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Abstract

We present a method for computing the Merrifield-Simmons in-
dex on some basic graphs. For example, our proposal works on
paths, simple cycles, trees, and we show that the method can be
extended to process benzenoid systems Hr,t with a total of r · t
hexagons. In the case of benzenoid systems, our method consists
of performing a linear-time Hamiltonian walking on an isomorphic
hexagonal grid from Hr,t, at the same time that the number of in-
dependent sets are being computed incrementally.

Our method improves the asymptotic behavior of the time-com-
plexity with respect to the transfer matrix method, which is the
classic method for computing the Merrifield-Simmons index on grid
graphs, even for benzenoid systems.

1 Introduction

Merrifield and Simmons showed the correlation between the number of

independent sets of G, denoted by i(G), and the boiling points of the
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molecular graph represented byG [18]. This is one of the main reasons why

the number of independent sets of a graph G, in the area of mathematical

chemistry, is called the Merrifield-Simmons index (M-S) of G. However,

in the area of graph theory, i(G) is called the Fibonacci number of G.

The Merrifield-Simmons index is a significant topological index of the

structural chemistry of the molecular graph G [8,25]. A topological index

is a map from the set of chemical compounds represented by molecular

graphs to the set of real numbers. Many topological indices are closely

correlated with some physico-chemical characteristics of the underlying

compounds. The Merrifield-Simmons index is one of the topological in-

dices, whose mathematical properties have been studied in some detail in

[17,18,22,25]. The M-S index and the Hosoya index are some of the most

popular topological indices in chemistry.

Calkin [3] calculates the number of independent sets on grid graphs

using the transfer matrix method. Euler [11] showed different generating

functions for counting maximal independent sets for different sizes of a grid

graph. In [14] is presented an extension of the transfer matrix method to

count the number of satisfying assignments of Boolean 2-CNF.

There is a large volume of literature devoted to count structures in

a grid graph, e.g., spanning trees, Hamiltonian cycles, independent sets,

acyclic orientations, k-coloring, and so on [3, 11, 12, 14]. Applications of

the counting objects on grids also include for instance tiling and efficient

coding schemes in data storage [23].

The recognition of structural patterns lying on a graph G has been

helpful to design efficient algorithms for computing i(G). For example,

the linear-time Okamoto’s algorithm [19] computes i(G), when G is a

chordal graph and, when the decomposition of G in its clique tree gives the

possibility of applying dynamic programming in an efficient way. Another

case, is the Zhao’s algorithm for computing i(G) on regular graphs [26].

In [7], it is shown a method based on the use of macros to compute i(Tn)

when Tn is a polygonal tree graph. However, for some kind of graphical

patterns G, there is not an efficient known method to compute i(G).

The transfer matrix method has been adapted for computing the M-S

index on different class of benzenoid systems [16,27]. However, this class
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of structures has required the application of multi-step transfer matrices

for computing the Merrifield-Simmons index by increasing in exponential

way the complexity time of the method.

In the work from Oz et al. [20,21] a Merrifield-Simmons vector defined

on a path is introduced in order to compute the M-S index of a benzenoid

chain or a double benzenoid chain via the product of six different matrices

and the M-S vector. Oz et al. [20] claims that it does not exist a practical

way for computing the Merrifield-Simmons index of any double hexago-

nal (benzenoid) chain. Thus, they present an extensive matrix numerical

method for this task. Contrary to that affirmation, we present here a

practical graph-based method to compute the M-S index on any regular

benzenoid system, including a chain, double chain, or for any number of

rows (and columns) of a regular benzenoid system.

We introduce a novel method for computing the Merrifield-Simmons

index on benzenoid systems that compared to apply the transfer matrix

method, reduces significantly the complexity time of the computation.

2 Preliminaries

Let G = (V,E) be an undirected graph with a set of vertices V and a set

of edges E. It is assumed that G is a simple graph, that is, it does not

have loops nor parallel edges. Sometimes, we denote an edge {u, v} ∈ E in

abbreviated form as uv. The neighborhood of x ∈ V is the set N(x) = {y ∈
V : xy ∈ E}, and its closed neighborhood is N(x) ∪ {x}, which is denoted

by N [x]. The degree of a vertex x in the graph G, denoted by δG(x), is

|N(x)|. The degree of the graph G is ∆(G) = max{δG(x) : x ∈ V }.
A path between two vertices v and w, denoted as Pvw, or simply as Pn,

is a sequence of edges: v0v1, v1v2, . . . , vn−1vn such that v = v0, vn = w,

and vkvk+1 ∈ E, for 0 ≤ k < n; the length of the path is the number

of edges in it. A simple path is a path where v0, v1, . . . , vn−1, vn are all

distinct. A simple cycle is a simple non-empty path, where the first and

last vertices are identical.

A connected graph is a graph where for any pair of vertices there is a

path connecting them. An acyclic graph is a graph that does not contain
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cycles. The connected acyclic graphs are called trees, and it is not difficult

to infer that in a tree there is a unique path connecting any two pair of its

vertices. We denote by Pn−1, Cn, and Tn to the simple path, the simple

cycle, and the tree, respectively, all of them containing n vertices.

A subset S ⊆ V is called independent, when every u, v ∈ S implies that

uv /∈ E. I(G) denotes the set of all independent sets of G. Let v ∈ V (G),

we denote as Iv(G) = {S ∈ I(G) : v ∈ S} and I−v(G) = {S ∈ I(G) : v /∈
S}. The corresponding counting problem on independent sets, denoted by

i(G), consists of counting the number of independent sets of a graph G.

Computing i(G) is a ♯P-complete problem for graphs G, where ∆(G) ≥ 3.

Let G = (V,E) be a molecular graph. We denote i(G, k) as the number of

ways in which k mutually independent vertices can be selected in G. By

definition, i(G, 0) = 1 for all graphs, and i(G, 1) = |V (G)|. Furthermore,

i(G) =
∑

k≥0 n(G, k) is the Merrifield-Simmons index (M-S) of G, which

is the exact number of independent sets of G.

Counting problems are not only mathematically interesting; they also

arise in many applications. Regarding hard counting problems, the compu-

tation of the number of independent sets of a graph G has been a key in de-

termining the frontier between efficient counting and intractable counting

algorithms. Vadhan [24] showed that counting the number of independent

sets in graphs of maximum degree 4 is #P-complete. Greenhill [13] refined

the previous result showing that counting the number of independent sets

on graphs of degree 3 or on 3-regular graphs is also #P-complete.

3 Counting independent sets on basic graphs

Given a connected graph G = (V,E), we call the sign of a vertex v in

G to the pair (αv, βv)G, where αv = |I−v(G)|, which means that αi is

the number of subsets in I(G) where vi does not appear. Meanwhile,

βv = |Iv(G)| conveys the number of subsets in I(G), where vi appears.

Let Pn = G = (V,E) be a simple path, i.e. V = {1, 2, ..., n, n + 1}
and there exists an edge ei = {i, i + 1}, i = 1, . . . , n, for each pair of

sequential vertices. We build the family fi = {Gi}, i = 1, . . . , n+ 1 where

Gi = (Vi, Ei) is the induced graph of G formed by just the first i vertices
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of V .

We associate to each vertex vi ∈ V (Gi) the pair (αi, βi)Gi , where αi =

|I−vi(Gi)| and βi = |Ivi(Gi)|. Thus, i(Gi) = αi + βi.

The first pair (α1, β1) is (1, 1) since on the induced subgraphG1 = {v1},
I(G1) = {∅, {v1}}. If we know the value of (αi, βi) for any i < n, and as the

next induced subgraph Gi+1 is built from Gi adding the vertex vi+1 and

the edge {vi, vi+1}, it is not hard to see that the pair (αi+1, βi+1) is built

from (αi, βi) by applying the following Fibonacci recurrence equation:

αi+1 = αi + βi ; βi+1 = αi (1)

The previous rule is known as the application of a Fibonacci recur-

rence, and it will be denoted by the symbol →. The series (αi,βi) built

from recurrence (1), lead to compute i(Gi), i = 1, . . . , n + 1. Then, the

computation of i(G) is based on the incremental calculation of i(Gi), i =

1, . . . , n + 1. Traversing the path Pn in linear way, the last pair (αn, βn)

will be (Fn+1, Fn) where Fn is the nth−Fibonacci number. Then, i(Pn) =

Fn+1 + Fn = Fn+2.

Notice that (αi, βi) represents the values (|I−vi(Pi)|, |Ivi(Pi)|), i < n,

such pairs will be denoted as (αi, βi)Pi with i < n. We call (αi, βi)H as

the sign of the vertex vi on the subgraph H. Notice that the sign of vi can

change according to the subgraph H that is considered.

In order to process the number of independent sets on any path in

a graph G, we will use computing threads or just threads. A computing

thread is a sequence of pairs (αi, βi), i = 0, . . . , n used for computing the

number of independent sets on a path Pn : v0, v1, . . . , vn, and where each

(αi, βi) is associated to each vertex vi, i = 0, . . . , n of the path.

3.1 Counting independent sets on trees

Let T = (V,E) be a tree rooted at a vertex vr ∈ V . The vertices in a tree

with degree equal to one are called leaves or pendant nodes, while the non

roots vertices of degree greater than one are called internal nodes of the

tree. We traverse T in post-order. Let Fi = {Ti}, i = 1, . . . , n, where Fi is

a family of induced subgraphs. Furthermore, Ti = (Vi, Ei), Vi ⊂ V,Ei ⊂ E,
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and each Vi is built as Vi = {v1, . . . vi} of V . We associate to each vertex

vi ∈ V its sign (αi, βi) with αi = |I−vi(Ti)|, βi = |Ivi(Ti)|. And therefore,

i(Ti) = αi + βi.

For all pendant vertex v of T , (αv, βv) is (1, 1) since for the induced

subgraph Tv = {v}, I(Tv) = {∅, {v}}. Any new pair (αi+1, βi+1) is built

from the previous one by the application of a Fibonacci recurrence (1).

When a node vi ∈ V (Tn) has more than one child, then the Hadamard

product among the (αij , βij ), j = 1, . . . , k is formed in order to obtain

(αi, βi). The following algorithm shows how to compute i(T ) for a tree T .

Algorithm 1 Linear Tree(T )

Require: A tree T
Ensure: i(T)
Traversing T in post-order, and when a node v ∈ T is left, assign:
if v is a leaf node in T then

(αv, βv) = (1, 1)
else if v is the root node of T then

return αv + βv

else if u1, u2, ..., uk are the child nodes of v, as we have already visited
all child nodes, then each pair (αuj

, βuj
) j = 1, ..., k has been determined

based on recurrence (1) then

Let αv =
∏k

j=1 αvj and βv =
∏k

j=1 βvj .
end if

The computation of i(T ) is done while T is traversing in post-order by

the algorithm 1. Algorithm 1 returns the number of independent sets of

a rooted tree T in time of order O(n+m), which is the necessary time for

traversing T in post-order.

3.2 Counting independent sets on cycles

Let Cn = (V,E) be a simple cycle, |V | = n = |E| = m, i.e. every vertex in

Cn has degree two. If the n-th element in {1, 2, ..., n} is adjacent to the first
vertex, then Pn−1 turns into a simple cycle Cn, and the number of subsets

(including the empty set) with no two adjacent elements is characterized

by the n-th Lucas number. Therefore, i(Cn) = Ln = Fn+1 + Fn−1 [22].

This last equality comes from decompose the cycle Cn as: Pn−1∪{cm},
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where Pn−1 = (V,E′), E′ = {c1, ..., cm−1}. Pn−1 is a path of n vertices,

and cm = {vn, v1} is called the back edge of the cycle. We denote by ↪→
to the back edge that is processed by the counting procedure of i(Cn).

Let Fi = {Gi}, i = 1, . . . , n be a family graph, where Gi = (Vi, Ei)

is the induced graph of Pn formed by just the first i vertices of V . We

consider the association of the sign (αi, βi) to each vertex vi ∈ V , where

αi = |I−vi(G)| and βi = |Ivi(G)|. Therefore, i(Gi) = αi + βi.

The first pair (α1, β1) is (1, 1) since for the induced subgraph G1 =

{v1}, I(G1) = {∅, {v1}}, and every new pair (αi+1, βi+1) is built from the

previous one by the application of a Fibonacci recurrence (1).

Note that every independent set in G is an independent set in Cn,

except for the sets S ∈ I(G) where v1 ∈ S and vm ∈ S. In order to

eliminate those conflicting sets, we use two computing threads, one is the

main thread Lp used to compute i(Pn−1). The other secondary thread,

denoted by LC , is used to compute |{S ∈ I(G) : v1 ∈ S ∧ vn ∈ S}|. The

secondary thread begins with (α′
1, β

′
1) = (0, 1), in order to consider only

the independent sets of I(G) where v1 appears.

By expressing the computation of i(Cn) in terms of Fibonacci numbers,

we have (α′
1,β

′
1) = (0, 1) = (F0, F1) → (α′

2, β
′
2) = (1, 0) = (F1, F0) →

(α′
3, β

′
3) = (1, 1) = (F2, F1), . . . , (α

′
n, β

′
n) = (Fn−1, Fn−2), and the value

for the final pair is (0, Fn−2). Therefore, |{S ∈ I(G′) : v1 ∈ S ∧ vn ∈
S}| = 0+β′

n = Fn−2. Then, the last pair associated to the computation of

i(Cn) is (Fn+1, Fn − Fn−2) = (Fn+1, Fn−1). Then, i(Cn) = Fn+1 + Fn−1,

obtaining a well-known identity, the n-th Lucas number.

v1 v2 v3 v4 v5 v6

Lp(αi, βi) : (1, 1) → (2, 1) → (3, 2) → (5, 3) ↪→ (8, 5)− (0, 2) = (8, 3) → (11, 8)
LC(α

′
i, β

′
1) : (0, 1) → (1, 0) → (1, 1) → (2, 1) → (3, 2) ↪→ (0, 2)X

Figure 1. Counting Independent Sets on the graph C5 ∪ {{v5, v6}}.

Notice that when a back edge {vn, v1} is processed, the control on

the main computing thread is kept at the vertex vn of the back edge.
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This allows us to continue the processing of the remaining graph from vn

(without changing the control to v1), as it is illustrated in Figure 1. After

processing a back edge of a cycle C, the associated computing thread of

the cycle LC is closed, as it is shown by the symbol X in Figure 1. Then,

i(G) can be computed according to each edge that is recognized when a

walking is applied on G.

4 Grid and benzenoid graphs

A grid graph of size m×n is a graph Gm,n with vertex set V = {(i, j) : 1 ≤
i ≤ m, 1 ≤ j ≤ n} and edge set E = {{(j, i), (j+1, i)}∪{((j, i), (j, i+1)} |
1 ≤ j < m, 1 ≤ i ≤ n}.

We consider a grid graph Gm,n as the union of n paths, each path with

m vertices. The path P i
m(Fig. 2), 1 ≤ i ≤ n have a vertex set V (P i

m) =

{(1, i), (2, i), · · · , (m, i)} and edge set E(P i
m) = {((j, i), (j + 1, i)) | 1 ≤

j < m}. The vertices of the grid graph V (Gm,n) = ∪n
i=1V (P i

m) and the

edges of the grid graph E(Gm,n) = {((j, i), (j, i+ 1)) | 1 ≤ i < n, 1 ≤ j ≤
m} ∪ (∪n

i=1E(P i
m)).

The computation of the M-S index on grid structures is closely related

to the ‘’hard-square model”, which is used in statistical physics and, of

particular interest is the so-called hard-square entropy constant [2]. It has

several applications in statistical physics [2,10,24], e.g. for the computation

in the Potts and hardcore lattice gas model and the problem of counting

q-particle Widom-Rowlinson configurations in graphs, where q > 2.

The classical method for computing the M-S index on grid graphs is

based on the transfer matrix method [3,11]. The transfer matrix method

consist of building an initial matrix of Fm+2 rows and Fm+2 columns that

are indexed by (m + 1)-vectors of zeros and ones. Let us consider S be

an independent set of Gm,n. Let Cm be the set of all (m+ 1)-vectors v of

0′s and 1′s without two consecutive 1′s, in which a 1 indicates that the

vertex is in S, and a 0 indicates that the vertex is not in S. The number

of these vectors is Fm+2, the m + 2-th Fibonacci number. Let Tm be an

Fm+2 × Fm+2 symmetric matrix of 0′s and 1′s whose rows and columns

are indexed by the vectors of Cm.
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(1,1)

(2,1)

(1,2)

(2,2)

(1,n)

(m,1) (m,n)

...

...

...

P 1
m Pn

m

...

...

Figure 2. Path identification over Gm,n.

The condition that vectors u,v in Cm are a possible consecutive pair

of columns in an independent set of Gm,n is simply that they meet the

condition of having no 1’s in common position, i.e., that u · v = 0 in the

sense of the usual dot product of vectors over the real numbers. Then,

the entry of Tm in position (u,v) is 1, if the vectors u,v are orthogonal;

otherwise, it is 0. Tm is called the transfer matrix for Gm,n. Notice that

Tm has Fm+2 · Fm+2 inputs.

The M-S index of a grid graph Gm,n is obtained by the sum of all

entries of the n-th power matrix Tn
m, i.e., i(Gm,n) = 1tTn

m1, where 1 is the

(Fm+2)-vector whose entries are all 1′s.

Only the construction of the initial matrix Tm involves the order of

O((Fm+2)
2 · (m+1)) dot products of m+1-vectors over the real numbers.

Afterward, the computation of Tn
m implicates an order of O((Fm+2)

3n)

multiplications among integers, or an order of O(((1.618)(m+2)·(3n)) if we

consider the asymptotic behavior of the Fibonacci numbers, and the ap-

proximation to the golden ratio of (1.618). This last complexity could

be reduced to O((1.618)(m+2)·(2.81n)) integer multiplications, when the

Strassen matrix-multiplication algorithm is applied. In any case, the ap-

plication of the transfer matrix method for computing i(Gm,n) has a time-

complexity of O((Fm+2)
2 · (m+ 1) + (Fm+2)

2.81n) integer multiplications

that results in an exponential upper bound on both dimensions m and n
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of the grid Gm,n.

4.1 Benzenoid systems

A benzenoid system, denoted by Hr,t, is a subset (with 1-connected inte-

rior) of a regular tiling of the plane by hexagonal tiles. To each benzenoid

system, we can assign a graph by taking the vertices of hexagons as the

vertices, and the sides of hexagons as the edges of the graph. The resulting

simple, plane, and bipartite graph is called a benzenoid graph.

Benzenoid systems are of great importance for theoretical chemistry,

because they are the natural graph representation of benzenoid hydrocar-

bons. Another line of researching is the modelation of graphene sheets,

that is one of the main element of certain carbon allotropes, through ben-

zenoid systems. They are used also to describe phase transitions for phys-

ical systems [9, 27].

All faces of a benzenoid graph, except the unbounded face, are hexagons.

The vertices lying on the border of the non-hexagonal face of a benzenoid

graph are called external; other vertices, if any, are called internal. A

benzenoid graph without internal vertices is called catacondensed. Peri-

condensed benzenoids have internal vertices. If no hexagon in a catacon-

densed benzenoid is adjacent to three other hexagons, then the benzenoid

is a chain [9].

We will consider pericondensed benzenoid systems Hr,t formed by r · t
congruent regular hexagons arranged in r rows, each row of t hexagons.

Each row is shifted for half of a hexagon from the following row; an example

is illustrated in Figure 3. The arrangement is such that two hexagons either

share an edge, or they are completely disjoint. Hr,t has r·t hexagonal faces.
The first step in our procedure for computing i(Hr,t) is to embed the

pericondensed benzenoid systems Hr,t in a regular hexagonal grid HG,

where instead of the traditional squares in the grid, we consider hexagons,

as it is shown in Figure 4.

Both graphs, the benzenoid system Hr,t and the regular hexagonal grid

HG are isomorphic graphs, and they have the same number of hexagons.

But while the number of columns is regular in Hr,t, the number of columns

in HG has 2t+1 or 2t+2 vertices. We denote the number of rows in HG
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by m, and the number of columns of the first row by n. Then, HGm,n

is a hexagonal grid of m rows, where each row of HGm,n has n or n + 1

columns. The first row in HGm,n has n vertices, but row 2 and 3 have

n+1 vertices. The row 4 returns to have n vertices, and the following two

rows have n+ 1 vertices, and so forth.

The number of hexagons is the same on each row of HGm,n, in such

a way that the hexagons in Hr,t are one-to-one related with the hexagons

in HGm,n, as it is shown in Figure 3 and Figure 4. The embedding of a

benzenoid system Hr,t in a regular hexagonal grid HGm,n can be done in

linear time on r · t, since linear-time algorithms that build an embedding

of a planar graph into a grid exist [4, 6]. Therefore, we can represent the

edges of HGm,n as straight-line segments.

11
12

13

24
23

22

14
15

26
25

16
17

28
27

18
19

210
29

110
111

212
21121

33
32

31 35
34

37
36

39
38

311
310

44
43

42 46
45

48
47

410
49

312

412
41141

53
52

51 55
54

57
56

59
58

511
510

Figure 3. A benzenoid system.

Similar to a grid graph, we identify the vertices inHGm,n by the coordi-

nates (i, j) that indicate the position of the vertex in the row i, i = 1, . . . ,m

and the column j, j = 1, . . . , n+1. A vector column of HGm,n has m ver-

tices, while a vector row of HGm,n has n or n + 1 vertices. Notice that

HGm,n has only vertices of degree two or three. The edges inHGm,n are of

two types; horizontal edges with vertices {(i, j), (i, j+1)}, i = 1, . . . ,m, j =
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1, . . . , n. The remaining edges in HGm,n are called vertical edges. A ver-

tical edge in HGm,n has vertices {(i, j), (i+1, j)}, or {(i, j), (i+1, j+1)},
or {(i, j), (i+ 1, j − 1)}, according to the row i that is being considered.

11 12 13 14 15 16 17 18 19 110 111

21 22 23 24 25 26 27 28 29 210 211 212

31 32 33 34 35 36 37 38 39 310 311 312

41 42 43 44 45 46 47 48 49 410 411 412

51 52 53 54 55 56 57 58 59 510 511

Figure 4. The grid graph representation of the benzenoid system.

The adaptation of the transfer matrix method for the computation of

i(Hr,t), where Hr,t is a benzenoid system, requires the increase in exponen-

tial factors with respect to the performed operations when the M-S index

is computed on grid graphs. For example, Zhang Z. [27] has to build a

matrix M , where one of its dimensions is of order 3m for 2m-vectors of 0’s

and 1’s, for computing the M-S index in a particular benzenoid system. It

requires the order of O(32.81mn) basic operations for computing the M-S

index in such structures.

We show in the following sections how to compute i(HGm,n), where

HGm,n is the embedded graph obtained from a benzenoid system Hr,t.

This computation does not require as many exponential number of basic

operations as the transfer matrix method does.
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5 Computation of the Merrifield-Simmons

index on hexagonal grids

A relevant element in the computation of i(HGm,n) is the construction

of a Hamiltonian walking that trails by every vertex of HGm,n exactly

once. We use a table Tk,l of k rows and l column in order to store the

partial calculus in the computation of i(HGm,n), while the walking is

being performed on HGm,n.

The maximum number for k in the table Tk,l corresponds to the max-

imum number of computing threads that must be active in any moment

during the computation of i(HGm,n). On the other hand, the number

of columns l corresponds to the number of total vertices that are visited,

which in this case is the total number of vertices inHGm,n. Thus, l = c·r·t,
where c is a constant factor.

For the vertices of degree 2, the walking visits both edges. Meanwhile,

for the vertices of degree three, two of its edges are visited by the walking

and the third edge is recognized as a back edge, but this class of edges does

not change the direction of the walking. During the walking on HGm,n,

when a vertex v is visited and where v indicates the beginning of a back

edge {v, w}, then as many new threads are created as active lines with a

value βv > 0 that exists on Tk,l.

For example, let us consider that {v, w} is a back edge, and the vertex

v is visited by the walking. If a thread Li is active with a pair (αv, βv)i

associated to Li in the column v, and where βv > 0, then a new computing

thread Lv i is created. The first pair associated to the thread Lv i is

(0, βv)v i, which is stored in a cell of Tk,l in the positions: row v i and

column v. The value i is a pointer that indicates the row i that corresponds

with the thread Li in the table Tk,l. In this way, each new back edge

increases the number of active threads.

On the other hand, the threads associated to a cycle with back edge

{v, w}, which were created when v was visited, they are closed after the

walking has visited w. When w is visited, the pair (αw, βw)v associated

to the thread Lv ap is used to form the pair (0, βw)v that is substracted to

the current pair in the thread Lap, i.e. (αw, βw)ap = (αw, βw)ap− (0, βw)v.
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Afterwards, all thread containing the term v as prefix or postfix in its label

is closed.

When the threads are closed, it is possible to move rows on Tk,l in

order to keep only the active threads on Tk,l. As some rows on Tk,l are

moved, it would be necessary to update the pointers used on the labels of

the threads. Nonetheless, it adjusts the value for k in order to indicate

the maximum number of active threads that are requested in any moment

during the computation of i(HGm,n).

The number of rows k on Tk,l is mainly determined by the maximum

number of active threads during the whole computation of i(HGm,n).

Thus, k is a dynamic value that changes according to the back edges

that are processed, and its maximum value corresponds to the maximum

number of open cycles during the walking on HGm,n.

5.1 Walkings on the hexagonal grid

In this section, we present different ways to traverse through the hexagonal

gridHGm,n. The walkings will be represented by dashed lines in the figures

of the hexagonal grids. The first walking onHGm,n is through rows. While

the walking on HGm,n is performed, the cells in Tk,l are filled. The edges

of HGm,n are processed in two forms: via recurrence equations (when

horizontal edges or vertices of degree two are visited), or as back edges

(such edges only correspond to vertical edges).

On the other hand, we can visit the vertices onHGm,n through columns.

In some cases, a series of Hamiltonian walkings on HGm,n are built. And

in this case, when different threads meet in a same vertex, the threads are

processed via the Hadamard product of its respective sign-pairs, as it is

done when the childs of a father node are processed.

5.2 A walking by rows on the hexagonal grid

First, we present a Hamiltonian trail by rows on HGm,n, as it is shown by

the dashed lines in Figure 5. This walking starts in the vertex (1, 1), and

after, it proceeds to visit all vertex on row 1 of HGm,n, with horizontal

movements and on the right. The walking moves from (1, j) to (1, j +
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11 12 13 14 15 16 17

21 22 23 24 25 26 27 28

31 32 33 34 35 36 37 38

41 42 43 44 45 46 47

Figure 5. A walking by rows of the hexagonal grid

1), j = 1, . . . , n− 1 in incremental way, and at the same time, a Fibonacci

recurrence is applied on the sign-pairs of the active threads in Tk,l.

The walking visits all the vertices in row 1 until arriving to the vertex

(1, n). During this walking the vertices (1, j) with adjacent vertex (2, j +

1), j = 1, . . . , n−1 indicate the beginning of a new cycle. Each beginning of

a cycle duplicates the number of active threads Lap in Tk,l where β1,j > 0.

The new threads are labeled as L1,j ap, where 1, j indicates the vertex

where the cycle is started and ap is a pointer to the active thread Lap of

Tk,l.

After visiting the first row of HGm,n, the walking moves from (1, n) to

(2, n+ 1), and at the same time, a Fibonacci recurrence is applied on the

sign-pairs of the active threads. Now, the walking visits all the vertices

on the row 2 with horizontal movements and on the left. This means that

the walking moves from (2, j) to (2, j − 1), j = n+ 1, . . . , 2, until arriving

to the vertex (2, 1). As in the case of the first row, the vertices (2, j)

with neighbor vertex (3, j) for j = 1, . . . , n, indicate the beginning of new

cycles.

Nonetheless, from the second row and forth on, we also find vertices

that indicate the end of open cycles, i.e vertices (2, j) with neighbor vertex

(1, j − 1). In order to close a cycle (initiated in (1, j − 1)), we have to

process a back edge and then cancel all the threads where the particle
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1, j − 1 appears in any part of their label. Notice that during the walking

on HGm,n, the back edges are recognized and processed on Tk,l, but they

do not change the direction of the trail.

From vertex (2, 1), the walking visits the vertex (3, 1) and after, it visits

all the vertices in row 3 of HGm,n, with movement to the right from (3, j)

to (3, j + 1), j = 1, . . . , n. Again, when the walking finds the vertex with

vertical incident edges, then such edges are processed as the beginning of

cycles (for the edges type {(3, j), (4, j − 1)}, or as the end of open cycles

(for the edges type {(3, j), (2, j)}).

11 12 13 14 15

21 22 23 24 25 26

31 32 33 34 35 36

41 42 43 44 45

c1 c2

c3c4

c5 c6

Figure 6. A small hexagonal grid graph HG3,2

Notice that in general, the horizontal edges are processed by the Fi-

bonacci recurrence (1). Meanwhile, the vertical edges indicate the begin-

ning of new cycles, the end of open cycles, or one movement of the trail in

order to change rows.

In this way, the walking visits all the vertices in HGm,n, with only

horizontal movements in each row. The walking moves to the right for

odd rows and to the left for even rows. Also, the walking only performs

one vertical movement for changing row.

With purposes of illustration, we present the walking by rows of HG3,2

in Figure 6, and its corresponding table Tk,l from Table 1 to Table 3.
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Table 1. Initial partial calculus of i(HG3,2)

Threads | 11 12 13 14 15 26 25 24 ⟲ 13 23
Lp (1,1) (2,1) (3,2) (5,3) (8,5) (13,8) (21,13) (34,21)

-(0,6)

(34,15) (49,34)
c1 (0,1) (1,0) (1,1) (2,1) (3,2) (5,3) (8,5) (13,8)

-(0,3)

(13,5) (18,13)
c2 (0,2) (2,0) (2,2) (4,2) (6,4) (10,6)X

c2c1 (0,1) (1,0) (1,1) (2,1) (3,2) (5,3)X
c3 (0,13) (13,0) (13,13)

c3c1 (0,5) (5,0) (5,5)
c3c2 (0,4) (4,0)X

c3c2c1 (0,2) (2,0)X
c4 (0,34)

c4c1 (0,13)
c4c3 (0,13)

c4c3c1 (0,5)

5.3 Time-complexity analysis for the computation of

the M-S index on benzenoid systems

The Hamiltonian walking by rows is not cyclical, since it does not return

to the vertex from which it departed. Each movement of the walking

allows us to visit a vertex, then the walking performs the same number

of movements as vertices that exist in HGm,n. Thus, the walking has a

linear-time complexity on the number of total vertices in HGm,n that is

a constant factor of the number of hexagons in Hr,t, which is the order

O(r · t). In addition, the number of vertices in Hr,t is the same number as

the requested columns in Tk,l; therefore, l = c · r · t, where c is a constant

factor.

On the other hand, the number of rows k in Tk,l is a dynamic value that

increases when the beginning of a new cycle is found during the walking.

Meanwhile, the number of open cycles reduces its value when a back edge

is processed. The maximum value for k corresponds to the maximum

number of open cycles during the walking on HGm,n.

The computation of i(HGm,n) starts with two threads: Lp - the main

thread, and c1 - the thread subordinated to the cycle that starts in the
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Table 2. The continuation of the calculus of i(HG3,2)

Threads | 22 ⟲ 11 21 31 32 33 ⟲ 23 34 35 ⟲ 25
Lp (83,49)

-(0,18)

(83,31) (114,83) (197,114) (311,197) (508,311)
-(0,102)

(508,209) (717,508) (1225,717)
-(0,209)

(1225,508)
c1 (31,18)X
c3 (26,13)

-(0,5)

(26,8) (34,26) (60,34) (94,60) (154,94)
-(0,39)

(154,55) (209,154) (363,209)X
c3c1 (10,5)X
c4 (34,0) (34,34) (68,34) (102,68) (170,102)X

c4c1 (13,0)X
c4c3 (13,0) (13,13) (26,13) (39,26) (65,39)X

c4c3c1 (5,0)X
c5 (0,197) (197,0) (197,197) (394,197)

-(0,60)

(394,137)
c5c3 (0,60) (60,0) (60,60) (120,60)X
c5c4 (0,68) ( 68,0)X

c5c4c3 (0,26) (26,0)X
c6 (0,508) (508,0)

c6c3 (0,154) (154,0)X
c6c5 (0,197) (197,0)

c6c5c3 (0,60) (60,0)X

vertex (1, 1). Each time that a vertex (1, j) is visited, with j < n and

j odd, such vertex indicates the beginning of a new cycle. There are

a total of t vertices by row with a neighbor in the following row. As

each beginning of cycle implicates the duplication of the number of active

threads, then there are 2t active threads when the first row of HGm,n

has been traversed. Before closing the cycles, the vertex (2, n) also marks

the beginning of a new cycle. Therefore, the maximum number of active

threads before closing cycles is 2t+1.

The first cycle that has to be closed is found when the vertex (2, n−1)

is visited, and its starting vertex is (1, n− 2). As (1, n− 2) was the penul-

timate open cycle, then there are 2t threads whose labels have included

the particle 1, n− 2. Those 2t threads are closed after the vertex (2, n− 1)

has been visited, remaining then 2t active threads on the table Tk,l.
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Table 3. Final computation of i(HG3,2) = 18465 + 7570

Threads | 36 45 44 43 ⟲ 34 42 41 ⟲ 32
Lp (1733,1225) (2958,1733) (4691,2958) (7649,4691)

-(0,1524)

(7649,3167) (10816,7649) (18465,10816)
-(0,3246)

(18465,7570)
c5 (531,394) (925,531) (1456,925) (2381,1456)

-(0,591)

(2381,865) (3246,2381) (5630,3246)X
c6 (508,508) (1016,508) (1524,1016) (2540,1524)X

c6c5 (197,197) (394,197) (591,394) (985,591)X

During the traversing on the row 2, each time that a vertex marking

the beginning of a new cycle is found, then the following vertex that has to

be visited indicates that a back edge is found. Then, the number of active

threads alternates from 2t to 2t+1, when a new cycle is found. Meanwhile,

the number of active threads changes from 2t+1 to 2t active threads, when

a vertex with an incident back edge is found. This behavior on the number

of active threads is kept until arriving to the last row of HGm,n, where

the walking visits only vertices that indicate to close the open cycles.

When the walking visits the vertices of the last row, the number of

threads is reduced until keeping only the main thread Lp. Thus, the max-

imum value that k achieves is 2t+1, which corresponds to the maximum

number of threads requested to process t + 1 open cycles. The table Tk,l

used during the computation of i(HGm,n), request 2t+1 rows and c · t · r
columns, with c a constant factor.

All the remaining computations, such as the application of the Fi-

bonacci recurrence for horizontal edges, the marking of the beginning or

end of a cycle, as well as the subtraction of pairs of signs, can be done

as calls to basic operations. However, during the computation of the M-S

index on benzenoid systems, it could be common to involve the product

among big integers. Therefore, instead of basic operations, we should con-

sider increasing in a polynomial factor the complexity of the computations.

The walking by rows, and the search for terms on the labels of the

threads, are both procedures that can be done in linear time on its sizes,

which are of order O(r · t) and O(2t+1), respectively. Similarly, complexity
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time of O(2t+1) is spent in order to move threads and avoid gaps in the

table Tk,l.

Therefore, the total complexity time for filling the cells of Tk,l requests

the order of O(2t+1 · t · r) basic operations, which is the same as the time-

complexity of our procedure for computing i(Hr,t). The time-complexity of

our proposal for computing the M-S index is dramatically inferior to the

time-complexity that the transfer matrix method requires on benzenoid

systems. It is even inferior to the time-complexity that the transfer matrix

requires for computing the M-S index on grid graphs.

5.4 Traversing by columns on the hexagonal grid

In this section, we present a series of Hamiltonian trails on HGm,n repre-

sented by dashed lines in Figure 7. For a walking by columns, the move-

ments of the walking alternate between one horizontal movement and one

vertical movement in order to visit the first two vertices of each row. The

walking visits the vertices (i, 1) and (i, 2), i = 1, . . . ,m with a horizontal

movement. Afterwards, with a vertical movement, it changes from row.

The first two vertices of each row are visited downwards. Subsequently,

the walking visits the third and fourth vertices of each row (the walking

visits the vertices (i, 3) and (i, 4), i = m, . . . , 1) upwards. In general, the

walking alternates between downward and upward directions, while each

hexagonal column of the grid HGm,n is visited.

While the trail visits the vertices (i, 3) and (i, 4), i = m, . . . , 1 upwards,

it also recognizes the edges {(i, 2), (i, 3)}, i = m−1, . . . , 1 as back edges that

indicate to close open cycles. There are m back edges for each hexagonal

column in HGm,n, and each back edge is an incident edge of a vertex

of degree three. Moreover, during the trail of a hexagonal column, the

walking finds m vertices that indicate the beginning of cycles.

For this trail, there are different starting points that they should con-

verge at common vertices. One starting point is the vertex (1, 2) in order

to continue visiting the first two vertices of each row of HGm,n. Another

starting point is the vertex (m, 4) whose incident edge {(m, 4), (m, 3)}
is processed as child edge from its father vertex (m, 3). Thus, the edges

{(m, 4), (m, 3)} and {(m, 3), (m, 2)} are considered as child tree edges from
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Figure 7. A walking by columns on the hexagonal grid

(m, 3). When the vertex (m, 3) is visited, the Hadamard product is per-

formed on the associated signs-pairs of its child vertices.

In general, each hexagonal column of HGm,n (with exception of the

last hexagonal column) has associated one starting point, whose incident

edges have to be processed as tree edges (applying the Hadamard product

between the associated signs-pairs of two tree edges). This trail has as

many starting vertex as (t− 1) hexagonal columns in HGm,n.

Two threads are built and associated to each starting vertex. When the

two threads converge at its father vertex (the following adjacent vertex in

the walking), then the number of active threads in Tk,l is duplicated. This

is done since all of them result on the multiplication of its signs with the

pair (2, 1), and the other group is the result of the multiplication of its signs

with the pair (1, 0). The trail finishes when all the hexagonal columns of

HGm,n have been visited. Thus, we can exploit the fact of having different

starting points in order to build a general walking on irregular benzenoid

systems.

5.5 Time-complexity analysis for the trail by columns

The walking by columns on HGm,n finds (m − 1) starting cycles in the

vertices (2, i), i = 1, . . . ,m − 1, and the other vertex that duplicates the
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number of active threads is (3,m). In total, the walking found m vertices

on each column that indicate the beginning of cycles.

The first three vertices that indicate starting cycles implicate that the

number of active threads has to be duplicated until row 3, then there are

23 = 8 active threads in Tk,l. Afterwards, the growth on the number of

active threads alternates between a Fibonacci behavior and the duplication

of the number of threads. For example, for the row 4 there are 12 = 8+ 4

threads; for the row 5, there are 12 · 2 threads; for the row 6, there are

24 + 12 = 36 threads, and so on.

Thus, the number of threads in Tk,l follows the numeric sequence:

2, 4, 8, 12, 24, 36, 62, 98, . . . that is defined for the recurrence T (i) = T (i −
1) ∗ 2 for odd i, and T (i) = T (i− 1) + T (i− 2) for even i. Moreover, they

have the initial conditions: T (1) = 2, T (2) = 4, T (3) = 8, T (4) = 12.

Starting from the second column and onwards, the walking finds a

back edge in each row, from the row m− 1 until the row 1. However, for

each row, when the walking finds a back edge, then the following vertex

marks the beginning of a new cycle. Thus, the number of threads that are

canceled by the processing of a back edge is subsequently recovered in the

following vertex that indicates the beginning of a cycle.

The asymptotic behavior on the number of threads, for this walking by

columns, follows the alternation between the recurrence T (i) = 2 ·T (i−1),

and T (i + 1) = T (i) + T (i − 1). But the Fibonacci growth of the latter

equation is upper bounded by the growth of T (i) = 2 · T (i − 1), thus,

T (i+ 1) = T (i) + T (i− 1) < T (i) + T (i) = 2 · T (i).
Furthermore, the number of active threads alternates from 2m to 2m−1

and the 2m−1 to 2m threads during the traversing of the (r − 1) columns.

And only during the traversing of the last column, the walking finds only

back edges that reduces the number of active threads until keeping active

only the main thread Lp. Therefore, the number of active threads is upper

bounded by O(2r+1) = O(2m) in regards to the benzenoid system Hr,t.

We have similar conditions on the basic operations that the algorithm

performs on the cell of the table Tk,l. For example, the application of

the Fibonacci recurrence (1), the identification of the beginning and end

of cycles, as well as the subtracted pairs or multiply two pairs by the
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Hadamard product, all of those operations can be done in a constant time

of computation. Meanwhile, the walking by columns and the look for terms

on the labels of the threads are both operations that can be done in linear

time on its sizes, which are of order O(r · t) and O(2r+1), respectively. A

complexity time of O(2r+1) is spent in order to move threads and avoid

gaps in the table Tk,l.

Therefore, the total complexity time for filling the cells of Tk,l should

require the order of O(2r+1 · t · r) basic operations. This is similar to the

time-complexity of our procedure for computing i(HGm,n) when a walking

by rows is performed.

Thus, the walking by rows and the walking by columns on HGm,n

provide similar asymptotic behaviors. We have an asymptotic behavior

of O(2r+1 · (r · t)) when the walking is by columns, or an asymptotic

behavior of O(2t+1 · (r · t)) when the walking is by rows. It is preferable

to select the walking by columns if r < t, otherwise the walking by rows

is better. Therefore, our procedure for computing i(Hr,t), where Hr,t is

a regular benzenoid system, has a complexity time upper bounded by

O(2min{r,t}+1 · (r · t)) basic operations.

The time-complexity of our proposal has an exponential character only

on one of the two dimensions of the benzenoid system Hr,t for computing

its M-S index. This is contrary to the transfer matrix method, which has

an exponential growth on both dimensions of the system. Moreover, it is

even inferior to the time-complexity that the transfer matrix requires for

computing the M-S index on grid graphs.

6 Conclusions

We present a novel method for computing the Merrifield-Simmons index

on regular benzenoid systems Hr,t of r rows and t hexagonal columns.

Our method consists of performing a linear-time Hamiltonian walking on

an isomorphic hexagonal grid of Hr,t, while the number of independent

sets is also computed incrementally.

The complexity time of our proposal for computing the M-S index of

a benzenoid system Hr,t has an exponential character only on one of the
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its two dimensions. This is contrary to the transfer matrix method, which

has an exponential growth on both dimensions of the system. Similarly,

our proposal has an inferior upper bounded of its time complexity with

respect to the transfer matrix method, when the M-S index is computed

on grid graphs.
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