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Abstract

Building differential dynamical systems to describe the changing
relationship among chemical components is a vital aspect in chem-
istry. In this present manuscript, we put forward a new fractional-
order delayed Brusselator chemical reaction model. By virtue of con-
traction mapping principle, we investigate the existence and unique-
ness of the solution of fractional-order delayed Brusselator chemical
reaction model. With the aid of mathematical analysis technique,
we consider the non-negativeness of the solution of the fractional-
order delayed Brusselator chemical reaction model. Making use
of the theory of fractional-order dynamical system, we explore the
stability and Hopf bifurcation issue of the fractional-order delayed
Brusselator chemical reaction model. By designing a reasonable
PDς controller, we have availably controlled the time of emergence
of Hopf bifurcation of the fractional-order delayed Brusselator chem-
ical reaction model. A sufficient criterion guaranteeing the stability
and the onset of Hopf bifurcation of the fractional-order controlled
delayed Brusselator chemical reaction model is set up. Computer
simulations are implemented to validate the theoretical findings.
The derived fruits of this manuscript have great theoretical signifi-
cance in controlling the concentrations of chemical substances.

1 Introduction

Differential equation has displayed a great application power in various ar-

eas such as physics, bioengineering, electronic technique, control technol-

ogy, neural networks, chemistry, security cryptography and so on. Chemi-

cally, building a suitable differential equation to explore the changing law of

different chemical components has become a central issue. During the past

decades, a great deal of chemical models have been established and rich

achievements have been achieved. For example, Zhabotinsky [1,2] consid-

ered the periodic dynamical behavior of the classical Belousov-Zhabotinsky

reaction model(BZ reaction model). Kapral [3] discussed the complex dy-

namical phenomena of a discrete chemical reaction model. Xu et al. [4]

explored the limit cycle of a fractional-order delayed Oregonator model.

Xu et al. [5] revealed the effect of delay on the bifurcation of a fractional-

order coupled Oregonator model. Din [6] studied the peculiarity of solution

and bifurcation phenomenon of a chaotic chemical reaction system. For

more related publications, one can see [7–10].
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In 1968, Prigogine and Lefever [11] firstly explored the instability of a

Brusselator chemical reaction model. Generally speaking, the Brusselator

chemical reaction obeys the following steps:

A → X ,B + X → Y +D,

2X + Y → 3X ,X → E ,

where A,B,X ,Y,D, E represent different chemical reactants. If the con-

centrations of A and B keep unchange and reversible reactions will not

happen, then the concentrations of X and Y obey the following rule:
d[X ]

dι
= κ1[A]0 − κ2[B]0[X ] + κ3[X ]2[Y]− κ4[X ],

d[Y]

dι
= κ2[B]0[X ]− κ3[X ]2[Y],

(1)

where [A], [B], [X ], [Y] stand for the concentrations of the chemical re-

actants A,B,X ,Y, respectively. κ1, κ2, κ3, κ4 are real constants. By as-

suming that [A] and [B] are constants and equal to the initial values [A]0

and [B]0 of A and B, respectively. Making use of the following variable

substitution:

[X ] → v1, [Y] → v2, ι → tκ3, a =
[A]0κ1

κ3
, b =

[B]0κ2

κ3
, κ3 = κ4,

then we get the following system:
dv1
dt

= a− (1 + b)v1 + v21v2,

dv2
dt

= bv1 − v21v2,
(2)

where a > 0 and b > 0 are proportional to the concentrations of A and

B, respectively; The state variables v1 and v2 are proportional to X ,Y,

respectively. In details, we refer the readers to [12–14].

Time delay is a very important component in describing the dynami-

cal behavior of lots of chemical reaction models. Generally speaking, the

variation of the concentrations of the chemical reactants not only rely on

the current time, but also rely on the past time. Thus time delay often
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exists in chemical reaction models. Based on this viewpoint, we assume

that the concentrations of A and B are affected by the chemical reactant

Y in the past period of time, then we can establish the following delayed

Brusselator chemical reaction model:
dv1
dt

= a− (1 + b)v1 + v21v2(t− ϑ),

dv2
dt

= bv1 − v21v2(t− ϑ),
(3)

where ϑ > 0 is a time delay.

In addition, we would like to point out that fractional-order dynami-

cal model is a more effective tool to describe the authentic natural law

in objective world than the integer-order dynamical model due to the

great advantage of fractional-order dynamical equation in the memory and

hereditary function of various materials and development process [15, 16].

Nowadays, the exploration on fractional-order dynamical model has at-

tracted great interest from lots of scholars in natural science and social

science due to its potential application value in many subjects such as

viscoelasticity, biological medical treatment, economics, control engineer-

ing, chemical engineering, neural networks and so on [17–20]. Recently,

rich research results on fractional-order dynamical models have been pub-

lished. For example, Xu et al. [21] revealed the impact of two different

delays on the Hopf bifurcation of a fractional order bank data model.

Xiao et al. [22] explored the Hopf bifurcation of a fractional-order small-

world networks with time delays via fractional-order PD controller. Yousef

et al. [23] dealt with the existence, uniqueness, non-negativity, bounded-

ness of the solutions, global stability, Hopf bifurcation and persistence of

a fractional-order prey-predator model. Shafiya and Nagamani [24] set up

a finite-time passivity criteria of fractional-order delayed neural networks

via Lyapunov function approach. In details, one can see [25–28]. Espe-

cially, delay-driven Hopf bifurcation plays a vital role in fractional-order

dynamical systems. How to reveal the impact of delay on the Hopf bifur-

cation of fractional-order dynamical systems has become a hot issue. In

addition, how to design a suitable controller to control the stability region

and the onset of Hop bifurcation for fractional-order dynamical systems is
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an interesting issue. In recent years, there are some publications on this

aspect(see [29–31]). However, only very few papers on Hopf bifurcation of

fractional-order chemical reaction models. What is the impact of delay on

the stability and bifurcation of fractional-order chemical reaction models?

How to control the stability and Hopf bifurcation? This is a problem that

we must try to solve. In order to explore the effect of delay on the concen-

trations of the different chemical reactants, design suitable controllers to

control the concentrations of the different chemical reactants, based on the

analysis above, we propose the following fractional-order delayed Brusse-

lator chemical reaction model and explore its Hopf bifurcation and Hopf

bifurcation control aspect:
dςv1
dtς

= a− (1 + b)v1 + v21v2(t− ϑ),

dςv2
dtς

= bv1 − v21v2(t− ϑ),
(4)

where 0 < ς ≤ 1.

The primary objective of this manuscript are expressed as follows: a○
Probe into the stability and emergence of Hopf bifurcation of the fractional-

order delayed Brusselator chemical reaction model (4); b○ Design a suit-

able PDς controller to control the stability region and the time of emer-

gence of Hopf bifurcation of the fractional-order delayed Brusselator chem-

ical reaction model (4).

The key contributions of this manuscript are expressed as follows:

1○ Based on the previous publications, a novel fractional-order delayed

Brusselator chemical reaction model is proposed to better describe the

memory and hereditary trait of the concentrations of the chemical reac-

tants.

2○ A delay-independent stability and bifurcation condition of the fractio-

nal-order delayed Brusselator chemical reaction model (4) is built. The

influence of delay on the stability and bifurcation of the fractional-order

delayed Brusselator chemical reaction model (4) is clearly displayed.

3○ An accurate PDς controller is designed to control the stability region

and the time of emergence of Hopf bifurcation of the fractional-order de-



78

layed Brusselator chemical reaction model (4).

4○ So far, the exploration on Hopf bifurcation and Hopf bifurcation of

fractional-order delayed Brusselator chemical reaction model is very scarce.

This manuscript is arranged as follows. Part 2 give some basic principle

about fractional-order dynamical system. Part 3 explores the existence and

uniqueness and non-negativeness of the solution to model (4). Part 4 sets

up a stability and Hopf bifurcation condition of model (4). Part 5 probes

into the bifurcation control issue via PDς controller. Part 6 presents the

computer simulation plots to support the established key conclusions. Part

7 finishes this manuscript.

2 Preliminaries

In this part, several essential definitions and lemmas on fractional-order

differential equation are prepared.

Definition 2.1. [32] Define the fractional integral of order ς of the func-

tion h(ν) as follows

Iςh(ν) =
1

Γ(ς)

∫ ν

ν0

(ν − s)ς−1h(s)ds,

where ν ≥ ν0, ς > 0, and Γ(s) =
∫∞
0

νs−1e−νdν denotes the Gamma

function.

Definition 2.2. [32] Assume that h(ν) ∈ C([ν0,∞), R). The Caputo

fractional-order derivative of order ς of h(ν) is given by

Dςh(ν) =
1

Γ(l − ς)

∫ ν

ν0

h(m)(s)

(ξ − s)ς−m+1
ds,

where ν ≥ ν0 and m denotes a positive integer satisfying m− 1 ≤ ς < m.

Especially, if 0 < ς < 1, then

Dςh(ν) =
1

Γ(1− ς)

∫ ν

ν0

h
′
(s)

(ν − s)ς
ds.
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Definition 2.3. [33] Consider the following fractional-order system:

Dςvi(t) = gi(vi(t)), i = 1, 2, · · · , k, (5)

where ϱ ∈ (0, 1], vi(t) = (v1(t), v2(t), · · · , vh(t)), gi(t) = (g1(t), g2(t), · · · ,
gk(t)). Then (v∗1 , v

∗
2 , · · · , v∗k) is said to be the equilibrium point of system

(5) if gi(v
∗
i ) = 0.

Lemma 2.1. [34] Let ς ∈ (0, 1] and g(t) ∈ C[α1, α2] and Dςg(t) ∈
C[α1, α2]. If Dςg(t) ≥ 0, t ∈ (α1, α2), then g(t) is a non-decreasing func-

tion for t ∈ (α1, α2). If Dςg(t) ≤ 0, t ∈ (α1, α2), then g(t) is a non-

increasing function for t ∈ (α1, α2).

Lemma 2.2. [35] Consider the fractional-order system Dςw = Pw,w(0)

= w0 where 0 < ς < 1, w ∈ Rh,P ∈ Rh×h. Let χl(i = 1, 2, · · · , h) be the

root of the characteristic equation of Dςw = Pw. Then system Dςw = Pw

is asymptotically stable ⇔ |arg(χl)| > ςπ
2 (l = 1, 2, · · · , h). Furthermore,

this system is stable ⇔ |arg(χl)| > ςπ
2 (l = 1, 2, · · · , h) and every criti-

cal eigenvalue obeying |arg(χl)| = ςπ
2 (l = 1, 2, · · · , h) possesses geometric

multiplicity one.

Lemma 2.3. [36] For the fractional-order system Dςu(t) = P1w(t) +

P2w(t − ϑ), where w(t) = ω(t), t ∈ [−ϑ, 0], ς ∈ (0, 1], w ∈ Rn,P1,P2 ∈
Rn×n. Then the characteristic equation of the system is det |sςI − P1 −
P2e

−sϑ| = 0. Then the zero solution of the model is asymptotically stable

if every root of the equation det |sςI −P1−P2e
−sϑ| = 0 possesses negative

real roots.

3 Existence and uniqueness,

non-negativeness of solution

In this section, we will study the existence and uniqueness, non-negative-

ness of the solution of model (4).

Theorem 3.1. Set Π = {v1, v2) ∈ R2 : max{|v1|, |v2|} ≤ V}, where

V > 0 is a constant. ∀ (v10, v20) ∈ Π, the model (4) with the initial value

(v10, v20) has a unique solution V = (v1, v2) ∈ Π.
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Proof. Define the following mapping:

f(V ) = (f1(V ), f2(V )), (6)

where {
f1(V ) = a− (1 + b)v1 + v21v2(t− ϑ),

f2(V ) = bv1 − v21v2(t− ϑ).
(7)

∀ V, Ṽ ∈ Π, we get

||f(V )− f(Ṽ )||

=
∣∣a− (1 + b)v1 + v21v2(t− ϑ)− [a− (1 + b)ṽ1 + ṽ21 ṽ2(t− ϑ)]

∣∣
+
∣∣bv1 − v21v2(t− ϑ)− [bṽ1 − ṽ21 ṽ2(t− ϑ)]

∣∣
≤

∣∣(1 + b)(v1(t)− ṽ1(t)) + [v21v2(t− ϑ)− ṽ21 ṽ2(t− ϑ)]
∣∣

+
∣∣b(v1(t)− ṽ1(t))− [v21v2(t− ϑ)− ṽ21 ṽ2(t− ϑ)]

∣∣
≤ (1 + b)|v1(t)− ṽ1(t)|+ V2|v2(t)− ṽ2(t)|+ V2|v2(t)− ṽ2(t)|

+2V3|v1(t)− ṽ1(t)|+ b|v1(t)− ṽ1(t)|+ V2|v2(t)− ṽ2(t)|

+V2|v2(t)− ṽ2(t)|+ 4V3|v1(t)− ṽ1(t)|

=
(
1 + 2b+ 4V3

)
|v1(t)− ṽ1(t)|+ 4V2|v2(t)− ṽ2(t)|

≤ A||V − Ṽ ||, (8)

where

A = max{1 + 2b+ 4V3, 4V2}. (9)

Then f(V ) obeys Lipschitz condition with respect to V (refer to [37]).

Thus Theorem 3.1 holds.

Theorem 3.2. Every solution of model (4) beginning with R2
+ is non-

negative.

Proof. Assume that V (t0) = (v1(t0), v2(t0)) is the initial value of model

(1.4). Suppose that there exists a constant t⋆ satisfying t0 < t < t⋆ such
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that 
v1(t) = 0, t0 < t < t⋆,

v1(t⋆) = 0,

v1(t
+
⋆ ) < 0.

(10)

According to model (4), we have

Dςv1(t)|v1(t⋆)=0 = a > 0. (11)

Applying Lemma 2.1, we know that v1(t
+
⋆ ) > 0, which is a contradiction

(see [38]). Thus v1(t) ≥ 0 for t ≥ t0. In a similar way, we can easily prove

that v2(t) ≥ 0 for t ≥ t0.

4 Bifurcation exploration of model (4)

In this section, we will investigate the stability and Hopf bifurcation of

model (4). Obviously, model (4) has unique positive equilibrium points

E(a, b
a ). Let  v̄1(t) = v1(t)− a,

v̄2(t) = v2(t)−
b

a
,

(12)

then  v1(t) = v̄1(t) + a,

v2(t) = v̄2(t) +
b

a
.

(13)

Substituting (13) into (4), we have
dς v̄1
dtς

= a− (1 + b)(v̄1(t) + a) + (v̄1(t) + a)2
(
v̄2(t− ϑ) +

b

a

)
,

dς v̄2
dtς

= b(v̄1(t) + a)− (v̄1(t) + a)2
(
v̄2(t− ϑ) +

b

a

)
.

(14)

The linear system of Eq. (14) around (0, 0) can be expressed as
dς v̄1
dtς

= (b− 1)v̄1(t) + a2v̄2(t− ϑ),

dς v̄2
dtς

= −bv̄1(t)− a2v̄2(t− ϑ).
(15)
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The characteristic equation of system (15) is

det

[
sς − (b− 1) −a2e−sϑ

b sς + a2e
−sϑ

]
= 0, (16)

which leads to

s2ς − (b− 1)sς + a2(sς + 1)e−sϑ = 0, (17)

Now we give the following hypothesis:

(H1) a2 − b+ 1 > 0.

Lemma 4.1. If (H1) holds, then the positive equilibrium point E(a, b
a ) of

model (4) is locally asymptotically stable.

Proof. When ϑ = 0, then (17) becomes

λ2 + (a2 − b+ 1)λ+ a2 = 0. (18)

According to (H1), one derives that the two roots λl of (18) satisfy |arg(λ1)|
> ςπ

2 , |arg(λ2)| > ςπ
2 . By Lemma 2.2, one can conclude that the positive

equilibrium point E(a, b
a ) of model (4) is locally asymptotically stable.

The proof ends.

Suppose that s = iµ = µ
(
cos π

2 + i sin π
2

)
is a root of (17). Then

µ2ς(cos ςπ + i sin ςπ)− (b− 1)µς
(
cos

ςπ

2
+ i sin

ςπ

2

)
+a2

[
µς

(
cos

ςπ

2
+ i sin

ςπ

2

)
+ 1

]
(cosµϑ− i sinµϑ) = 0, (19)

which leads to {
α1 cosµϑ+ α2 sinµϑ = α3,

α2 cosµϑ− α1 sinµϑ = α4,
(20)
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where 

α1 = a2
(
µς cos

ςπ

2
+ 1

)
,

α2 = a2µς sin
ςπ

2
,

α3 = −µ2ς cos ςπ + (b− 1)µς cos
ςπ

2
,

α4 = −µ2ς sin ςπ + (b− 1)µς sin
ςπ

2
.

(21)

By (20), one gets

α2
1 + α2

2 = α2
3 + α2

4. (22)

which leads to

µ4ς + c1µ
3ς + c2µ

2ς + c3µ
ς + c4 = 0, (23)

where 
c1 = −2(b− 1)

(
cos ςπ cos

ςπ

2
+ sin ςπ sin

ςπ

2

)
,

c2 = (b− 1)2 − a4,

c3 = −a4 cos
ςπ

2
,

c4 = −a4.

(24)

Let

Ψ(µ) = µ4ς + c1µ
3ς + c2µ

2ς + c3µ
ς + c4. (25)

Notice that c4 < 0, dΨ(µ)
dµ > 0, for all µ > 0, then Eq.(23) owns at least one

positive real root. Thus Eq.(17) owns at least one pair of purely roots.

Assume that Eq.(23) has four real roots labeled by µi > 0(j = 1, 2, 3, 4).

By (20), we derive

ϑh
i =

1

µi

[
arccos

(
α1α3 + α2α4

α2
1 −+α2

2

)
+ 2hπ

]
, (26)

where h = 0, 1, 2, · · · , i = 1, 2, 3, 4. Let

ϑ0 = min
i=1,2,3,4

{ϑ0
i }, µ0 = µ|ϑ=ϑ0 . (27)

Now we give the following hypothesis:



84

(H2) U1V1 + U2V2 > 0, where

U1 = 2ςµ2ς−1
0 cos

(2ς − 1)π

2
− (b− 1)ςµς−1

0 cos
(ς − 1)π

2

+ a2ςµς−1
0 cos

(ς − 1)π

2
cosµ0ϑ0

+ a2ςµς−1
0 sin

(ς − 1)π

2
sinµ0ϑ0,

U2 = 2ςµ2ς−1
0 sin

(2ς − 1)π

2
− (b− 1)ςµς−1

0 sin
(ς − 1)π

2

− a2ςµς−1
0 cos

(ς − 1)π

2
sinµ0ϑ0

+ a2ςµς−1
0 sin

(ς − 1)π

2
cosµ0ϑ0,

V1 = a2
(
µς
0 cos

ςπ

2
+ 1

)
µ0 sinµ0ϑ0 − a2µς+1

0 sin
ςπ

2
cosµ0ϑ0,

V2 = a2
(
µς
0 cos

ςπ

2
+ 1

)
µ0 cosµ0ϑ0 + a2µς+1

0 sin
ςπ

2
sinµ0ϑ0.

(28)

Lemma 4.2. Suppose that s(ϑ) = τ1(ϑ)+ iτ2(ϑ) is the root of (17) around

ϑ = ϑ0 such that τ1(ϑ0) = 0, τ2(ϑ0) = µ0, then Re
[
ds
dϑ

]
ϑ=ϑ0,µ=µ0

> 0.

Proof. Applying (17), we derive

[
2ςs2ς−1 − (b− 1)ςsς−1

] ds

dϑ
+ a2ςsς−1e−sϑ ds

dϑ

−e−sϑ

(
ds

dϑ
ϑ+ s

)
a2(sς + 1) = 0. (29)

By (29), one gets (
ds

dϑ

)−1

=
U
V

− ϑ

s
, (30)

where {
U = 2ςs2ς−1 − (b− 1)ςsς−1 + a2ςsς−1e−sϑ,

V = e−sϑsa2(sς + 1).
(31)

Then

Re

[(
ds

dϑ

)−1
]
= Re

[(
U
V

)−1
]
. (32)

Thus

Re

[(
ds

dϑ

)−1
]
ϑ=ϑ0,µ=µ0

=
U1V1 + U2V2

V2
1 + V2

2

. (33)
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By (H2), ones has

Re

[(
ds

dϑ

)−1
]
ϑ=ϑ0,µ=µ0

> 0. (34)

The proof of Lemma 4.2 ends.

By virtue of the exploration above, the following result can be easily

derived.

Theorem 4.1. Under the hypotheses (H1) and (H2), the positive equilib-

rium point E(a, b
a ) of model (4) is locally asymptotically stable if ϑ lies in

the range [0, ϑ0) and a Hopf bifurcation will happen around E(a, b
a ) if ϑ

exceeds the critical value ϑ0.

5 Bifurcation control of model (4) via PDς

controller

In this section, we are to apply PDς controller to control the Hopf bifur-

cation of model (4). The PDς controller is designed as follows:

u(t) = ϱp

(
v2(t− ϑ)− b

a

)
+ ϱd

dς
(
v2(t)− b

a

)
dtς

, (35)

where ϱp and ϱd ̸= 1 represent the proportional control parameter and the

derivative control parameter, respectively, ϑ stands for a delay. Adding

(35) to the second equation of model (4), one gets
dςv1
dtς

= a− (1 + b)v1 + v21v2(t− ϑ),

dςv2
dtς

= bv1 − v21v2(t− ϑ) + ϱp

(
v2(t− ϑ)− b

a

)
+ ϱd

dς
(
v2(t)− b

a

)
dtς

.

(36)
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System (36) is equivalent to
dςv1
dtς

= a− (1 + b)v1 + v21v2(t− ϑ),

dςv2
dtς

=
1

1− ϱd

[
bv1 − v21v2(t− ϑ) + ϱp

(
v2(t− ϑ)− b

a

)]
.

(37)

Clearly, system (37) has the same equilibrium point as that in model (4).

Namely, system (37) has the unique positive equilibrium point E(a, b
a ).

The linear system of Eq. (37) around E(a, b
a ) can be expressed as

dς v̄1
dtς

= d1v̄1(t) + d2v̄2(t− ϑ),

dς v̄2
dtς

= d3v̄1(t) + d4v̄2(t− ϑ),
(38)

where 

d1 = (b− 1)

d2 = a2,

d3 = − b

1− ϱd
,

d4 = −a2 − ϱp
1− ϱd

.

(39)

The characteristic equation of system (38) is

det

[
sς − d1 −d2e

−sϑ

−d3 sς − d4e
−sϑ

]
= 0, (40)

which leads to

s2ς + e1s
ς + (e2s

ς + e3)e
−sϑ = 0, (41)

where 
e1 = −d1

e2 = −d4,

e3 = d1d4 − d2d3.

(42)

Now we give the following hypothesis:

(H3) e1 + e2 > 0, e3 > 0
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Lemma 5.1. If (H3) holds, then the positive equilibrium point E(a, b
a ) of

model (37) is locally asymptotically stable.

Proof. When ϑ = 0, then (41) becomes

λ2 + (e1 + e2)λ+ e3 = 0. (43)

According to (H3), one derives that the two roots λl of (41) satisfy |arg(λ1)|
> ςπ

2 , |arg(λ2)| > ςπ
2 . By Lemma 2.2, one can conclude that the positive

equilibrium point E(a, b
a ) of model (37) is locally asymptotically stable.

The proof ends.

Suppose that s = iσ = σ
(
cos π

2 + i sin π
2

)
is a root of (41). Then

σ2ς(cos ςπ + i sin ςπ) + e1σ
ς
(
cos

ςπ

2
+ i sin

ςπ

2

)
+e2

[
µς

(
cos

ςπ

2
+ i sin

ςπ

2

)
+ e3

]
(cosσϑ− i sinσϑ) = 0, (44)

which leads to {
β1 cosσϑ+ β2 sinσϑ = β3,

β2 cosσϑ− β1 sinσϑ = β4,
(45)

where 

β1 = e2

(
σς cos

ςπ

2
+ e3

)
,

β2 = e2σ
ς sin

ςπ

2
,

β3 = −σ2ς cos ςπ − e1σ
ς cos

ςπ

2
,

β4 = −σ2ς sin ςπ − e1σ
ς sin

ςπ

2
.

(46)

By (5.11), one gets

β2
1 + β2

2 = β2
3 + β2

4 . (47)

which leads to

σ4ς + ε1σ
3ς + ε2σ

2ς + ε3σ
ς + ε4 = 0, (48)
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where 
ε1 = 2e1

(
cos ςπ cos

ςπ

2
+ sin ςπ sin

ςπ

2

)
,

ε2 = e21 − e22,

ε3 = 2e22e3 cos
2 ςπ

2
,

ε4 = −e22e
2
3.

(49)

Let

Φ(σ) = σ4ς + ε1σ
3ς + ε2σ

2ς + ε3σ
ς + ε4. (50)

Notice that ε4 < 0, dΦ(σ)
dσ > 0, for all σ > 0, then Eq.(48) owns at least one

positive real root. Thus Eq.(41) owns at least one pair of purely roots.

Assume that Eq.(48) has four real roots labeled by σi > 0(i = 1, 2, 3, 4).

By (45), we derive

ϑh
i =

1

σi

[
arccos

(
β1β3 + β2β4

β2
1 + β2

2

)
+ 2hπ

]
, (51)

where h = 0, 1, 2, · · · , i = 1, 2, 3, 4. Let

ϑ0 = min
i=1,2,3,4

{ϑ0
i }, σ0 = µ|ϑ=ϑ0 . (52)

Now we give the following hypothesis:

(H4) S1Z1 + S2Z2 > 0, where

S1 = 2ςσ2ς−1
0 cos

(2ς − 1)π

2
+ e1ςσ

ς−1
0 cos

(ς − 1)π

2

+ e2ςσ
ς−1
0 cos

(ς − 1)π

2
cosσ0ϑ

0

+ e2ςσ
ς−1
0 sin

(ς − 1)π

2
sinσ0ϑ

0,

S2 = 2ςσ2ς−1
0 sin

(2ς − 1)π

2
+ e1ςσ

ς−1
0 sin

(ς − 1)π

2

− e2ςσ
ς−1
0 cos

(ς − 1)π

2
sinσ0ϑ

0

+ e2ςσ
ς−1
0 sin

(ς − 1)π

2
cosσ0ϑ

0,

Z1 =
(
e2σ

ς
0 cos

ςπ

2
+ e3

)
σ0 sinσ0ϑ

0 − e2σ
ς+1
0 cos

ςπ

2
cosσ0ϑ

0,

Z2 =
(
e2σ

ς
0 cos

ςπ

2
+ e3

)
σ0 cosσ0ϑ

0 + e2σ
ς+1
0 cos

ςπ

2
sinσ0ϑ

0.

(53)
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Lemma 5.2. Suppose that s(ϑ) = ϵ1(ϑ)+ iϵ2(ϑ) is the root of (41) around

ϑ = ϑ0 such that ϵ1(ϑ0) = 0, ϵ2(ϑ0) = µ0, then Re
[
ds
dϑ

]
ϑ=ϑ0,σ=σ0

> 0.

Proof. Applying (41), we derive

[
2ςs2ς−1 + e1ςs

ς−1
] ds

dϑ
+ e2ςs

ς−1e−sϑ ds

dϑ

−e−sϑ

(
ds

dϑ
ϑ+ s

)
(e2s

ς + e3) = 0. (54)

By (54), one gets (
ds

dϑ

)−1

=
S
Z

− ϑ

s
, (55)

where {
S = 2ςs2ς−1 + e1ςs

ς−1 + e2ςs
ς−1e−sϑ,

Z = e−sϑs (e2s
ς + e3) .

(56)

Then

Re

[(
ds

dϑ

)−1
]
= Re

[(
S
Z

)−1
]
. (57)

Thus

Re

[(
ds

dϑ

)−1
]
ϑ=ϑ0,µ=µ0

=
S1Z1 + S2Z2

Z2
1 + Z2

2

. (58)

By (H4), ones has

Re

[(
ds

dϑ

)−1
]
ϑ=ϑ0,µ=µ0

> 0. (59)

The proof of Lemma 5.2 ends.

By virtue of the exploration above, the following result can be easily

derived.

Theorem 5.1. Under the hypotheses (H3) and (H4), the positive equilib-

rium point E(a, b
a ) of model (36) is locally asymptotically stable if ϑ lies

in the range [0, ϑ0) and a Hopf bifurcation will happen around E(a, b
a ) if

ϑ exceeds the critical value ϑ0.
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6 MATLAB simulation figures

In this section, we will carry out MATLAB simulation to check the cor-

rectness of Theorem 4.1 and Theorem 5.1. We give two examples.

Example 6.1. Consider the following fractional-order delayed Brusselator

chemical reaction model:
d0.97v1
dt0.97

= 0.6− (1 + 1)v1 + v21v2(t− ϑ),

d0.97v2
dt0.97

= v1 − v21v2(t− ϑ),
(60)

Clearly, model (60) has the unique positive equilibrium point E(0.6, 1.67).

Making use of MATLAB software, we can determine that µ0 = 3.0092 and

ϑ0 = 0.82. The conditions (H1) and (H2) in Theorem 4.1 are satisfied.

In order to check the correctness of Theorem 4.1, we select two different

delay values. Select ϑ = 0.75 < ϑ0 = 0.82, then the MATLAB simula-

tion figures are presented in Figures 1-4. In terms of Figures 1-4, we can

distinctly see that the positive equilibrium point E(0.6, 1.67) remains lo-

cally asymptotically stable situation. Figure 1 shows the variable v1 → 0.6

as the time t → ∞; Figure 2 shows the variable v2 → 1.67 as the time

t → ∞; Figure 3 shows the relation between variables v1 and as v2 the

time t → ∞; Figure 4 shows the relation of variables v1 and as v2 the time

t. Select ϑ = 0.9 > ϑ0 = 0.82, then the MATLAB simulation figures are

presented in Figures 5-8. In terms of Figures 5-8, we can distinctly see

that model (60) will undergo a limit cycle (Hopf bifuracation) near the

positive equilibrium point E(0.6, 1.67). Figure 5 shows the variable v1 will

keep periodic vibration around the value 0.6 as the time t → ∞; Figure 6

shows the variable v2 will keep periodic vibration around the value 1.67 as

the time t → ∞; Figure 7 shows the relation between variables v1 and as

v2 the time t → ∞; Figure 8 shows the relation of variables v1 and as v2

the time t. Additionally, the bifurcation plots (see Figures 9-10) are given

to manifest that the bifurcation point of model (60) is roughly equal to

0.82.

Example 6.2. Consider the following fractional-order controlled delayed
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Brusselator chemical reaction model:
d0.97v1
dt0.97

= 0.6− (1 + 1)v1 + v21v2(t− ϑ),

d0.97v2
dt0.97

= v1 − v21v2(t− ϑ) + ϱp

(
v2(t− ϑ)− b

a

)
+ ϱd

dς
(
v2(t)− b

a

)
dtς

.

(61)

Clearly, model (61) has the unique positive equilibrium point E(0.6, 1.67).

Let ϱp = 0.2, ϱd = 0.3. Making use of MATLAB software, we can deter-

mine that σ0 = 1.8874 and ϑ0 = 0.76. The conditions (H3) and (H4) in

Theorem 5.1 are satisfied. In order to check the correctness of Theorem

5.1, we select two different delay values. Select ϑ = 0.7 < ϑ0 = 0.76,

then the MATLAB simulation figures are presented in Figures 11-14. In

terms of Figures 11-14, we can distinctly see that the positive equilibrium

point E(0.6, 1.67) remains locally asymptotically stable situation. Figure

11 shows the variable v1 → 0.6 as the time t → ∞; Figure 12 shows the

variable v2 → 1.67 as the time t → ∞; Figure 13 shows the relation be-

tween variables v1 and as v2 the time t → ∞; Figure 14 shows the relation

of variables v1 and as v2 the time t. Select ϑ = 0.85 > ϑ0 = 0.76, then the

MATLAB simulation figures are presented in Figures 15-18. In terms of

Figures 15-18, we can distinctly see that model (61) will undergo a limit

cycle (Hopf bifuracation) near the positive equilibrium point E(0.6, 1.67).

Figure 15 shows the variable v1 will keep periodic vibration around the

value 0.6 as the time t → ∞; Figure 16 shows the variable v2 will keep

periodic vibration around the value 1.67 as the time t → ∞; Figure 17

shows the relation between variables v1 and as v2 the time t → ∞; Figure

18 shows the relation of variables v1 and as v2 the time t. Additionally,

the bifurcation plots (see Figures 19-20) are given to manifest that the

bifurcation point of model (61) is roughly equal to 0.76.
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Figure 1. The MATLAB simulation result of model (60) under the
delay condition ϑ = 0.75 < ϑ0 = 0.82. The horizontal axis
shows the time t and the longitudinal axis shows the variable
v1. The variable v1 → 0.6 as t → ∞.
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Figure 2. The MATLAB simulation result of model (60) under the
delay condition ϑ = 0.75 < ϑ0 = 0.82. The horizontal axis
shows the time t and the longitudinal axis shows the variable
v2. The variable v2 → 1.67 as t → ∞.
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Figure 3. The MATLAB simulation result of model (60) under the
delay condition ϑ = 0.75 < ϑ0 = 0.82. The horizontal axis
shows the variable v1 and the longitudinal axis shows the
variable v2. The variables v1 → 0.6 and v2 → 1.67 as t → ∞.
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Figure 4. The MATLAB simulation result of model (60) under the
delay condition ϑ = 0.75 < ϑ0 = 0.82. The horizontal axis
shows the time t, the longitudinal axis shows the variable v1
and the vertical axis shows the variable v2. The variables
v1 → 0.6 and v2 → 1.67 as t → ∞. It shows the relation of
t, v1 and v2.
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Figure 5. The MATLAB simulation result of model (60) under the
delay condition ϑ = 0.9 > ϑ0 = 0.82. The horizontal axis
shows the time t and the vertical axis shows the variable v1.
The variable v1 will keep periodic vibration around the value
0.6 as t → ∞.
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Figure 6. The MATLAB simulation result of model (60) under the
delay condition ϑ = 0.9 > ϑ0 = 0.82. The horizontal axis
shows the time t and the vertical axis shows the variable v2.
The variable v2 will keep periodic vibration around the value
1.67 as t → ∞.
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Figure 7. The MATLAB simulation result of model (60) under the
delay condition ϑ = 0.9 > ϑ0 = 0.82. The horizontal axis
shows the variable v1 and the longitudinal axis shows the
variable v2. The variables v1, v2 will keep periodic vibration
near (0.6, 1.67) as t → ∞.
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Figure 8. The MATLAB simulation result of model (60) under the
delay condition ϑ = 0.9 > ϑ0 = 0.82. The horizontal axis
shows the time t, the longitudinal axis shows the variable
v1 and the vertical axis shows the variables v1, v2 will keep
periodic vibration near (0.6, 1.67) as t → ∞. It shows the
relation of t, v1 and v2.
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Figure 9. The bifurcation diagram of model (60). The horizontal axis
shows the delay ϑ, the longitudinal axis shows the variable
v1. The bifurcation value of model (60) is roughly equal to
0.82.
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Figure 10. The bifurcation diagram of model (60). The horizontal axis
shows the delay ϑ, the longitudinal axis shows the variable
v2. The bifurcation value of model (60) is roughly equal to
0.82.



97

0 50 100 150 200 250 300
0.45

0.5

0.55

0.6

0.65

0.7

0.75

t

 v
1
(t

) 

Figure 11. The MATLAB simulation result of model (61) under the
delay condition ϑ = 0.7 < ϑ0 = 0.76. The horizontal
axis shows the time t and the longitudinal axis shows the
variable v1. The variable v1 → 0.6 as t → ∞.
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Figure 12. The MATLAB simulation result of model (61) under the
delay condition ϑ = 0.7 < ϑ0 = 0.76. The horizontal
axis shows the time t and the longitudinal axis shows the
variable v2. The variable v2 → 1.67 as t → ∞.
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Figure 13. The MATLAB simulation result of model (61) under the
delay condition ϑ = 0.7 < ϑ0 = 0.76. The horizontal axis
shows the variable v1 and the longitudinal axis shows the
variable v2. The variables v1 → 0.6 and v2 → 1.67 as
t → ∞.
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Figure 14. The MATLAB simulation result of model (61) under the
delay condition ϑ = 0.7 < ϑ0 = 0.76. The horizontal axis
shows the time t, the longitudinal axis shows the variable v1
and the vertical axis shows the variable v2. The variables
v1 → 0.6 and v2 → 1.67 as t → ∞. It shows the relation of
t, v1 and v2.
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Figure 15. The MATLAB simulation result of model (61) under the
delay condition ϑ = 0.85 > ϑ0 = 0.76. The horizontal axis
shows the time t and the vertical axis shows the variable
v1. The variable v1 will keep periodic vibration around the
value 0.6 as t → ∞.

0 50 100 150 200 250 300
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

t

 v
2
(t

) 

Figure 16. The MATLAB simulation result of model (61) under the
delay condition ϑ = 0.85 > ϑ0 = 0.76. The horizontal axis
shows the time t and the vertical axis shows the variable
v2. The variable v2 will keep periodic vibration around the
value 1.67 as t → ∞.
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Figure 17. The MATLAB simulation result of model (61) under the
delay condition ϑ = 0.85 > ϑ0 = 0.76. The horizontal axis
shows the variable v1 and the longitudinal axis shows the
variable v2. The variables v1, v2 will keep periodic vibra-
tion near (0.6, 1.67) as t → ∞.
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Figure 18. The MATLAB simulation result of model (61) under the
delay condition ϑ = 0.85 > ϑ0 = 0.76. The horizontal axis
shows the time t, the longitudinal axis shows the variable
v1 and the vertical axis shows the variables v1, v2 will keep
periodic vibration near (0.6, 1.67) as t → ∞. It shows the
relation of t, v1 and v2.
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Figure 19. The bifurcation diagram of model (61). The horizontal axis
shows the delay ϑ, the longitudinal axis shows the variable
v1. The bifurcation value of model (61) is roughly equal to
0.76.
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Figure 20. The bifurcation diagram of model (61). The horizontal axis
shows the delay ϑ, the longitudinal axis shows the variable
v2. The bifurcation value of model (61) is roughly equal to
0.76.

7 Conclusions

In order to inquire into the concentrations of the chemical reactants in

chemistry, we set up a novel fractional-order delayed Brusselator chemical

reaction model. The properties (include existence and uniqueness, non-
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negativeness)of the solution of fractional-order delayed Brusselator chemi-

cal reaction model have been analyzed in detail. By virtue of Laplace trans-

form and the characteristic equation of the fractional-order delayed Brus-

selator chemical reaction model, we have built a new delay-independent

stability and bifurcation condition for the fractional-order delayed Brusse-

lator chemical reaction model. The influence of delay on Hopf bifurcation

of the fractional-order delayed Brusselator chemical reaction model are ex-

plored. Taking advantage of a proper PDς controller, we can effectively

control the stability and the time of occurrence of Hopf bifurcation of the

fractional-order delayed Brusselator chemical reaction model. The explo-

ration results play a vital role in dominating the concentrations of different

chemical substances. The research methods have important theoretical

guiding significance in many control areas.
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