequence of 3 -tuples of indices we derive $j_{i}=5$ representatives (molecular formulas) denoted : $C_{m} H_{6} X Y, C_{m} H_{5} X_{2} Y, C_{m} H_{4} X_{3} Y$, $C_{m} H_{4} X_{2} Y_{2}, C_{m} H_{3} X_{3} Y_{2}$ which yield 5 distinct $P C V_{s}$. Therefore the PCM for the series $\left(C_{m} H_{q_{0}} X_{q_{1}} Y_{q_{2}}\right)$ is a collection of $j_{i}=5$, 4-dimensional $P C V_{s}$ identified by the ranking $1,2,3,4,5$.

2.4 The vector space of symmetry adapted isomers numbers for $C_{2 v}$ based hydrocarbons

Let us consider the sequence of subgroups of $C_{2 v}$ given in Eq. (13):

$$
\begin{equation*}
S S G_{G_{j} \epsilon C_{2 v}}=\left\{C_{1}, C_{2}, C_{s}, C_{s}^{\prime}, C_{2 v}\right\} \tag{13}
\end{equation*}
$$

and note that the parts resulting from the partitions of $N_{E}, N_{C_{2}}, N_{\sigma_{v_{1}}}, N_{\sigma_{v_{2}}}$ are itemized isomers numbers $a_{c_{1}}, a_{c_{2}}, a_{c_{s}}, a_{c_{s}^{\prime}}, a_{c_{2 v}}$ assign to the subgroups of $C_{2 v}$. Such an integer sequence forms a 5 -dimensional itemized isomers count vector (IICV) for substituted $C_{2 v}$-based molecule MX expressed as:

$$
\begin{equation*}
\operatorname{IICV}(M X)=\left(a_{c_{1}}, a_{c_{2}}, a_{c_{s}}, a_{c_{s}^{\prime}}, a_{c_{2 v}}\right) \tag{14}
\end{equation*}
$$

Rule 3 : The collection of 5-dimensional $I I C V_{s}$ for a series of substituted $C_{2 v}$-based compounds MX possessing a substitution order i and j_{i} molecular formulas with non congruent sets of indices $q_{0}, q_{1} \ldots q_{i}, \ldots, q_{k}$ satisfying the restriction $\sum_{i=0}^{k} q_{i}=n$ generates a $\left(j_{i} \times 5\right)$ itemized isomers count matrix (IICM) denoted:

$$
\begin{aligned}
& \text { IICVs }
\end{aligned}
$$

Eq. (15) presents the general structure of the vector space V_{5} which is an IICM possessing j_{i}-dimensional itemized isomers count vectors $\left(I I C V_{s}\right)$.

2.5 The linear mapping of $P C V_{s}$ and $I I C V_{s}$ over the field of substituted $C_{2 v}$-based isomers numbers

Let V_{4} denote the vector space of 4-dimensional permutomers count vectors $\left(P C V_{s}\right)$ and V_{5} the vector space of 5 -dimensional itemized isomers count vectors $\left(I I C V_{s}\right)$ over the field $F_{C_{2 v}}$ of $C_{2 v}$-based isomers numbers.

Rule 4 : A 4-dimensional permutomers count vector (PCV) and a 5 -dimensional itemized isomers count vector (IICV) of the same rank $1 \leq s \leq j_{i}$ in the vector spaces V_{4} and V_{5} over the field $F_{C_{2 v}}$ of $C_{2 v}$-based isomers numbers are two associated vectors which satisfy the dot product (scalar product) [14]:

$$
\begin{equation*}
P C V(M X)=I I C V(M X) \times W_{C_{2 v}} \tag{16}
\end{equation*}
$$

This equation is a linear mapping [15] between V_{4} and V_{5} spaces (that is, every vector from the second space is associated with one of the first) over the field $F_{C_{2 v}}$ of $C_{2 v}$-based isomers numbers. Eq. 16 is explicitly written as:
$W_{C_{2 v}}$ is the matrix of the weights of the subgroups of $C_{2 v}$ and its entries are derived from Eq. (18).

$$
w_{G_{j}, g_{i}}=\left\{\begin{align*}
\frac{\mu_{g_{i} \in G_{j}}}{\mu_{g_{i} \in C_{2 v}}} \times \frac{\left|C_{2 v}\right|}{\left|G_{j}\right|} & \text { for } g_{i} \in G_{j} \tag{18}\\
0 & \text { for } g_{i} \notin G_{j}
\end{align*}\right.
$$

The terms $\left|G_{j}\right|=\left|C_{1}\right|,\left|C_{2}\right|,\left|C_{s}\right|,\left|C_{s}^{\prime}\right|,\left|C_{2 v}\right|=1,2,2,2,4$ are the cardinalities of the subgroups of $C_{2 v}$ and $\mu_{g_{i} \in G_{j}}$ represents the multiplicities given in table 2 of the symmetry operations $E, C_{2}, \sigma_{v_{1}}, \sigma_{v_{2}}$.

Table 2. Multiplicities $\mu_{g_{i} \epsilon G_{j}}$ of $C_{2 v}$ the symmetry operations for the subgroups.

$S S G_{G_{j} \in C_{2 v}}$	μ_{E}	$\mu_{c_{2}}$	$\mu_{\sigma_{v 1}}$	$\mu_{\sigma_{v 2}}$
C_{1}	1	0	0	0
C_{2}	1	1	0	0
C_{s}	1	0	1	0
C_{s}^{\prime}	1	0	0	1
$C_{2 v}$	1	1	1	1

By introducing these data in Eq. (16) $W_{C_{2 v}}$ becomes a (5×4)-matrix given in Eq. (19) which is equivalent to the matrix character table of coset representations of $C_{2 v}$ of Fujita. [16]

The expansion of Eq. (16) gives rise to 4 associated partition Eqs. (2023) decomposing permutomers numbers as a sum of symmetry adapted isomers numbers scaled by the markaracters of $C_{2 v}$.

$$
\begin{gather*}
N_{E}=a_{C_{1}} w_{C_{1}, E}+a_{C_{2}} w_{C_{2}, E}+a_{C_{s}} w_{C_{s}, E}+a_{C_{s}^{\prime}} w_{C_{s}, E}+a_{C_{2 v}} w_{C_{2 v}, E} \tag{20}\\
N_{C_{2}}=a_{C_{1}} w_{C_{1}, C_{2}}+a_{C_{2}} w_{C_{2}, C_{2}}+a_{C_{s}} w_{C_{s}, C_{2}}+a_{C_{s}^{\prime}} w_{C_{s}, C_{2}}+a_{C_{2 v}} w_{C_{2 v}, C_{2}} \tag{21}\\
N_{\sigma_{v_{1}}}=a_{C_{1}} w_{C_{1}, \sigma_{v_{1}}}+a_{C_{2}} w_{C_{2}, \sigma_{v_{1}}}+a_{C_{s}} w_{C_{s}, \sigma_{v_{1}}}+a_{C_{s}^{\prime}} w_{C_{s}, \sigma_{v_{1}}}+a_{C_{2 v}} w_{C_{2 v}, \sigma_{v_{1}}} \tag{22}
\end{gather*}
$$

$N_{\sigma_{v_{2}}}=a_{C_{1}} w_{C_{1}, \sigma_{v_{2}}}+a_{C_{2}} w_{C_{2}, \sigma_{v_{2}}}+a_{C_{s}} w_{C_{s}, \sigma_{v_{2}}}+a_{C_{s}^{\prime}} w_{C_{s}, \sigma_{v_{2}}}+a_{C_{2 v}} w_{C_{2 v}, \sigma_{v_{2}}}$

With regards to numerical values of the entries of $w_{C_{2 v}}$ given in Eq. (19) Eqs. (20-23) become:

$$
\begin{gather*}
N_{E}=4 a_{c_{1}}+2 a_{c_{2}}+2 a_{c_{s}}+2 a_{c_{s}^{\prime}}+a_{c_{2 v}} \tag{24}\\
N_{C_{2}}=2 a_{c_{2}}+a_{c_{2 v}} \tag{25}\\
N_{\sigma_{v_{1}}}=2 a_{c_{s}}+a_{c_{2 v}} \tag{26}\\
N_{\sigma_{v_{2}}}=2 a_{c_{s}^{\prime}}+a_{c_{2 v}} \tag{27}
\end{gather*}
$$

Eqs. (24-27) called Sylvester's denumerants $[17,18]$ of $C_{2 v}$-group are linear
mappings between PCV and IICV entries over the field $F_{C_{2 v}}$ of isomers numbers of substituted $C_{2 v}$-based derivatives. Such partition equations are used for the determination of symmetry itemized isomers numbers $a_{c_{1}}, a_{c_{2}}, a_{c_{s}}, a_{c_{s}^{\prime}}, a_{c_{2 v}}$ for series of substituted $C_{2 v}$-based compounds MX. Fig. 1 depicts the mapping between a PCV and an IICV entries and shows for the sake of comparison their connexions with A_{c} chiral, Aac achiral isomers numbers derived from bipartite enumeration method [19] and Polya isomers numbers (Np) computed from cycle indices.

Figure 1. Illustration of the linear mapping between a PCV and an IICV and their connexions to A_{c} chiral, $A_{a c}$ achiral and Polya $C_{2 v}$-based isomers numbers.

2.6 The linear mapping between the PCM and the IICM over the field of $C_{2 v}$-based isomers numbers

Rule 5: $A-\left(J_{i} \times 4\right)$ and a $\left(J_{i} \times 5\right)$ - IICM for a series of substituted $C_{2 v^{-}}$ based compounds MX having a substitution order i and j_{i} representatives with non congruent sets of substitution indices $\left(q_{0}, q_{1} \ldots q_{i}, \ldots, q_{k}\right)$ satisfying the restriction $\sum_{i=0}^{k} q_{i}=n$ are two associated matrices whose entries satisfy the matrix dot product:

In Eq. (28) the integer sequence $1,2,3, \ldots, \mathrm{~s}, \ldots, j_{i}$ indicates the ranking of 5 -dimensional $I I C V_{s}$ and 4-dimensional $P C V_{s}$ collected to form a ($j_{i} \times 5$)$I I C M$ and a $\left(j_{i} \times 4\right)-P C M$ respectively.

2.7 The structure of the vector space of $C_{2 v}$-based isomers numbers

Rule 6 : The vector spaces V_{4} of permutomers and V_{5} of symmetry itemized isomers numbers for various series of $C_{2 v}$-substituted derivatives $C_{m} H_{q_{0}} X_{q_{1}} \ldots Y_{q_{2}} \ldots Z_{q_{k}}$ with different substitution orders1 $\leq i \leq k$ generating j_{i} distinct molecular formulas where the indices $\left(q_{0}, q_{1}, \ldots, q_{i}, \ldots, q_{k}\right)$ satisfy the restriction $\sum_{i=0}^{k} q_{i}=n$ possess $\mathrm{k} P C M_{s}$ and $\mathrm{k} I I C M_{s}$, respectively. The illustration is given in table 3 where each row shows distinct kinds of $P C M_{s}$ and $I I C M_{s}$ that may be derived for a series having a substitution order i , and j_{i} sets of indices $q_{0}, . ., q_{i}, \ldots ., q_{k}$.

Table 3. The V_{4} and V_{5} vector spaces of isomers numbers of $C_{2 v^{-}}$ substituted derivatives $C_{m} H_{q_{0}} X_{q_{1}} \ldots Y_{q_{2}} \ldots Z_{q_{k}}$ include one $\mathrm{PCM}=j_{i} P C V_{s}$ and one $I I C M=j_{i} I I C V_{s}$ in each series having a substitution order $1 \leq i \leq k$.

$1 \leq i \leq k$	j_{i}	$q_{0, \ldots, q_{i, \ldots}, q_{k}}$	Series of $C_{2 r}$-substituted derivatives	PCMs of V_{4}	IICMs of V_{5}
1	j_{1}	q_{0}, q_{1}	$C_{m} H_{q}{ }_{0} \chi_{q_{1}}$	PCM $\left(q_{0}, q_{1}\right)$	IICM (q_{0}, q_{1})
2	J_{2}	$q_{0, ~}, q_{1}, q_{2}$	$C_{m} H_{q_{0}} X_{q_{1}} Y_{q_{2}}$	$\operatorname{PCM}\left(q_{0}, q_{1}, q_{2}\right)$	$\operatorname{IICM}\left(q_{0}, q_{1}, q_{2}\right)$
3	J_{3}	$q_{0}, q_{1}, q_{2}, q_{3}$	$C_{m} H_{q_{0}} X_{q_{1}} Y_{q_{2}} Z_{q_{3}}$	$\operatorname{PCM}\left(q_{0}, q_{1}, q_{2}, q_{3}\right)$	$\operatorname{IICM}\left(q_{0}, q_{1}, q_{2}, q_{3}\right)$
...
i	J_{i}	$q_{0, ~}, q_{1}, q_{2}, q_{3}, \ldots, q_{i}$	$C_{m} H_{q_{0}} X q_{I} Y q_{2} \ldots . . Z q_{i}$	$\operatorname{PCM}\left(q_{0}, q_{1}, q_{2}, q_{3}, \ldots, q_{i}\right)$	IICM $\left(q_{0}, q_{1}, q_{2}, q_{3}, \ldots, q_{i}\right)$
......
......
k	J_{k}	$q_{0}, q_{1}, q_{2}, q_{3}, \ldots, q_{i}$	$C_{m} H q_{0} X \chi_{1} \ldots . . Y_{q_{i} \ldots} Z_{q_{k}}$	$\operatorname{PCM}\left(q_{0}, q_{1}, q_{2}, \ldots q_{i}, \ldots, q_{k}\right)$	$I I C M\left(q_{0}, q_{l}, q_{2}, \ldots q_{i}, \ldots, q_{k}\right)$

3 Concluding remarks

Permutomers numbers $N_{E}, N_{C_{2}}, N_{\sigma_{v_{1}}}, N_{\sigma_{v_{2}}}$ and symmetry itemized isomers numbers $a_{c_{1}}, a_{c_{2}}, a_{c_{s}}, a_{c_{s}^{\prime}}, a_{c_{2 v}}$ obtained for a substituted $C_{2 v}$-based derivative are collected to form a 4 -dimensional permutomers count vectors $\mathrm{PCV}=\left(N_{E}, N_{C_{2}}, N_{\sigma_{v_{1}}}, N_{\sigma_{v_{2}}}\right)$ and a 5 -dimensional itemized isomers count vectors IICV $=\left(a_{c_{1}}, a_{c_{2}}, a_{c_{s}}, a_{c_{s}^{\prime}}, a_{c_{2 v}}\right)$ respectively. These vectors
are associated to each other by the dot product $P C V=I I C V \times W_{C_{2 v}}$ where $W_{C_{2 v}}$ is the markaracter table of $C_{2 v}$. This equation is the linear mapping between a and over the field $F_{C_{2}}$ of isomers numbers of substituted $C_{2 v}$-based derivatives. Its expansion gives rise to the denumerants of type $N_{g_{i} \epsilon C_{2 v}}=\sum_{G_{i}} a_{G_{j}} W_{G_{j}}, g_{i}$ which decompose permutomers numbers $N_{E}, N_{C_{2}}, N_{\sigma_{v_{1}}}, N_{\sigma_{v_{2}}}$ as sum of symmetry itemized isomers numbers $a_{G_{j}}$ scaled by $w_{G_{j}, g_{i}}$ the markaracters of $C_{2 v}$. The vector spaces V_{4} of permutomers numbers and V_{5} of symmetry itemized isomers numbers are obtained by collecting 4-entries $P C V_{s}$ and 5 -entries $I I C V_{s}$ to form the PCM and the IICM for a series of substituted $C_{2 v}$-based compounds $C_{m} H_{q_{0}} X_{q_{1}} \ldots Y_{q_{2}} \ldots Z_{q_{k}}$ with distinct sets of indices $\left(q_{0}, q_{1} \ldots q_{i}, \ldots, q_{k}\right)$ satisfying the restriction $\sum_{i=0}^{k} q_{i}=n$. These properties of the linear space of isomers numbers of $C_{2 v}$-based derivatives may open new perspectives of research and teaching in stereochemistry. The applications are given in part II.

References

[1] G. Polya, R. C. Read, Combinatorial Enumeration of Groups, Graphs and Chemical Compounds, Springer, Berlin, 1987.
[2] A. Tucker, Polya's enumeration by example, Math Magazine 47 (1974) 248-256.
[3] D. H. Rouvray, Isomers enumeration method, Chem. Soc. Rev. 3 (1974) 355-372.
[4] F. Harary, E. M. Palmer, Graphical Enumeration, Acad. Press, New York, 1973.
[5] S. Fujita, Symmetry and Combinatorial Enumeration in Chemistry, Springer, Berlin, 1991.
[6] K. Balasubramanian, Enumeration of stable stereo and position isomers of polyalcohols, Ann. New York Acad. Sci. 379 (1979) 33-36.
[7] R. M. Nemba, A. T. Balaban, Algorithm for direct Enumeration of chiral and achiral skeletons of homosubstituted derivatives of a monocyclic cycloalkane with a large ring size, J. Chem. Inf. Comput. Sci. 38 (1998) 1145-1150.
[8] R. M. Nemba, A. T. Balaban, Enumeration of chiral and achiral isomers of an n-membered ring with m homomorphic alkyl groups, MATCH Commun. Math. Comput. Chem. 46 (2002) 235-250.
[9] R. M. Nemba, F. Ngouhouo, On the Enumeration of Chiral and achiral skeletons of stereo and position isomers of homosubstituted monocyclic cycloalkanes with a ring size odd or even, Tetrahedron 50 (1994) 6663-6670.
[10] R. M. Nemba, M. Fah, Application of the sieve method to the enumeration of stable stereo and position isomers of deoxycyclitols, J. Chem. Inf. Comput. Sci. 17 (1997) 723-725.
[11] D. C. Lay, Linear Algebra and Its Applications, Addison Wesley, Boston, 2005.
[12] J. Riordan, An Introduction to Combinatorial Analysis, Wiley, New York, 1958.
[13] C. Berge, Principle of Combinatorics, Acad. Press, New York, 1971.
[14] C. M. Fiduccia, E. R. Scheinerman, A. Trenk, J. S. Zito, Dot product representations of graphs, Discr. Math. 181 (1998) 113-138.
[15] S. Lipschutz, M. Lipson, Linear Algebra, Mc Graw Hill, New York, 2009.
[16] S. Fujita, Subduction of coset representations, an application to systematic enumeration of chemical structures with achiral and chiral ligands, J. Math. Chem. 5 (1990) 121-156.
[17] J. J. Sylvester, On a discovery in the partition of numbers, Quarterly J. Math. I (1857) 81-84.
[18] P. Lisonek, Denumerants and their approximations, J. Comb. Math. Comb. Comput. 18 (1995) 225-232.
[19] R. M. Nemba, T. Makon, E. J. Ndobo, Bipartite enumeration of chiral and achiral skeletons of substituted cubane derivatives and heteroanalogues. I, MATCH Commn. Math. Comput. Chem. 84 (2020) 429-448.

[^0]: *Corresponding author.

