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Abstract

The traditional method to improve the yield of Buchwald-Hart-
wig cross coupling reaction is to change the reactants or reaction
conditions, but the reaction has many problems, such as harsh reac-
tion conditions, complex synthetic route. In 2018, Doyle reported a
yield prediction method based on random forest in Science. How-
ever, the predicted value of the regression tree in the random forest
is the average value of the target variable of the leaf node, which
treats the feature as equally important. We focused on the impor-
tant characteristic information in order to obtain a more accurate
yield prediction value. Therefore, it is of interest to apply some
advanced deep learning methods to the performance prediction of
chemical reactions, during which less training data may be required.
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1 Introduction

Buchwald-Hartwig cross coupling reaction, also known as Buchwald-

Hartwig amination reaction, is a reaction for the preparation of aromatic

amines, mainly through the coupling of aryl halides or aryl sulfonates

with amines. This reaction can directly form C-N bonds, and the resulting

substances are mostly nitrogen-containing compounds. It is widely used in

the processing of natural products and the preparation of medical articles.

In order to improve the yield of Buchwald-Hartwig cross coupling reac-

tion, researchers in the field of chemistry have been committed to improv-

ing reaction conditions such as ligands and additives in the reaction [1–4].

However, the current Buchwald-Hartwig cross coupling reaction is obvi-

ously facing corresponding shortcomings. For example, The reaction con-

ditions are harsh, the synthetic route is complex, the reaction time is

long, and the solvent pollutes the environment [5]. Therefore, the design

of green, simple and efficient chemical synthesis method is the focus of

research on Buchwald-Hartwig cross coupling reaction.

Since 2015, the number of chemical publications related to artificial

intelligence and machine learning has increased significantly. Despite the

high number of literature studies in molecular chemistry, biochemistry and

other fields, the intersection of organic synthesis and machine learning has

been limited. It was found that previous research focused on synthetic

planning, or the use of machine learning algorithms to predict the products

of chemical reactions, while direct prediction of the performance of a given

reaction (such as the specific value of yield) was very rare [6–9].

In 2018, Doyle et al. [10] first proposed the use of random forest to

predict the reaction performance of C-N cross coupling, and the yield

of Buchwald-Hartwig cross coupling reaction product was predicted with

a goodness of fit (R2) as high as 0.92. However, this method is point

prediction based on feature descriptors and lacks feature learning. Based

on this, our team previously proposed intelligent yield prediction based on

quantile regression forest and deep forest respectively [11,12].

With the rapid development of artificial intelligence, the application

of some deep learning methods to organic synthesis is also worth pay-
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ing attention to. Since 2006, deep learning has performed well in many

fields, including image recognition, speech recognition and natural lan-

guage processing. Convolutional neural network (CNN) [13] is a famous

deep learning model, which is named after the convolutional operation is

introduced into the network.

In 2021, Zhu et al. [14] used the data set reported by Doyle to predict

the reaction performance of Buchwald-Hartwig cross coupling using an

optimized deep convolutional neural network (DCNN). However, on the

one hand, the processing method in this paper increases the system error

and operation cost for the model. On the other hand, it also violates

the learning characteristic of deep neural network from original data to a

certain extent. Last but not lease, one-dimensional convolutional neural

network has been well applied in data analysis.

Considering that the features extracted from the network may have

different contributions to the current yield prediction task, it is necessary

to assign weight to the feature information. Therefore, this paper first

proposed a coupling reaction yield regression prediction method based on

attention-driven convolutional neural network. During the regression pre-

diction of yield, the weight of important features was increased, while the

weight of unnecessary features was reduced, and the feature extraction

ability of the network was improved. The aim is to obtain a more accu-

rate yield prediction value, and screen the reaction based on the prediction

results, which can be used for reference by chemists.

The model is improved on the database of Buchwald-Hartwig coupling

reaction (Fig. 1) obtained by Doyle et al. Compared with Zhu et al., the

network structure designed in this paper is very simple, using only three

convolutional layers, three pooling layers, one attention layer and two full

connection layers, with short training time and original data. Compared

with the previous work of Doyle and our team, this paper focuses more

on the importance of features. In general, this paper combines attention

mechanism and convolutional neural network, and makes full use of im-

portant feature descriptor information to achieve regression prediction and

analysis of chemical yield. The flow chart is shown in Figure 2.
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Figure 1. Reaction formula and structural formula for Buchwald-
Hartwig coupling reaction.
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Figure 2. Regression prediction flow chart of coupling reaction yield.

2 Method

2.1 Convolutional neural network (CNN)

CNN is a feedforward neural network. According to different data types

of network processing, it is divided into one-dimensional convolutional

neural network (1D-CNN) for processing sequential data, two-dimensional

convolutional neural network (2D-CNN) for processing image data or text

data, and three-dimensional convolutional neural network (3D-CNN) for

processing medical image or video data. As the feature descriptor data

extracted in this paper is one-dimensional sequential data, 1D-CNN is

selected for data processing.

In practical applications, there are many application scenarios of 2D-

CNN, which we are familiar with. However, since 1D-CNN is slightly

different from 2D-CNN, the basic principle of 1D-CNN is introduced.
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2.1.1 Convolution layer

The convolution layer is the process of feature extraction through the

convolution operation of the filter. The data of each convolution layer is

obtained by the convolution operation of the input data and the convolu-

tion kernel. A convolution kernel can only generate one set of feature data,

and it needs to set several more convolution kernels to extract multiple sets

of feature data.

Since the input of 1D-CNN is a one-dimensional vector, the convolution

kernel is also one-dimensional. We take the number of input channels of

the convolution layer as 1, and the number of output channels as 1, to show

the schematic diagram of the convolution operation, as shown in Figure 3

below:

Figure 3. Operation diagram of convolution.

As can be seen from Figure 3, feature extraction using the convolution

kernel is to extract small region information one by one, and the whole re-

gion information is obtained by the convolution kernel moving at a certain

step and carrying out multiple convolution operations. The convolution

calculation process is shown in equation (1) :

hout
l = g

(∑
ωi
l ∗ xi

l + bil

)
, (1)

Where, ωi
l represents the weight parameter of the i -th convolution kernel

at layer l , xi
l represents the input data of the i -th convolution region at

layer l , bil represents the bias parameter of i -th convolution region at layer
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l , g(·) is the activation function (to be explained in detail in the next

section), and hout
l represents the output value after convolution operation

at layer l .

2.1.2 Incentive layer

It can be seen from equation (1) of convolution operation that convo-

lution operation is still a linear weighted sum process. In a real prediction

model, we need the network to learn nonlinear features and map feature

data into a nonlinear space. For this reason, researchers set the nonlinear

function as the activation function. The activation functions used in this

paper are ReLU function and Softplus function.

The analytical formula of ReLU function is f(x) = max(0, x), where

x is the eigenvalue, f (x ) is the value of the activation function, and the

geometric figure is:

Figure 4. Geometry of ReLU function.

The ReLU function activates neurons on the positive interval and in-

hibits neurons on the negative interval, which alleviates the problems of

gradient disappearance and gradient explosion in the positive interval to

a certain extent. Moreover, the calculation speed and convergence speed

are relatively fast.

The mathematical expression of Softplus function is ζ(x) = log (1 + ex)

where x is the eigenvalue, ζ(x ) is the activation function value, and the

geometric figure is:

Softplus can be regarded as the smoothing of ReLU and conforms to
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Figure 5. Geometry of Softplus function.

the activation model of brain neurons. In addition, Softplus function is a

nonlinear activation function with a range of (0,∞), which is exactly con-

sistent with the yield prediction interval in this paper. Therefore, Softplus

activation function is used in the last output layer of this paper to perform

regression prediction of coupling reaction yield.

2.1.3 Pooling layer

The pooling layer is usually behind the convolutional layer, which is

used to reduce the number of network parameters to be trained, prevent

over-fitting, reduce the number of features, and improve the fault tolerance

of the model.

The common pooling methods include maximum pooling and average

pooling. Maximum pooling is to extract the maximum value of several

small regions segmented by a certain step as the representative value of

the small region. Similarly, average pooling is to take the average value of

a small region as the representative value.

In this paper, maximum pooling with step 3 is used, as shown in Figure

6 below:
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Figure 6. Operation diagram of maximum pooling.

As shown in Figure 6, the pooling operation divides the input data

(that is the feature data extracted from the convolutional layer) into several

small regions according to the step size, and there is no overlap between

the small regions.

The pooling operation is performed on the data in each small region,

and the pooling calculation operation is shown in equation (2) :

zoutl = g(x
i(p)
l , x

i(p+1)
l , x

i(p+2)
l , · · · ), (2)

Where, x
i(p)
l represents the p-th value of the i -th region array at layer

l , g(·) is the maximum pooling function or average pooling function, and

zoutl represents the output value after the pooling operation at layer l .

2.1.4 Full connection layer

The full-connection layer integrates feature extraction and regression

prediction into one framework and optimizes the network globally through

forward propagation and back propagation algorithms.

Since the shape of the convolutional layer and pooling layer is incon-

sistent with that of the fully connected layer, before the fully connected

layer, we need to splicing and flattening the feature vector processed by

multiple channels of the pooling layer into a one-dimensional vector, which

meets the data format required by the input of the fully connected layer.

Then it is connected with the full connection layer and the output layer to

complete the regression prediction of coupling reaction yield, and the spe-

cific predicted value is given. The schematic diagram of the full connection

layer is shown in Figure 7 below:
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Figure 7. Schematic diagram of full connection layer.

2.2 Attention mechanism

The calculation formula of attention mechanism is shown.

et = ReLU(W ∗X + b),

αt =
exp(et)

t∑
i=1

ei

= softmax(et),

st =αtX ,

(3)

Where, W is the weight, b is the bias, et is the attention distribution value

at time t , αt is the normalized weight value at time t , and st is the output

value of the attention mechanism at time t .

As can be seen from equation (3), the attention model is essentially

a fully connected layer. The fully connected layer of Softmax activation

function can directly calculate the attention weight value, and then mul-

tiply it by the input of Dense to get the eigenvalue with the attention

weight.

The specific processing process is shown in Figure 8 below:
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Figure 8. Schematic diagram of attention-driven full connection layer.

2.3 Regression prediction model of coupling reaction

yield

2.3.1 One-dim convolutional neural network (1D-CNN)

Scholars in the field of deep learning have developed many classic CNN

models and performed well in natural language processing, image recog-

nition, speech recognition and other aspects. However, in specific studies,

especially in one-dimensional data analysis, hidden layers can be simply

stacked as required to build a network structure suitable for processing

specific data and realize intelligent prediction of overall effectiveness.

Based on this idea, the hidden layer of 1D-CNN model constructed

through experiments in this paper includes three convolution layers and

three pooling layers, and two full-connection layers are added before the

output layer for nonlinear mapping. As the whole network structure is

simple, it is called lightweight 1D-CNN model. Through the use of convo-

lution layer and pooling layer, 1D-CNN adaptively extracts features from

feature descriptors and flattens the extracted features. Finally, two fully

connected layers are connected to complete the construction of 1D-CNN

model. The network topology is shown in Figure 9.
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Figure 9. 1D-CNN structure diagram.

2.3.2 Attention–driven convolutional neural network (AM-

1D-CNN)

The regression prediction model of yield of AM-1D-CNN coupling re-

action constructed in this paper is to integrate the attention mechanism

into the 1D-CNN to make it adaptively acquire the importance degree of

features. According to this importance degree, the features that can rep-

resent the yield information can be enhanced and invalid features can be

suppressed so that the network can obtain more prediction information.

Its network structure is shown in Figure 10:

Figure 10. AM-1D-CNN structure diagram.

The attention mechanism layer of the AM-1D-CNN model is placed

after the convolution layer of the third layer, and the third pooling layer

is replaced by the attention mechanism layer. This is because the pooling
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layer simply extracted the maximum feature value in feature screening,

while the goal of this paper is to make the network pay attention to im-

portant features and reduce the loss of feature information as much as

possible.

The entire network module in a series of convolution, pooling after

operation so as to obtain the deepest descriptor information, and then use

the attention mechanism technique to obtain weighted and adaptive to the

characteristics of information filtering, and labeled with the characteristic

of the filtered, then connect with good character sequence to link to all

layers in the study again. Finally, the characteristic data extracted from

the model are sent to Softplus regression function to achieve end-to-end

coupling reaction yield intelligent prediction. The network parameters are

shown in Table 1.

Table 1. Main parameters setting of network training process.

Main operation Parameter
Dropout 0.3
Optimization Algorithm Adam
Batch size 32
Epoch 350

3 Experiments and analysis

3.1 Data set

Taking Buchwald-Hartwig amination reaction as the model reaction

for data processing, based on the prediction of yield of Buchwald-Hartwig

amination reaction by random forest model published by Doyle. In this

paper, 23 isoxazole additives, 15 aryl and heteroaryl halides, 4 Buchwald

ligands and 3 bases have been obtained by high throughput experiment

(HTE).

The schematic diagram of Buchwald-Hartwig amination reaction be-

tween reactants and reaction products is shown in Figure 11:
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Figure 11. Diagram of Buchwald-Hartwig amination reaction.

First of all, according to the thought of permutation and combination,

a total of 4140 kinds of reaction type, remove invalid response, remaining

3960 valid responses, and record the reaction yield.

Secondly, the chemical software Spartan was used to extract the char-

acteristic descriptors of the reaction components, so that the compounds

involved in each effective reaction could be described by the characteristic

descriptors.

According to the complex operation process, a total of 120 feature

descriptors were extracted, including molecular, atomic and vibration de-

scriptors. Finally, we used 120 characteristic descriptors corresponding to

reaction components and 3960 effective reaction corresponding samples.

3.2 Evaluation indicators

After the experiment, in order to measure the prediction performance

of the model and evaluate the generalization performance of the learner, a

measure needs to be set in advance. In this paper, goodness of fit and root

mean square error are used to measure the regression prediction results of

the model and compare the advantages and disadvantages of each learner.

Goodness of fit (R2) is the degree of fitting between regression predic-

tion results and experimental values, and its formula is as follows:

R2 = 1−
∑

(yi − ŷi)
2∑

(yi − y)2
, (4)

where yi is the observed value of the sample, ŷi is the regression predicted

value and y is the average value of the sample.

The value range of R2 is [0,1]. The closer R2 is to 1, the closer the
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regression prediction point is to each observation point, and the better

fitting degree is between the regression predicted value and the actual

observed value.

Root Mean Square Error (RMSE) is the square root of the Mean Square

Error(MSE) and represents the sample standard deviation of the difference

between the predicted value and the true value. Its formula is:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2, (5)

where yi is the observed value of the sample, ŷi is the regression predicted

value, and n is the number of samples.

In addition, RMSE is of the same magnitude as data, making it easier

to sense data. The smaller the RMSE value is, the smaller the regression

prediction deviation is, indicating that the prediction effect of the model

is better.

3.3 Comparison between the proposed method and

traditional machine learning algorithm

In order to verify the adaptability of the proposed method in the

Buchwald-Hartwig cross-coupling reaction and the improvement of the

method on the 1D-CNN model, the training set and test set were divided

into 7:3. The advantages and disadvantages of AM-1D-CNN, 1D-CNN,

random forest and other traditional machine learning methods for regres-

sion prediction of cross-coupling reaction yield are explored, and the results

are shown in Table 2.

As can be seen from Table 2, the AM-1D-CNN proposed in this pa-

per has some improvement in the regression prediction of cross-coupling

reaction yield compared with the 1D-CNN model alone, indicating that

attention technology can be used to predict the performance of chemical

reactions. Although the R2 value given in the table is 0.96, this value is

the result of rounding. Compared with the original value, the R2 value of

AM-1D-CNN is higher than that of 1D-CNN. Compared with the RMSE,
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Table 2. Yield regression prediction results of different models.

Method R2 RMSE
Linear Regression 0.67 15.5
K-Nearest Neighbor 0.64 16.3
Support Vector Machine 0.66 15.8
Decision Tree 0.88 9.44
Random Forests 0.92 7.8
Deep Forests 0.94 6.8
DCNN 0.96 4.95
1D-CNN 0.96 5.36
AM-1D-CNN 0.96 5.01

the RMSE of the proposed method can reach 5.01, which is significantly

lower than that of 1D-CNN and other machine learning methods, indicat-

ing that the proposed method has better performance in predicting the

yield regression of Buchwald-Hartwig cross coupling reaction.

In addition, compared with DCNN proposed by Zhu et al. in 2021, the

two methods have equivalent effects in the regression prediction of yield of

Buchwald-Hartwig cross coupling reaction. The advantages of this paper

lie in the simple structure of the designed network, the short training time,

and the use of original data and the classic pooling layer of convolutional

neural network.

3.4 Analysis of influencing factors of coupling reaction

yield

When 120 feature descriptors were directly imported into the neural

network for regression intelligent prediction, it was not clear which fea-

ture descriptors had a great impact on the yield of Buchwald-Hartwig

cross coupling reaction, which was very important for chemical problems.

Therefore, in this paper, principal component analysis was selected to ex-

tract the principal components of the data set, transform the original data

into linearly independent, reduce the high dimension of the data, and most

importantly, analyze the factor contribution rate of feature descriptors to

find out the characteristic factors that affect the yield of Buchwald-Hartwig

cross coupling reaction.
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3.4.1 Principal component analysis

Principal Component Analysis (PCA) is to transform the variables that

may be correlated in the original data into a group of linearly unrelated

variables through orthogonal transformation, and select a few index vari-

ables from the transformed variables to reflect the information of the orig-

inal data according to the research needs.

Table 3 shows the algorithm steps of principal component analysis [31].

Table 3. Principal component analysis algorithms.

Input: sample set D = x1, x2, · · · , xn, low dimensional space dimen-
sion d′.

Process:

Centralization of all samples: xi ← xi − 1
n

n∑
i=1

xi;

Calculate the covariance matrix of the sample XXT ;
Do the eigenvalue decomposition of the covariance matrix
XXT ;
Take the eigenvector ω1, ω2, · · · , ωd′ corresponding to the
largest d′ eigenvalues.

Output: the projection matrix W = (ω1, ω2, · · · , ωd′).

Figure 12. The combination diagram of variance contribution rate and
cumulative variance contribution rate of 16 principal com-
ponents.

When principal component analysis was used to extract common fac-
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tors, 16 principal components were extracted according to the eigenvalue

greater than 1. At this time, the cumulative variance contribution rate

reached 96.49%, indicating that most information of the original data was

retained by the extracted common factors.

3.4.2 Regression prediction of yield of cross-coupling reaction

based on principal component

The extracted 16 principal component data were saved and a new data

table was created to correspond the principal component data with the

yield. The AM-1D-CNN model constructed above was used to perform

regression prediction of Buchwald-Hartwig cross coupling reaction yield

for the 16 principal component data.

Figure 13. A fitting diagram of predicted yield and observed yield.

R2 of AM-1D-CNN model on 16 principal component data is 0.93,

and the RMSE is 7.13. The results show that the lightweight AM-1D-

CNN model proposed in this paper is not only suitable for the case of

large amount of data. When the amount of data is greatly reduced, the

model can still extract data information well as long as the existing data

can well represent the characteristic information. It also performed well in

regression prediction of yield of Buchwald-Hartwig cross coupling reaction.
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3.4.3 Analysis of influencing factors

In order to further investigate how different feature descriptors affect the

yield of Buchwald-Hartwig cross-coupling reaction, the component matri-

ces of each principal component are calculated to track the model analysis

and trace back to the complete original feature descriptors, to illustrate

the correlation between the extracted principal component and the original

variable.

Figure 14. Diagram of correlation between principal components and
primary variables.

As can be seen from Figure 14, the first principal component, second

principal component and third principal component are mainly related

to ligand descriptors in catalyst, indicating that the change of catalyst

ligand has the greatest impact on yield. Ligand plays an important role

in the whole cross-coupling reaction, and its complex with the central

metal determines the catalytic activity of the reaction system. At the

beginning of the reaction, the ligand binds with the Pd catalyst precursor

to release the active catalyst LPd(0). Moreover, the ligand can increase the

electron density of Pd atom and promote the oxidation addition reaction

with halogenated aromatics.

Although ligands play an important role in the success of coupling reac-

tions, the electronic properties of aryl and heteroaryl halides and additives

still seem to be important. In addition, the additive was correlated with
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the six principal components, indicating that the change of additive had a

great influence on the yield.

3.5 Out–of–sample prediction

Out-of-sample prediction refers to the use of models to predict sam-

ple values beyond the training data. If effective out-of-sample prediction

can be achieved, the results of the model presented in this paper will be

able to predict the effect of a novel isoxazole additive on the results of

the Buchwald-Hartwig cross coupling reaction. In addition, the reaction

performance of a coupled reaction can be predicted prior to preparation

because calculated characteristic descriptor information is used, avoiding

the need to obtain any spectral information. To this end, we evaluated

whether the results of twenty additives could be used to predict the results

of three other different additives.

Figure 15. A scatter plot of real and predicted values.

As can be seen from Figure 15, each point in the out-of-sample pre-

dicted scatter plot of the three additives is almost distributed near the

fitting line, indicating that the predicted value of the model is very close

to the real measured value in the test set, and the sum of squares of residu-

als is small. The regression prediction result of the coupling reaction yield

of isoxazole additives under the AM-1D-CNN model is good.

In order to evaluate the effect of out-of-sample prediction more accu-

rately, we calculated the R2 and RMSE of out-of-sample regression pre-
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Table 4. Prediction results of additive out-of-sample regression.

Type of additives R2 RMSE
Additive 21 0.94 6.50
Additive 22 0.93 6.81
Additive 23 0.90 8.52
Mean 0.923 7.277

diction for the three additives, and the results are shown in Table 4. The

mean R2 and RMSE of the additive regression predicted by the three out-

of-sample tests were 0.923 and 7.277 respectively. We concluded that the

effects of the three additives in the test set on the yield of Buchwald-

Hartwig cross coupling reaction had no significant systematic deviation

from the predicted results of the AM-1D-CNN model.

4 Conclusion

In this paper, 120 feature descriptors extracted from additives, aryls,

bases and ligands were used as inputs. Based on the characteristics of

data heterogeneity, 1D-CNN method was first proposed to make regres-

sion prediction of the yield of Buchwald-Hartwig cross coupling reaction.

Then, in order to make the model pay more attention to important fea-

ture information, to suppress unimportant features, this paper proposes to

integrate the attention mechanism into 1D-CNN, and the constructed AM-

1D-CNN model can adaptively obtain the importance degree of features

and enhance the prediction performance of the network. The main pur-

pose of this paper is to predict and analyze the yield of coupling reaction

intelligently and get more accurate yield value.

In order to explore the influencing factors of yield prediction, AM-1D-

CNN method based on PCA was proposed in this paper. By calculating

the component matrix of each principal component to track the model, it

was found that the change of ligand had the greatest impact on the reaction

yield, while the change of additives had a greater impact on the reaction

yield. Finally, this paper tests the performance of the model on the out-

of-sample data set, and proves that the AM-1D-CNN model can predict
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the performance of unknown additives, thus improving the efficiency of

chemical research and reducing the pressure of chemical workers.
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