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Abstract

LetG be a graph and letmi,j(G), i, j ≥ 1, be the number of edges
uv of G such that {dv(G), du(G)} = {i, j}. The M-polynomial of G
isM(G;x, y) =

∑
i≤j mi,j(G)xiyj . A general method for calculating

the M-polynomials for arbitrary graph families is presented. The
method is further developed for the case where the vertices of a
graph have degrees 2 and p, where p ≥ 3, and further for such
planar graphs. The method is illustrated on families of chemical
graphs.

1 Introduction

Immediately after the M-polynomial was introduced in the paper [5], it

received a lot of attention, which is still ongoing. The main reason for

this popularity is the fact that as soon as we know this polynomial for a
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given graph family, we can routinely obtain closed formulas for a variety

of degree-based topological indices on the family. Namely, computations

can be translated to elementary calculus, see [5,6]. The list of papers [1–3,

14–17] is only a small part of the research in which the M-polynomial is a

key tool used. A general approach to degree-based topological indices has

been done in [10], while in [8] investigations of their structure-sensitivity

in chemistry was performed. We also refer to the recent papers [4,9,11,12]

in which extremal graphs with respect to degree-based indices are studied.

By the above, it is of key importance to develop methods for computing

the M-polynomial. However, in the literature only sporadic, ad hoc meth-

ods can be found. One of the few more general attempts was presented

in [7] where a method was proposed of how to determine the M-polynomial

of planar, (chemical) graphs in which dG(v) ∈ {2, 3} for each vertex v of G.

The main goal of this paper is to extend this method to arbitrary graphs.

We proceed as follows. In the rest of the introduction, the M-polynomial

is formally introduced and some other needed definition is stated. In the

next section we present a general method for calculating the M-polynomial

of arbitrary graph families. In Section 3 the method is first specialized and

further developed for the case where the vertices of a graph have degrees 2

and p, where p ≥ 3. After that the method is restricted to planar graphs

which are the source for the majority of chemical graphs of interest.

Let G = (V (G), E(G)) be a graph. The degree of a vertex v ∈ V (G)

will be denoted by dv(G) and the maximum degree of G by ∆(G). Further,

we will use the following conventions:

• n(G) = |V (G)| and m(G) = |E(G)|;

• ni(G), i ≥ 1, is the number of vertices of G of degree i;

• for i, j ≥ 1, mi,j(G) = |{uv ∈ E(G) : {dv(G), du(G)} = {i, j}}|.

Now, the M-polynomial of G is

M(G;x, y) =
∑
i≤j

mi,j(G)xiyj .
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2 The general method

In this section we present a general approach for determining the M-

polynomial of an arbitrary graph. The main benefit of this approach is

that we do not need to determine all mi,j ; instead we can express some of

them with other graph invariants that are simpler to determine.

Let G be a connected graph with n(G) ≥ 3. We may also assume in

the rest that G is not regular, for otherwise its M-polynomial is trivial.

For a fixed integer i ≥ 1, consider all the vertices u of G of degree i and

its incident edges. If uv is such an edge, then thus dG(u) = i. Now, if

dG(v) = j, j ̸= i, then the vertex u (via the edge uv) contributes 1 to mi,j .

On the other hand, if also dG(v) = i, both vertices u and v contribute 1 to

mi,i. In consequence,
∑∆(G)

j=1 mi,j +mi,i = 2ni holds. Hence, the following

equalities hold:

∆(G)∑
i=1

ni(G) = n(G),

∆(G)∑
j=1

mi,j(G) +mi,i(G) = 2ni(G), i ∈ [∆(G)],

∆(G)∑
i=1

i · ni(G) = 2m(G),

(1)

where the first equality is obvious, the second equalities were justified

above, and the last equality is a rewritten hand-shaking lemma. Note that

since G is a connected graph on at least three vertices, m1,1 = 0.

Let k be the number of distinct elements in the degree sequence of G.

Then the system (1) contains
(
k+1
2

)
+ k+2 variables and consists of k+2

equations. Assuming the system has rank k+ 2 (which will be the case in

the following examples), we can select
(
k+1
2

)
variables as parameters. They

are selected among all the variables such that their direct computation is

simplest among all the variables. Then the remaining “difficult” variables

are determined by solving the system (1). Of course, we have to be careful

that selected parameters do not produce linearly dependant systems. It

turns out that at least one of mi,j must be known, otherwise the system
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cannot be solved.

It is clear that the described method is especially useful when the degree

sequence contains few distinct values. We demonstrate this in the next

section.

3 Graphs with degrees 2 and p

In this section, we restrict our attention to bi-degree graphs with degrees

2 and p ≥ 3, that is, to graphs in which the degree sequence contains only

values 2 and p. The special case p = 3 was studied earlier in [7]. We first

consider general graphs and then specialize to planar graphs.

3.1 General graphs

Let G be a connected graph with vertices only of degrees 2 and p, where

p ≥ 3. Then (1) simplifies into:

n2(G) + np(G) = n(G),

2m2,2(G) +m2,p(G) = 2n2(G),

m2,p(G) + 2mp,p(G) = pnp(G),

2n2(G) + pnp(G) = 2m(G).

(2)

Our aim is to select three variables as parameters and solve the system

for the other variables. We can not select all the three parameters from a

single equation because this would remove one equation from the system

and therefore we would not be able to solve it. Also we can not select n(G),

m(G), and n2(G) as parameters since in this case the first and the last

equation would became linearly dependant and again the system would be

unsolvable. On the other hand, solving the system with parameters n(G),



279

m(G), and m2,2(G) yields the following solution:

n2(G) =
n(G)p− 2m(G)

p− 2
,

np(G) =
2(m(G)− n(G))

p− 2
,

m2,p(G) =
n(G)p− 2m(G)

p− 2
− 2m2,2(G),

mp,p(G) = m2,2(G) +
2n(G)p−m(G)(p+ 2)

p− 2
.

As a consequence we can state the following result, where mi,j(G) is

simplified to mi,j and similarly all the other invariants of G.

Theorem 1. If p ≥ 3 and G is a connected graph with vertices only of

degrees 2 and p, then

M(G;x, y) = m2,2x
2y2 +

[
np− 2m

p− 2
− 2m2,2

]
x2yp

+

[
m2,2 +

2np−m(p+ 2)

p− 2

]
xpyp .

For a concrete example, let Xn, n ≥ 1, be the family of graphs induc-

tively defined as follows. X1 = C4, and if k ≥ 2, then Xk is obtained from

Xk−1 by attaching a pendant 4-cycle at every vertex of degree 2 of Xk−1.

That is, to every vertex u of degree 2 of Xk−1 we add a private 4-cycle

and identify a vertex of the 4-cycle with u. See Fig. 1 where X4 is shown.

By a direct computation we easily see that for k ≥ 1 we have n(Xk) =

2(3k − 1) and m(Xk) = 4(3k−1 − 1), and for k ≥ 2 we have n2,2(Xk) =

8 · 3k−2. Then Theorem 1 implies that for k ≥ 2,

M(Xk;x, y) = 8 · 3k−2x2y2 + 8 · 3k−2x2yp + 4(2 · 3k−2 − 1)xpyp .

3.2 Planar graphs

In this subsection, G is a connected planar graph with vertices only of

degrees 2 and p, where p ≥ 3. The number of the faces in its plane

embedding will be denoted by f(G).
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Figure 1. The graph X4.

Now we can add the Euler formula to the system (2) and maintain

independence property. Doing this we have added one additional equation

and one additional variable to the system, hence we have a greater freedom

to select three parameters. Let us now choose n2(G), f(G), and m2,2(G)

as the three parameters. Then the solution is:

n(G) = n2(G) +
2(f(G)− 2)

p− 2

m(G) = n2(G) +
p(f(G)− 2)

p− 2

np(G) =
2(f(G)− 2)

p− 2

m2,p(G) = 2(n2(G)−m2,2(G))

mp,p(G) = m2,2(G)− n2(G) +
p(f(G)− 2)

p− 2
.
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This gives the following result, where again the argument “(G)” is omitted

for the sake of simplicity:

Theorem 2. If p ≥ 3 and G is a planar graph with vertices only of degrees

2 and p, then

M(G;x, y) = m2,2x
2y2+2(n2−m2,2)x

2yp+

[
m2,2 − n2 +

p(f − 2)

p− 2

]
xpyp .

Plugging p = 3 into Theorem 2 we get the following previously known

result.

Corollary. [7, Theorem 2.1] If G is a planar graph with vertices only of

degrees 2 and 3, and f is the number of faces of a plane embedding of G,

then

M(G;x, y) = m2,2x
2y2 + 2(n2 −m2,2)x

2y3 + (3f − n2 +m2,2 − 6)x3y3 .

Let next the parameters be n2(G), np(G), and m2,2(G). Solving the

system with these parameters yields:

n(G) = np(G) + n2(G)

m(G) =
pnp(G) + 2n2(G)

2

m2,p(G) = 2(n2(G)−m2,2(G))

mp,p(G) = m2,2(G) +
pnp(G)− 2n2(G)

2

f(G) = 2− np(G) +
pnp(G)

2
.

It is interesting to observe that the solution for the number of faces is only

a function of the invariant np(G) (and p). The corresponding result for

the M-polynomial now reads as follows.

Theorem 3. If G is a planar graph with vertices only of degrees 2 and p,

where p ≥ 3, then

M(G;x, y) = m2,2x
2y2 + 2(n2 −m2,2)x

2yp +

[
m2,2 +

pnp − 2n2

2

]
xpyp .
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4 Graphs with degrees 2, 3, and 4

In this section we demonstrate this method on certain zinc-based metal

organic frameworks which contain vertices of degrees 2, 3, and 4. More

precisely, we consider the molecular structures Z(a, b), a, b ≥ 1, the general

definition should be clear from the example Z(3, 2) shown in Fig. 2.

Figure 2. The graph Z(3, 2).

The molecular structures Z(a, 1) have been earlier considered in [13],

where the corresponding M-polynomial was implicitly determined. Here

we determine the M-polynomial for the general case G = Z(a, b). The

system (1) simplifies into the following, where m2,4(G) = m4,4(G) = 0 is
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used.

n2(G) + n3(G) + n4(G) = n(G),

2m2,2(G) +m2,3(G) = 2n2(G),

m2,3(G) + 2m3,3(G) +m3,4(G) = 3n3(G),

m3,4(G) = 4n4,

2n2(G) + 3n3(G) + 4n4(G) = 2m(G),

n(G)−m(G) + f(G) = 2.

Considering n(G), f(G), n4(G), and m3,3(G) as parameters, we get the

following solution:

m2,2(G) = 6n4(G) +m3,3(G) + n(G)− 5f(G) + 10,

m2,3(G) = −10n4(G)− 2m3,3(G) + 6f(G)− 12,

m3,4(G) = 4n4(G).

(3)

The following values

f(G) = 9ab+ 6a+ 6b+ 5,

n(G) = 17(a+ 1)(b+ 1) + 6(4ab+ 2a+ 2b),

n4(G) = (a+ 1)(b+ 1),

m3,3(G) = 6ab+ 3a+ 3b,

can be determined with no problem. Plugging them into (3) yields

M(Z(a, b);x, y) = 8(a+ 1)(b+ 1)x2y2 + 4(8ab+ 5a+ 5b+ 2)x2y3

+ 3(2ab+ a+ b)x3y3 + 4(a+ 1)(b+ 1)x3y4.
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