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Abstract

Establishing suitable differential dynamical models to describe
the real natural phenomenon in chemistry and physics has become a
very hot topic in nowadays society. In this present research, we deal
with a fractional-order chemical reaction system. Taking advantage
of the fixed point theorem, we prove the existence and uniqueness of
the fractional-order chemical reaction system. Using the inequality
skill, we prove the non-negativeness of the fractional-order chemi-
cal reaction system. By applying a suitable function, we prove the
uniform boundedness of the solution to the fractional-order chemi-
cal reaction system. With the aid of a hybrid controller including
state feedback and parameter perturbation, we discuss the Hopf bi-
furcation anti-control issue of the fractional-order stable chemical
reaction system. A novel delay-independent condition ensuring the
stability and the onset of Hopf bifurcation of the involved fractional-
order stable chemical reaction system is set up. The study manifests
that the delay in the hybrid controller plays a vital role in stabiliz-
ing the system and controlling the occurrence of Hopf bifurcation
of the fractional-order stable chemical reaction system. In order to

∗Corresponding author.

https://doi.org/10.46793/match.89-1.143L


144

validate the derived key conclusions, MATLAB simulations are ex-
ecuted and bifurcation plots are given. The obtained results of this
article have momentous theoretical guiding value in controlling the
chemical compositions. The exploration idea can also be utilized
to investigate the bifurcation control and bifurcation anti-control
problems in lots of other fractional-order differential systems in nu-
merous disciplines.

1 Introduction

Many nonlinear phenomena (for example, periodic oscillation, stability,

boundedness, chaos, etc.) occurring in chemical reaction models have at-

tracted much attention from numerous scholars [45]. Making use of some

suitable mathematical tools, we can effectively explore the various dy-

namics of chemical reaction models and reveal the relation of different

chemical variables. Then we can better grasp the inherent law among dif-

ferent chemical variables and serve humanity. In particular, a differential

equation is a very vital tool to probe into the dynamical behavior of chem-

ical reaction models. During the past decades, many interesting works on

chemical reaction models have been carried out and many valuable achieve-

ments are constantly presented. For example, Wang and Li [27] dealt with

the microscopic dynamical behavior of a chaotic chemical reaction model.

Geysermans and Nicolis [12] explored the thermodynamic fluctuations and

chaotic behavior of a chemical reaction system. Zhu and Li [45] revealed

the influence of intrinsic fluctuations on bistable behavior in a chemical

reaction system. Voorsluijs and Decker [26] discussed the emergence of

chaos in a spatially confined reactive model. Huang and Yang [17] ana-

lyzed the chaoticity issue of some chemical attractors. In detail, one can

see [7, 8, 14,25].

In 1996, Geysermans and Baras [11] explored a homogeneous chaotic

Willamowshi-Rossler system. The balance equations of this system own

a well-defined microscopic counterpart and all the reaction obey the “ele-
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mentary” steps as follows:

A1 + X
µ1→ 2X ,A1 + X

µ−1← 2X ,
X + Y µ2→ 2Y,
A5 + Y

µ3→ A2,

X + Z µ4→ A3,

A4 + Z
µ5→ 2Z,A4 + Z

µ−5← 2Z,

(1)

which includes both autocatalytic steps with the constituents X and Z,
coupled via three other steps with the three constituents X , Z and Y.
The initial (A1,A4,A5) and final (A2,A3) product concentrations keep

fixed. The distance from thermodynamic equilibrium is controlled by the

values of A1,A2,A3,A4,A5. µ±j(j = 1, 2, 3, 4, 5) denote the rate constant.

In system (1.1), there are 15 free parameters. To reduce the number of

free parameters, Geysermans and Baras [11] chose the rate coefficients

µ−2 = 0, µ−3 = 0 and µ−4 = 0. Note that the last two relations mean that

A2 and A3 are continuously removed from the reactor [11,12].

Suppose that there exists an ideal mixture and a well-stirred reactor,

then the macroscopic rate equations of system (1) takes the following form:
dv1(t)

dt = b1v1(t)− µ−1v
2
1(t)− v1(t)v2(t)− v1(t)v3(t),

dv2(t)
dt = v1(t)v2(t)− b5v2(t),

dv3(t)
dt = b4v3(t)− v1(t)v3(t)− µ−5v

2
3(t),

(2)

where v1(t), v2(t) and v3(t) represent the mole fractions of X ,Y and Z
at the time t, The rate constants µ1, µ3 and µ5 are incorporated in the

parameters b1, b5 and b4 (e.g., b1 = µ1[A1], · · · ) and b1 > 0, b4 > 0, b5 >

0, µ−1 > 0, µ−5 > 0 represent constants. For more relation information

on system (2), one can see [11,12]. In 2015, Xu and Wu [36] explored the

control of chaos of system (2) by using delayed feedback control approach,
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i.e., they investigated the controlled chemical system as follows:

dv1(t)

dt
= b1v1(t)− µ−1v

2
1(t)− v1(t)v2(t)− v1(t)v3(t)

+ ν1[v1(t)− v1(t− ρ)],
dv2(t)

dt
= v1(t)v2(t)− b5v2(t) + ν2[v2(t)− v2(t− ρ)],

dv3(t)

dt
= b4v3(t)− v1(t)v3(t)− k−5v

2
3(t) + ν3[v3(t)− v3(t− ρ)],

(3)

where νi(i = 1, 2, 3) represents a real constant and ρ represents a time

delay.

Here we would like to point out that all the works mentioned above

(see, [11, 12, 36]) focused on integer-order chemical systems. Studies in

recent decades manifest that the fractional-order dynamical model has

been regarded as a more efficient implementation to characterize practical

phenomena than the conventional integer-order ones since the fractional-

order dynamical model can display immense advantages in keeping mem-

ory and hereditary properties of a lot of materials and change process

[15, 19, 22, 32, 34, 37, 39]. Nowadays, fractional-order dynamical models

have been widely applied in many fields such as neural networks, con-

trol engineering, physical waves, biology, chemistry, economics and so

forth [20, 32, 41]. A great deal of valuable results have been reported. For

instance, Ghanbari and Djilali [13] carried out a Hopf bifurcation analysis

for a fractional-order predator-prey system. Sekerci [23] reveled the climate

change effects on the dynamics of a fractional-order predator-prey model.

Wang et al. [28] probed into the stability and Hopf bifurcation for a gen-

eralized fractional-order delayed prey-predator system. Huang et al. [16]

explored the Hopf bifurcation issue of fractional-order neural networks with

leakage delays. For more related studies, one can see [1,2,15,24,33,35,38].

Inspired by the exploration above and on the basis of system (2), in

order to describe the continuous change process of the mole fractions of

X ,Y and Z and characterize the memory trait and hereditary property of

the variables X ,Y and Z, we modify system (2) as the following fractional-
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order form:
dςv1(t)

dtς
= b1v1(t)− µ−1v

2
1(t)− v1(t)v2(t)− v1(t)v3(t),

dςv2(t)

dtς
= v1(t)v2(t)− b5v2(t),

dςv3(t)

dtς
= b4v3(t)− v1(t)v3(t)− µ−5v

2
3(t),

(4)

where ς ∈ (0, 1]. The investigation shows that when ς = 0.94, b1 =

2.5, µ−1 = 0.3, b5 = 1.3, b4 = 3.2, µ−5 = 2.65, then system (4) displays

a stable state which means that the three constituents X , Z and Y will

tend to three different fixed real numbers with the increase of time t. The

MATLAB simulation plots are given in Figure 1.
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Figure 1. Software simulation figures of system (4) with ς = 0.94, b1 =
2.5, µ−1 = 0.3, b5 = 1.3, b4 = 3.2, µ−5 = 2.65.

In many cases, we expect to make the three constituents X , Z and Y of

model (4) produce the periodic cycle state in chemical reaction. Mathe-

matically, it involves the Hopf bifurcation anti-control. Hopf bifurcation

anti-control is to design an appropriate controller to make the differen-

tial systems produce a family of periodic solutions around the equilib-

rium point. During the past decades, Hopf bifurcation anti-control has

aroused much interest from numerous researchers due to the great ap-

plication prospect in maintaining the balanced state of all variables of

differential systems. There is some literature on the Hopf bifurcation anti-

control issue of some differential models(e.g. [3–6,29,30,40,42]).

It is a pity that all the works above (see [3–6, 29, 30, 40, 42]) are only

concerned with the Hopf bifurcation anti-control of integer-order differ-

ential models. Up to now, only very few works on the Hopf bifurcation

anti-control of fractional-order differential models. This motivates us to

explore this aspect.

In the present research, we shall focus on Hopf bifurcation anti-control
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of the fractional-order stable chemical reaction system (4) via a hybrid

controller including state feedback and parameter perturbation. The chief

highlights of this research lie in the following points:

• Based on the previous publications, a novel fractional-order stable chem-

ical reaction system is proposed.

• The fractional-order stable chemical reaction system displays the Hopf

bifurcation via a suitable hybrid controller including state feedback and

parameter perturbation.

• The research method can be applied to control or anti-control Hopf

bifurcation for many fractional-order differential systems in lots of areas.

This work is planned as follows. Some pre-requisite knowledge about

fractional-order dynamical system is present in Section 2. In Section 3,

we analyze the existence and uniqueness, non-negativeness and uniformly

boundedness of the solution to model (4). In Section 4, a suitable hybrid

controller including state feedback and parameter perturbation is effec-

tively designed to make the fractional-order stable chemical reaction sys-

tem (4) generate Hopf bifurcation. In Section 5, software simulation results

are presented to sustain the established conclusions. Section 6 completes

this article.

2 Basic theory

In this section, we present some related definitions and lemmas on fractional-

order differential system.

Definition 2.1. [22] The fractional integral of order ς of the function h(ϱ)

is defined as follows:

Iςh(ϱ) = 1

Γ(ς)

∫ ϱ

ϱ0

(ϱ− s)ς−1h(s)ds,

where ϱ ≥ ϱ0, ς > 0, and Γ(s) =
∫∞
0

ϱs−1e−ϱdϱ denotes the Gamma func-

tion.

Definition 2.2. [3] The Caputo fractional order derivative of order ς of
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the function h(ϱ) ∈ ([ϱ0,∞), R) is given by:

Dςh(ϱ) =
1

Γ(k − ς)

∫ ϱ

ϱ0

h(k)(s)

(ϱ− s)ς−k+1
ds,

where ϱ ≥ ϱ0 and k stands for a positive integer (ς ∈ [k−1, k)). Especially,
when ς ∈ (0, 1), then

Dςh(ϱ) =
1

Γ(1− ς)

∫ ϱ

ϱ0

h
′
(s)

(ϱ− s)ς
ds.

Definition 2.3. [15] Consider the following system:

dvςl (t)

dtς
= hl(vl(t)), l = 1, 2, · · · , k, (5)

where ς ∈ (0, 1], vl(t) = (v1(t), v2(t), · · · , vk(t)), hl(t) = (h1(t), h2(t), · · · ,
hk(t)). Then (v∗1 , v

∗
2 , · · · , v∗k) is the equilibrium point of system (5) if hl(v

∗
l ) =

0.

Lemma 2.1. [19] Consider the fractional-order system Dςv = Qv, v(0) =
v0 where 0 < ς < 1, v ∈ Rk,Q ∈ Rk×k. Denote χl(l = 1, 2, · · · , k) the

root of the characteristic equation of Dςv = Qv. Then system Dςv =

Qv is asymptotically stable if and only if |arg(χl)| > ςπ
2 (l = 1, 2, · · · , k).

Besides, this system is stable if and only if |arg(χj)| > ςπ
2 (l = 1, 2, · · · , k)

and all critical eigenvalues satisfying |arg(χl)| = ςπ
2 (l = 1, 2, · · · , k) have

geometric multiplicity one.

Lemma 2.2. [10] Consider the fractional-order system Dςv(t) = Q1v(t)+

Q2v(t − ρ), where v(t) = ω(t), t ∈ [−ρ, 0], ς ∈ (0, 1], v ∈ Rm,Q1,Q2 ∈
Rm×m, ς ∈ R+(m×m). Then the characteristic equation of the system is

det |sςI − Q1 − Q2e
−sρ| = 0. Then the zero solution of the system is

asymptotically stable if all roots of the equation det |sςI−Q1−Q2e
−sρ| = 0

possess negative real part.

Lemma 2.3. [21] Let ς ∈ (0, 1], g(t) ∈ C[ξ1, ξ2] and Dϱg(t) ∈ C[α1, α2].

If Dςh(t) ≥ 0, t ∈ (ξ1, ξ2), then g(t) is a non-decreasing function for t ∈
[ξ1, ξ2]. If Dςg(t) ≤ 0, t ∈ (ξ1, ξ2), then g(t) is a non-increasing function

for t ∈ [ξ1, ξ2].
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Lemma 2.4. [18] Suppose that ϕ(t) ∈ C[t0,∞) and satisfies{
Dςϕ(t) ≤ −κ1ϕ(t) + κ2,

ϕ(t0) = ϕt0 ,

where ς ∈ (0, 1), κ1, κ2 ∈ R, κ1 ̸= 0, t0 ≥ 0, then

ϕ(t) ≤
(
ϕ(t0)−

κ2

κ1

)
Eς [−κ1(t− t0)

ς ] +
κ2

κ1
.

3 Existence and uniqueness, non-negativeness

and uniformly boundedness

In this section, we will prove the existence and uniqueness, non-negativeness,

boundedness of the solution of system (4) by virtue of fixed point theorem,

mathematical inequity skill and an appropriate function.

Theorem 3.1. Denote Θ = {v1, v2, v3) ∈ R3 : max{|v1|, |v2|, |v3|} ≤ H},
where H > 0 represents a constant. For every (v10, v20, v30) ∈ Θ, model (4)

with the initial value (v10, v20, v30) has a unique solution V = (v1, v2, v3) ∈
Θ.

Proof Define the mapping as follows:

g(V ) = (g1(V ), g2(V ), g3(V )), (6)

where 
g1(V ) = b1v1(t)− µ−1v

2
1(t)− v1(t)v2(t)− v1(t)v3(t),

g2(V ) = v1(t)v2(t)− b5v2(t),

g3(V ) = b4v3(t)− v1(t)v3(t)− µ−5v
2
3(t).

(7)

∀ V, V̄ ∈ Θ, one derives

||g(V )− g(V̄ )||

= |b1v1(t)− µ−1v
2
1(t)− v1(t)v2(t)− v1(t)v3(t)

− [b1v̄1(t)− µ−1v̄
2
1(t)− v̄1(t)v̄2(t)− v̄1(t)v̄3(t)]|
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+ |v1(t)v2(t)− b5v2(t)− [v̄1(t)v̄2(t)− b5v̄2(t)]|

+ |b4v3(t)− v1(t)v3(t)− µ−5v
2
3(t)

− [b4v̄3(t)− v̄1(t)v̄3(t)− µ−5v̄
2
3(t)]|

≤ b1|v1(t)− v̄1(t)|+ 2µ−1H|v1(t)− v̄1(t)|+H|v1(t)− v̄1(t)|

+H|v2(t)− v̄2(t)|+H|v1(t)− v̄1(t)|+H|v3(t)− v̄3(t)|

+H|v1(t)− v̄1(t)|+H|v2(t)− v̄2(t)|+ b5|v2(t)− v̄2(t)|

+ b4|v3(t)− v̄3(t)|+H|v1(t)− v̄1(t)|+H|v3(t)− v̄3(t)|

+ 2µ−5H|v3(t)− v̄3(t)|

= [b1 + (2µ−1 + 4)H|v1(t)− v̄1(t)|

+ (b5 + 2H)H|v2(t)− v̄2(t)|

+ (b4 + 2H)|v3(t)− v̄3(t)|,

then

||g(V )− g(V̄ )|| ≤ G||V − V̄ ||, (8)

where

G = max{b1 + (2µ−1 + 4)H, b5 + 2H, b4 + 2H}. (9)

Then g(V ) obeys Lipschitz condition with respect to V (see [18]). In view

of fixed point theorem, we can conclude that Theorem 3.1 is true. ■

Theorem 3.2. (1) All solutions of model (4) beginning with R3
+ are non-

negative; (2) If µ−1 > 1, µ−5 > 1 hold, then all solutions of system (4)

starting with R3
+ are uniformly bounded.

Proof Let the initial condition of system (4) be V (t0) = (v1(t0), v2(t0), v3(t0)).

Assume that there exists a constant t⋆ satisfying t ∈ (t0, t⋆) such that
v1(t) = 0, t ∈ (t0, t⋆),

v1(t⋆) = 0,

v1(t
+
⋆ ) < 0.

(10)

By system (4), we get

Dςv1(t)|v1(t⋆)=0 = 0. (11)

By Lemma 1 of [9], one has v1(t
+
⋆ ) = 0, which contradicts (10). Thus
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v1(t) ≥ 0, ∀ t ≥ t0. In a same way, we can also prove that v2(t) ≥
0, v3(t) ≥ 0, ∀ t ≥ t0. The proof of (1) finishes. ■

Let

W (t) = v1(t) + v2(t) + v3(t). (12)

Then

DςW (t) + b5W (t) = Dςv1(t) +Dςv2(t) +Dςv3(t)

+b5v1(t) + b5v2(t) + b5v3(t)

= b1v1(t)− µ−1v
2
1(t)− v1(t)v2(t)− v1(t)v3(t)

+v1(t)v2(t)− b5v2(t) + b4v3(t)− v1(t)v3(t)

−µ−5v
2
3(t) + b5v1(t) + b5v2(t) + b5v3(t)

= (b1 + b5)v1(t)− µ−1v
2
1(t)− 2v1(t)v3(t)

+(b4 + b5)v3(t)− µ−5v
2
3(t)

≤ (b1 + b5)v1(t)− µ−1v
2
1(t) + v21(t) + v23(t)

+(b4 + b5)v3(t)− µ−5v
2
3(t)

= (b1 + b5)v1(t)− (µ−1 − 1)v21(t)

+(b4 + b5)v3(t)− (µ−5 − 1)v23(t),

then

DςW (t) + b5W (t) ≤ b1 + b5
4(µ−1 − 1)

+
b4 + b5

4(µ−5 − 1)
. (13)

By Lemma 2.4, we get

W (t)→ b1 + b5
4b5(µ−1 − 1)

+
b4 + b5

4b5(µ−5 − 1)
, as t→∞. (14)

The proof Theorem 3.2 completes. ■
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4 Bifurcation anti-control via hybrid

controller

In this section, we will study the Hopf bifurcation anti-control issue of

the fractional-order chemical reaction system (4). Let (v1⋆, v2⋆, v3⋆) be

the equilibrium point of the fractional-order chemical reaction system (4),

then 
b1v1⋆ − µ−1v

2
1⋆ − v1⋆v2⋆ − v1⋆v3⋆ = 0,

v1⋆v2⋆ − b5v2⋆ = 0,

b4v3⋆ − v1⋆v3⋆ − µ−5v
2
3⋆ = 0.

(15)

If the following condition

(A1) b4 > b5, (b1 − µ−1)µ−5 > b4 − b5

holds, then system (4) has the unique positive equilibrium point E(v1⋆, v2⋆, v3⋆),

where 
v1⋆ = b5,

v2⋆ =
(b1 − µ−1b5)µ−5 − b4 + b5

µ−5
,

v3⋆ =
b4 − b5
µ−5

.

(16)

Following the idea of [51,52], we get the following fractional-order con-

trolled chemical reaction system:

dςv1(t)

dtς
= α[b1v1(t)− µ−1v

2
1(t)− v1(t)v2(t)− v1(t)v3(t)]

+ β[v1(t)− v1(t− ρ)],
dςv2(t)

dtς
= α[v1(t)v2(t)− b5v2(t)] + β[v2(t)− v2(t− ρ)],

dςv3(t)

dtς
= α[b4v3(t)− v1(t)v3(t)− µ−5v

2
3(t)]

+ β[v3(t)− v3(t− ρ)],

(17)

where α, β are feedback gain parameters. System (17) has the same

equilibrium points as those in system (4). Namely, the equilibrium point
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is E(v1⋆, v2⋆, v3⋆). Let 
v̄1(t) = v1(t)− v1⋆,

v̄2(t) = v2(t)− v2⋆,

v̄3(t) = v3(t)− v3⋆,

(18)

then system (17) can be rewritten as

dς v̄1(t)

dtς
= α[b1(v̄1(t) + v1⋆)− µ−1(v̄1(t)

+ v1⋆)
2 − (v̄1(t) + v1⋆)(v̄2(t) + v2⋆)

− (v̄1(t) + v1⋆)(v̄3(t) + v3⋆)] + β[v̄1(t)− v̄1(t− ρ)],
dς v̄2(t)

dtς
= α[(v̄1(t) + v1⋆)(v̄2(t) + v2⋆)− b5(v̄2(t) + v2⋆)]

+ β[v̄2(t)− v̄2(t− ρ)],
dς v̄3(t)

dtς
= α[b4(v̄3(t) + v3⋆)− (v̄1(t) + v1⋆)(v̄3(t) + v3⋆)

− µ−5(v̄3(t) + v3⋆)
2] + β[v̄3(t)− v̄3(t− ρ)].

(19)

The linear system of (19) around (0, 0, 0) is given by
dς v̄1(t)

dtς
= c1v̄1(t) + c2v̄2(t) + c2v̄3(t) + c3v̄1(t− ρ),

dς v̄2(t)

dtς
= c4v̄1(t) + c5v̄2(t) + c3v̄2(t− ρ),

dς v̄3(t)

dtς
= c6v̄1(t) + c7v̄3(t) + c3v̄3(t− ρ).

(20)

where 

c1 = 2b1 − 2αµ−1v1⋆ − v2⋆ − v3⋆ + β,

c2 = −v1⋆,
c3 = −β,
c4 = αv2⋆,

c5 = αv1⋆ − b5 + β,

c6 = −αv3⋆,
c7 = αb4 − αv1⋆ − 2v3⋆µ−5 + β.

(21)
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Denote v̄i(i = 1, 2, 3) by vi in (20), then system (20) takes the form:
dςv1(t)

dtς
= c1v1(t) + c2v2(t) + c2v3(t) + c3v1(t− ρ),

dςv2(t)

dtς
= c4v1(t) + c5v2(t) + c3v2(t− ρ),

dςv3(t)

dtς
= c6v1(t) + c7v3(t) + c3v3(t− ρ).

(22)

The characteristic equation of system (22) is

det

 sς − c1 − c3e
−sρ −c2 −c2

−c4 sς − c5 − c3e
−sρ 0

−c6 0 sς − c7 − c3e
−sρ

 = 0, (23)

which leads to

s3ς + a1s
2ς + a2s

ς + a3 + (a4s
2ς + a5s

ς + a6)e
−sρ

+(a7s
ς + a8)e

−2sρ + a9e
−3sρ = 0, (24)

where 

a1 = −(c1 + c5 + c7)),

a2 = c1c5 + c7(c1 + c5)− c2c6 − c2c4,

a3 = c2c5c6 + c2c4c7 − c1c5c7,

a4 = −3c3,
a5 = 2c3(c1 + c5) + 2c3c7 + 2c23,

a6 = c1c3c5 + c2c3c6 + c2c3c4 − c1c3c7

− c3c5c7 − c1c
2
3 − c23c5,

a7 = c23,

a8 = −c7c23,
a9 = −c33.

(25)

When σ = 0, then Eq.(24) is

λ3 + (a1 + a4)λ
2 + (a2 + a5 + a7)λ+ a3 + a6 + a8 + a9 = 0, (26)
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Assume that

(A2)


M1 = a1 + a4 > 0,

M2 = det

[
a1 + a4 1

a3 + a6 + a8 + a9 a2 + a5 + a7

]
> 0,

M3 = (a3 + a6 + a8 + a9)M2 > 0

is true, then the three roots λ1, λ2, λ3 of Eq. (26) owns negative real parts.

Thus the equilibrium point E(v1⋆, v2⋆, v3⋆) of model (24) with σ = 0 is

locally asymptotically stable.

It follows from Eq. (24) that

(s3ς + a1s
2ς + a2s

ς + a3)e
sρ + (a4s

2ς + a5s
ς + a6)

+(a7s
ς + a8)e

−sρ + a9e
−2sρ = 0. (27)

Suppose that s = iϑ = ϑ
(
cos π

2 + i sin π
2

)
is the root of Eq. (27). Then it

follows from (27) that[
ϑ3ς

(
cos

3ςπ

2
+ i sin

3ςπ

2

)
+ a1ϑ

2ς (cos ςπ + i sin ςπ)

+a2ϑ
ς
(
cos

ςπ

2
+ i sin

ςπ

2

)
+ a3

]
(cosϑρ+ i sinϑρ)

+
[
a4ϑ

2ς (cos ςπ + i sin ςπ) + a5ϑ
ς
(
cos

ςπ

2
+ i sin

ςπ

2

)
+ a6

]
+
[
a7ϑ

ς
(
cos

ςπ

2
+ i sin

ςπ

2

)
+ a8

]
(cosϑρ− i sinϑρ)

+a9(cos 2ϑρ− i sin 2ϑρ) = 0, (28)

which leads to
(ε1ϑ

3ς + ε2ϑ
2ς + ε3ϑ

ς + ε4) cosϑρ+ (ε5ϑ
3ς + ε6ϑ

2ς + ε7ϑ
ς)

× sinϑρ+ ε8ϑ
2ς + ε9ϑ

ς + ε10 = −a9 cos 2ϑρ,
(−ε5ϑ3ς − ε6ϑ

2ς + ε11ϑ
ς) cosϑρ+ (ε1ϑ

3ς + ε2ϑ
2ς + ε3ϑ

ς + ε12)

× sinϑρ+ ε13ϑ
2ς + ε14ϑ

ς = a9 sin 2ϑρ,

(29)
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where 

ϵ1 = cos
3ςπ

2
,

ϵ2 = a1 cos ςπ,

ϵ3 = (a2 + a7) cos
ςπ

2
,

ϵ4 = a3 + a8,

ϵ5 = − sin
3ςπ

2
,

ϵ6 = −a1 sin ςπ,
ϵ7 = (a2 − a7) sin

ςπ

2
,

ϵ8 = a4 cos ςπ,

ϵ9 = a5 cos
ςπ

2
,

ϵ10 = a6,

ϵ11 = (a2 + a7) sin
ςπ

2
,

ϵ12 = a3 − a8,

ϵ13 = a4 sin ςπ,

ϵ14 = a5 sin
ςπ

2
.

(30)

It follows from (29) that

[(ε1ϑ
3ς + ε2ϑ

2ς + ε3ϑ
ς + ε4) cosϑρ+ (ε5ϑ

3ς + ε6ϑ
2ς + ε7ϑ

ς) sinϑρ

+ε8ϑ
2ς + ε9ϑ

ς + ε10]
2 + [(−ε5ϑ3ς − ε6ϑ

2ς + ε11ϑ
ς) cosϑρ

+(ε1ϑ
3ς + ε2ϑ

2ς + ε3ϑ
ς + ε12) sinϑρ+ ε13ϑ

2ς + ε14ϑ
ς ]2 = a29, (31)

which generates

(ϱ1ϑ
4ς + ϱ2ϑ

3ς + ϱ3ϑ
2ς + ϱ4ϑ

ς + ϱ5) cos
2 ϑρ

+(δ1ϑ
4ς + δ2ϑ

3ς + δ3ϑ
2ς + δ4ϑ

ς + δ5) cosϑρ sinϑρ

+(ξ1ϑ
5ς + ξ2ϑ

4ς + ξ3ϑ
3ς + ξ4ϑ

2ς + ξ5ϑ
ς + ξ6) cosϑρ

+(η1ϑ
5ς + η2ϑ

4ς + η3ϑ
3ς + η4ϑ

2ς + η5ϑ
ς) sinϑρ

= υ1ϑ
6ς + υ2ϑ

5ς + υ3ϑ
4ς + υ4ϑ

3ς + υ5ϑ
2ς + υ6ϑ

ς + υ7, (32)
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where 

ϱ1 = −2ε5(ε11 − ε7),

ϱ2 = 2(ε1ε4 − ε6ε11 − ε2ε3 − ε6ε7),

ϱ3 = ε211 − ε27 + 2ε2ε4 − 2ε2ε12,

ϱ4 = 2ε3ε4 − ε3ε12,

ϱ5 = ε24 − ε212,

δ1 = ε26 + ε213 + ε1ε7 − ε1ε11,

δ2 = 2(ε6ε9 + ε13ε14) + ε2ε7 + ε4ε5 − ε5ε12 − ε2ε11,

δ3 = ε29 + ε214 + 2ε6ε10 + ε3ε7 + ε4ε6 − ε6ε12 − ε3ε11,

δ4 = 2ε9ε10 + ε4ε7 + ε11ε12,

δ5 = ε210,

ξ1 = 2(ε1ε8 − ε5ε13),

ξ2 = 2(ε1ε9 + ε2ε8 − ε3ε14 − ε6ε13),

ξ3 = 2(ε1ε10 + ε2ε9 + ε3ε8 − ε6ε14 + ε11ε13),

ξ4 = 2(ε2ε9 + ε2ε10 + ε4ε8 + ε11ε14),

ξ5 = 2(ε3ε10 + ε4ε9),

ξ6 = 2ε4ε10,

η1 = 2(ε3ε8 + ε1ε13),

η2 = 2(ε5ε9 + ε6ε8 + ε1ε14 + ε2ε13),

η3 = 2(ε5ε10 + ε6ε9 + ε7ε8 + ε2ε14 + ε3ε13),

η4 = 2(ε6ε10 + ε7ε9 + ε12ε13 + ε13ε14),

η5 = 2(ε7ε10 + ε12ε14,

υ1 = −(ε21 + ε25),

υ2 = 2(ε1ε2 + ε5ε6),

υ3 = ε22 + ε26 + 2(ε1ε3 + ε5ε7),

υ4 = 2(ε1ε12 + ε2ε3 + ε6ε7),

υ5 = ε23 + ε27 + 2ε2ε12,

υ6 = 2ε3ε12,

υ7 = a29 − ε212.

(33)

By sinϑρ = ±
√

1− cos2 ϑρ, then we can rewrite (32) as follows:

(ϱ1ϑ
4ς + ϱ2ϑ

3ς + ϱ3ϑ
2ς + ϱ4ϑ

ς + ϱ5) cos
2 ϑρ
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+(δ1ϑ
4ς + δ2ϑ

3ς + δ3ϑ
2ς + δ4ϑ

ς + δ5) cosϑρ
(
±
√

1− cos2 ϑρ
)

+(ξ1ϑ
5ς + ξ2ϑ

4ς + ξ3ϑ
3ς + ξ4ϑ

2ς + ξ5ϑ
ς + ξ6) cosϑρ

+(η1ϑ
5ς + η2ϑ

4ς + η3ϑ
3ς + η4ϑ

2ς + η5ϑ
ς)
(
±
√

1− cos2 ϑρ
)

= υ1ϑ
6ς + υ2ϑ

5ς + υ3ϑ
4ς + υ4ϑ

3ς + υ5ϑ
2ς + υ6ϑ

ς + υ7. (34)

It follows from (34) that

θ1 cos
4 ϑρ+ θ2 cos

3 ϑρ+ θ3 cos
2 ϑρ+ θ4 cosϑρ+ θ5 = 0, (35)

where

θ1 = (ϱ1ϑ
4ς + ϱ2ϑ

3ς + ϱ3ϑ
2ς + ϱ4ϑ

ς + ϱ5)
2

+ (δ1ϑ
4ς + δ2ϑ

3ς + δ3ϑ
2ς + δ4ϑ

ς + δ5)
2,

θ2 = 2(ϱ1ϑ
4ς + ϱ2ϑ

3ς + ϱ3ϑ
2ς + ϱ4ϑ

ς + ϱ5)

× (ξ1ϑ
5ς + ξ2ϑ

4ς + ξ3ϑ
3ς + ξ4ϑ

2ς + ξ5ϑ
ς + ξ6)

+ 2(δ1ϑ
4ς + δ2ϑ

3ς + δ3ϑ
2ς + δ4ϑ

ς + δ5)

× (η1ϑ
5ς + η2ϑ

4ς + η3ϑ
3ς + η4ϑ

2ς + η5ϑ
ς),

θ3 = (ξ1ϑ
5ς + ξ2ϑ

4ς + ξ3ϑ
3ς + ξ4ϑ

2ς + ξ5ϑ
ς + ξ6)

2

+ (η1ϑ
5ς + η2ϑ

4ς + η3ϑ
3ς + η4ϑ

2ς + η5ϑ
ς)2

− (δ1ϑ
4ς + δ2ϑ

3ς + δ3ϑ
2ς + δ4ϑ

ς + δ5)
2,

θ4 = −2(ξ1ϑ5ς + ξ2ϑ
4ς + ξ3ϑ

3ς + ξ4ϑ
2ς + ξ5ϑ

ς + ξ6)

× (υ1ϑ
6ς + υ2ϑ

5ς + υ3ϑ
4ς + υ4ϑ

3ς + υ5ϑ
2ς + υ6ϑ

ς + υ7)

− 2(δ1ϑ
4ς + δ2ϑ

3ς + δ3ϑ
2ς + δ4ϑ

ς + δ5)

× (η1ϑ
5ς + η2ϑ

4ς + η3ϑ
3ς + η4ϑ

2ς + η5ϑ
ς),

θ5 = (υ1ϑ
6ς + υ2ϑ

5ς + υ3ϑ
4ς + υ4ϑ

3ς + υ5ϑ
2ς + υ6ϑ

ς + υ7)
2

(η1ϑ
5ς + η2ϑ

4ς + η3ϑ
3ς + η4ϑ

2ς + η5ϑ
ς)2.

(36)

By Matlab software, we can easily solve the value of cosϑρ. Suppose that

cosϑρ = l1(ϑ). (37)

Then one can get the value of sinϑρ. Suppose that

sinϑρ = l2(ϑ). (38)
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By (37) and (38), we have

l21(ϑ) + l22(ϑ) = 1. (39)

Making use of (39), we can obtain the value of ϑ (say ϑ0). By (37), we get

ϑi =
1

ϑ0
[arccos l1(ϑ0) + 2iπ], i = 0, 1, 2, · · · . (40)

Define

ρ⋆ = min
{i=0,1,2,··· }

{ϑi}. (41)

Then we can conclude that when ρ = ρ⋆, (24) owns a pair of imaginary

roots ±iϑ0.

Next we make the following hypothesis:

(A3) W1RW2R +W1IW2I > 0,

where

W1R = 3ςϑ3ς−1
0 cos

(3ς − 1)π

2
+ 2ςa1ϑ

2ς−1
0 cos

(2ς − 1)π

2

+ ςa2ϑ
ς−1
0 cos

(ς − 1)π

2
+

[
2ςa4ϑ

2ς−1
0 cos

(2ς − 1)π

2

+ςa5ϑ
ς−1
0 cos

(ς − 1)π

2

]
cosϑ0ρ⋆ +

[
2ςa4ϑ

2ς−1
0 sin

(2ς − 1)π

2

+ςa5ϑ
ς−1
0 sin

(ς − 1)π

2

]
sinϑ0ρ⋆

+ ςa7ϑ
ς−1
0 cos

(ς − 1)π

2
cos 2ϑ0ρ⋆

+ ςa7ϑ
ς−1
0 sin

(ς − 1)π

2
sin 2ϑ0ρ⋆,

W1I = 3ςϑ3ς−1
0 sin

(3ς − 1)π

2
+ 2ςa1ϑ

2ς−1
0 sin

(2ς − 1)π

2

+ ςa2ϑ
ς−1
0 sin

(ς − 1)π

2
− (2ςa4ϑ

2ς−1
0 cos

(2ς − 1)π

2
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+ ςa5ϑ
ς−1
0 cos

(ς − 1)π

2
) sinϑ0ρ⋆ + (2ςa4ϑ

2ς−1
0 sin

(2ς − 1)π

2

+ ςa5ϑ
ς−1
0 sin

(ς − 1)π

2
) cosϑ0ρ⋆ − ςa7ϑ

ς−1
0 cos

(ς − 1)π

2
sin 2ϑ0ρ⋆

+ ςa7ϑ
ς−1
0 sin

(ς − 1)π

2
cos 2ϑ0ρ⋆,

W2R =
(
a4ϑ

2ς
0 cos ςπ + a5ϑ

ς
0 cos

ςπ

2
+ a6

)
ϑ0 sinϑ0ρ⋆ + 3a9ϑ0 sin 3ϑ0ρ⋆

−
(
a4ϑ

2ς
0 sin ςπ + a5ϑ

ς
0 sin

ςπ

2

)
ϑ0 cosϑ0ρ⋆

+ 2
(
a7ϑ

ς
0 cos

ςπ

2
+ a8

)
ϑ0 sinϑ0ρ⋆ + 2a7ϑ

ς
0 sin

ςπ

2
ϑ0 cosϑ0ρ⋆,

W2I =
(
a4ϑ

2ς
0 cos ςπ + a5ϑ

ς
0 cos

ςπ

2
+ a6

)
ϑ0 cosϑ0ρ⋆ + 3a9ϑ0 cos 3ϑ0ρ⋆

+
(
a4ϑ

2ς
0 sin ςπ + a5ϑ

ς
0 sin

ςπ

2

)
ϑ0 sinϑ0ρ⋆

− 2
(
a7ϑ

ς
0 cos

ςπ

2
+ a8

)
ϑ0 cosϑ0ρ⋆ + 2a7ϑ

ς
0 sin

ςπ

2
ϑ0 sinϑ0ρ⋆.

Lemma 4.1. Assume that s(ρ) = τ1(ρ)+iτ2(ρ) is the root of Eq. (24) near

σ = σ⋆ such that τ1(ρ⋆) = 0, τ2(ρ⋆) = ϑ0, then Re
(

ds
dρ

) ∣∣∣
ρ=ρ⋆,ϑ=ϑ0

> 0.

Proof In view of Eq.(24), one gets

(
3ςs3ς−1 + 2ςa1s

2ς−1 + ςa2s
ς−1

) ds

dρ
+ (2ςa4s

2ς−1 + ςa5s
ς−1)e−sρ ds

dρ

−e−sρ

(
ds

dρ
ρ+ s

)(
a4s

2ς + a5s
ς + a6

)
+ ςa7s

ς−1e−2sρ ds

dρ

−2e−2sρ

(
ds

dρ
ρ+ s

)
(a7s

ς + a8)− 3a9e
−3sρ

(
ds

dρ
ρ+ s

)
= 0. (42)

Then

[
3ςs3ς−1 + 2ςa1s

2ς−1 + ςa2s
ς−1 + (2ςa4s

2ς−1 + ςa5s
ς−1)e−sρ

−e−sρρ
(
a4s

2ς + a5s
ς + a6

)
+ ςa7s

ς−1e−2sρ

−2e−2sρρ(a7s
ς + a8)− 3a9e

−3sρρ
] ds
dρ

= e−sρs
(
a4s

2ς + a5s
ς + a6

)
+ 2e−2sρs(a7s

ς + a8) + 3a9se
−3sρ, (43)
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which implies (
dλ

dσ

)−1

=
W1(λ)

W2(λ)
− ρ

s
, (44)

where
W1(λ) = 3ςs3ς−1 + 2ςa1s

2ς−1 + ςa2s
ς−1 + (2ςa4s

2ς−1

+ ςa5s
ς−1)e−sρ + ςa7s

ς−1e−2sρ,

W2(λ) = e−sρs
(
a4s

2ς + a5s
ς + a6

)
+ 2e−2sρs (a7s

ς + a8) + 3a9se
−3sρ.

(45)

Hence

Re

[(
dλ

dσ

)−1
]
ρ=ρ⋆,ϑ=ϑ0

= Re

[
W1(λ)

W2(λ)

]
ρ=ρ⋆,ϑ=ϑ0

=
W1RW2R +W1IW2I

W2
2R +W2

2I

.

(46)

By (A3), one derives

Re

[(
dλ

dρ

)−1
]
ρ=ρ⋆,ϑ=ϑ0

> 0, (47)

which ends the proof. ■

According to the analysis above, the following assertion is easily derived.

Theorem 4.1. If (A1), (A2), (A3) are fulfilled, then the equilibrium point

E(v1⋆, v2⋆, v3⋆) of system (17) is locally asymptotically stable for ρ ∈ [0, ρ⋆)

and a Hopf bifurcation of system (17) happens near the equilibrium point

E(v1⋆, v2⋆, v3⋆) when ρ = ρ⋆.

Remark 4.1. In [11, 12, 36], the authors only dealt with the dynam-

ics of the integer-order chemical reaction system. They were not con-

cerned with the fractional-order case. In this study, based on the earlier

works, we set up a new fractional-order chemical reaction system. The

existence and uniqueness, non-negativeness, boundedness of the solution

of the fractional-order chemical reaction system are considered. In addi-

tion, we discussed the Hopf bifurcation anti-control issue of the fractional-

order chemical reaction system. The research method is different from that

in [11, 12, 36]. Thus we argue that the obtained results of this article are
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completely new and supplement the works of [11,12,36] to some extent.

5 Numerical experiment

Consider the following fractional-order chemical reaction system:

d0.94v1(t)

dt0.94
= α[2.5v1(t)− 0.3v21(t)− v1(t)v2(t)− v1(t)v3(t)]

+ β[v1(t)− v1(t− ρ)],

d0.94v2(t)

dt0.94
= α[v1(t)v2(t)− 1.3v2(t)] + β[v2(t)− v2(t− ρ)],

d0.94v3(t)

dt0.94
= α[3.2v3(t)− v1(t)v3(t)− 2.65v23(t)]

+ β[v3(t)− v3(t− ρ)].

(48)

Clearly, system (48) has the unique positive equilibrium point (1.300,

1.4685, 0.7170). Let α = 0.2, β = 0.8. Making use of computer software,

one derives ϑ0 = 0.4997 and ρ⋆ = 0.38. The hypotheses (A1)-(A3) of Theo-

rem 4.1 are fulfilled. In order to verify the stability of the positive equilib-

rium point (1.300, 1.4685, 0.7170) and the generation of Hopf bifurcation of

the fractional-order chemical reaction system (48), both delay values are se-

lected. Let ρ = 0.32 < ρ⋆ = 0.38. Then computer simulation plots are pre-

sented in Figure 2. According to Figure 2, one knows that the equilibrium

point (1.300, 1.4685, 0.7170) the fractional-order chemical reaction system

(48) maintains locally asymptotically stable situation. In other words, the

state variables v1, v2, v3 will tardily tend to the values 1.300, 1.4685, 0.7170,

respectively. Chemically speaking, it manifests that the three constituents

X , Z and Y will tardily tend to the values 1.300, 1.4685, 0.7170, respec-

tively. Let ρ = 0.45 < ρ⋆ = 0.38. Then computer simulation plots are

presented in Figure 3. According to Figure 3, one knows that the positive

equilibrium point (1.300, 1.4685, 0.7170) the fractional-order chemical re-

action system (48) maintains a periodic vibratory level in the vicinity of

the positive equilibrium point (1.300, 1.4685, 0.7170). In other words, the

state variables v1, v2, v3 will move around the values 1.300, 1.4685, 0.7170,

respectively. Chemically speaking, it manifests that the three constituents

X , Z and Y will change near the values 1.300, 1.4685, 0.7170, respectively.
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The relation among ς, ϑ0 and ρ⋆ is listed in Table 1. Furthermore, the

bifurcation plots are presented to indicate that the bifurcation value is

ρ⋆ = 0.38 (see Figures 4-6).
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Figure 2. Numerical experiment results of the fractional-order chem-
ical reaction system (48) with ρ = 0.32 < ρ⋆ = 0.38.
The positive equilibrium point (1.300, 1.4685, 0.7170) of the
fractional-order chemical reaction system (48) keeps locally
asymptotically stable level. The three constituents X →
1.300, Z → 1.4685 and Y → 0.7170 with the increase of
time t.
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Figure 3. Numerical experiment results of the fractional-order chem-
ical reaction system (48) with ρ = 0.45 > ρ⋆ = 0.38.
The positive equilibrium point (1.300, 1.4685, 0.7170) of the
fractional-order chemical reaction system (48) keeps peri-
odic oscillatory level near (1.300, 1.4685, 0.7170). the three
constituents X , Z and Y will vibrate near the values
1.300, 1.4685, 0.7170 with the increase of time t, respectively.

Table 1. The correlation of ς, ϑ0 and ρ⋆ of the fractional-order chemical
reaction system (48).

ς ϑ0 ρ⋆
0.18 0.1413 0.09
0.25 0.1984 0.13
0.33 0.2525 0.17
0.46 0.2914 0.20
0.57 0.3289 0.23
0.64 0.3888 0.28
0.77 0.4118 0.30
0.85 0.4344 0.32
0.94 0.4997 0.38
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Figure 4. Bifurcation plot of the fractional-order chemical reaction sys-
tem (48): the time delay ρ versus the state variable v1. The
bifurcation value is ρ⋆ = 0.38.
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bifurcation value is ρ⋆ = 0.38.
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Figure 6. Bifurcation plot of the fractional-order chemical reaction sys-
tem (48): the time delay ρ versus the state variable v3. The
bifurcation value is ρ⋆ = 0.38.

6 Conclusions

Recent several decades, the fractional-order differential equation has dis-

played potential applications in many natural sciences. Based on the pre-

vious studies, we propose a new fractional-order chemical reaction sys-

tem. We have investigated the existence and uniqueness, non-negativeness

and uniformly boundedness of the solution of the fractional-order chemical

reaction system. Under some parameter conditions, the fractional-order

chemical reaction system always display a stable state. By virtue of a

hybrid controller including state feedback and parameter perturbation, we

have explored the Hopf bifurcation anti-control problem of the fractional-

order stable chemical reaction system. Applying the stability and bifur-

cation theory of fractional-order differential equation, we obtain a new

delay-independent condition that guarantees the stability and occurrence

of Hopf bifurcation of the involved fractional-order stable chemical reaction

model. Numerical experiments are carried out to verify the effectiveness

of the designed hybrid controller. The role of the delay in the designed

hybrid controller is fully revealed. The established conclusions have im-

portant theoretical value in controlling the constituents X , Z and Y in
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chemistry. Moreover, the bifurcation anti-control method can be applied

to explore the bifurcation control and anti-control issue of fractional-order

dynamical models in numerous areas.
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