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Abstract

Poly-PL kinetic systems (PYK) are kinetic systems consisting
of nonnegative linear combinations of power law functions. In this
contribution, we analyze these kinetic systems using two main ap-
proaches: (1) we define a canonical power law representation of
a poly-PL system, and (2) we transform a poly-PL system into
a dynamically equivalent power law kinetic system that preserves
the stoichiometric subspace of the system. These approaches led
us to establish results that concern important dynamical proper-
ties of poly-PL systems that extend known results for generalized
mass actions systems (GMAS) such as existence, uniqueness and
parametrization of complex balanced steady states, and linear sta-
bility of complex balanced equilibria. Furthermore, the paper dis-
cusses subsets of poly-PL systems that exhibit two types of concen-
tration robustness in some species namely absolute concentration
robustness and balanced concentration robustness.
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1 Introduction

Poly-PL kinetic systems (denoted as PYK systems) are kinetic systems
formed by nonnegative linear combinations of power law functions. These
were introduced by Talabis et al. [26] and were shown to have complex
balanced equilibria for weakly reversible such systems with zero kinetic
reactant deficiency (called PY-TIK systems). A subset of poly-PL kinetic
systems consisting of polynomial kinetics occurs in realizations of evolu-
tionary games as chemical kinetic systems as proposed by Veloz et al. [28],
particularly for multi-player games with replicator dynamics. In addition,
poly-PL kinetics can be used to study Hill-type kinetics, which include the
widely used Michaelis-Menten models, as discussed in [14].

In this contribution, we investigate some important dynamical proper-
ties of poly-PL kinetics systems such as existence and parametrization of
complex balanced steady states, capacity for multiple complex balanced
steady states in a stoichiometric compatibility class, concentration robust-
ness of some species, and linear stability of complex balanced equilibria.
The primary approach is to specify power law representations of poly-
PL kinetic systems in order to apply or mimic existing results on power
law systems. Two approaches are considered in this study: the canonical
PL-representation and the STAR-MSC transformation [19] of the poly-PL
system (Section 3).

The main contribution of this paper are the following:

e Section 3: The results of Miiller and Regensburger [21,22] for gener-
alized mass action systems (GMAS) are extended to poly-PL sys-
tems. In particular, this work presents partial extensions of the
GMAS results to a subset of poly-PL kinetics that are reactant-
determined (denoted by PY-RDK systems) and full analogue results
for PY-RDK systems with equilibria sets called PL-equilibria and

PL-complex balanced equilibria.

e Section 4: The set of weakly reversible poly-PL systems with zero

kinetic reactant deficiency are shown to be PL-complex balanced.

e Section 5: Extensions of the results of Boros et al. [3] on linear
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stability of complex balanced equilibria to poly-PL systems are also

obtained.

e Section 6: Analogues of the results of Fortun and Mendoza [8] in-
volving absolute concentration robustness (ACR) and Lao et al. [18]
on balanced concentration robustness (BCR) for power law kinetic
systems to poly-PL kinetic systems are established. Sufficient con-
ditions for concentration robustness in higher deficiency systems are
also derived (Section 6.2).

2 Fundamentals of chemical reaction

networks and kinetic systems

We denote by R and Z the set of real numbers and integers, respectively.
For integers a and b, let a,b = {j € Zla < j < b}. We denote the non-
negative real numbers by R, and the positive real numbers by R. The
sets RZ , and RY; are called the non-negative and positive orthants of R?,
respec‘;ively. For x € RP, the ith coordinate of x is denoted by x;, where
i € 1,p. The standard basis for R? is the set {w; € RP|i € 1,p} and for
each © € RP we have the representation z = > % | z;w;. Finally, for a
vector space V, if S is a non-empty subset of V', the span of S is denoted

by (S).

2.1 Chemical reaction networks basics

A chemical reaction network (CRN) is a system of interdependent chemical
reactions. Each reaction is represented as an ordered pair of vectors, called

complexes, of chemical species.

Definition 1. A chemical reaction network (CRN) .4 is a triple
(S, €, %) of three finite sets: (1) aset . = {X1, Xa,..., X} of species,
(2) a set € of complexes, consisting of nonnegative linear combinations
of the species, and (3) a set Z = {R1,Ra,...,R,} C € x € of reactions
such that (y,y) ¢ Z for any y € €, and for each y € €, there exists
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y' € € such that either (y,y') € Z or (v',y) € Z. We denote the num-

ber of species by m, the number of complexes with n and the number of

reactions by r.

Alternatively, a CRN can be defined as a directed graph whose vertices
are embedded as vectors with nonnegative coefficients in a finite dimen-
sional Euclidean space. In this perspective, the vertices correspond to the
complexes and the arcs to the reactions. The species can be identified with
the standard unit vectors of the Euclidean space. We assume, as is usual
in the literature, that i) each species occurs in at least one complex and
ii) each complex occurs in at least one reaction.

We use the convention that an element (y,y’) € % is denoted by y — ¢/'.
In this reaction, we say that y is the reactant complex and 3’ is the prod-
uct complex. Connected components of a CRN are called linkage classes,
strongly connected components are called strong linkage classes, and
strongly connected components without outgoing arcs are called terminal
strong linkage classes. We denote the number of linkage classes by ¢,
that of the strong linkage classes with sf, and that of terminal strong link-
age classes with t. A complex is called terminal if it belongs to a terminal
strong linkage class. Otherwise, the complex is called nonterminal. A
CRN is weakly reversible if s¢ = ¢ (i.e., every linkage class is a strong
linkage class) and t-minimal if ¢ = ¢ (i.e., every linkage class has one
terminal strong linkage class). A CRN is cycle terminal if n, = n. A
CRN is cyclic if it has at least one directed path that starts and ends in
the same complex.

With each reaction y — 3, we associate a reaction vector obtained
by subtracting the reactant complex y from the product complex y’. The
stoichiometric subspace S of a CRN is the linear subspace of R™ de-
fined by S := span {y —y € R™ |y — ¢ € Z}. The rank of the CRN
is defined as s := dimS. Furthermore, if ¢ € RY,, the corresponding
stoichiometric compatibility class is defined as the intersection of the
coset ¢+ S with RY;. Two elements a, b of R™ are stoichiometrically
compatible if a — b is contained in S. The deficiency of a CRN is the

nonnegative integer defined by d =n — £ — s.
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Definition 2. Let A = (7, €, %) be a CRN. The map of complexes
Y :R% = R‘go maps the basis vector w, to the complex y € €. The

incidence map I, : RZ — R is the linear map defined by mapping for
each reaction R; : y; — y; € Z, the basis vector w; to the vector Wy, —
wy, € €. The stoichiometric map N : RZ — R” is defined as N =
Yol,.

2.2 Chemical kinetic system

By kinetics of a CRN, we mean the assignment of a rate function to each
reaction in the CRN. It is defined formally as follows [29].

Definition 3. A kinetics of a CRN A4 = (¥, €, %) is an assignment
of a rate function Kj;: Qx — R>g to each reaction R; € %, where Qg
is a set such that RT, C Qg C Rgo. A kinetics for a network .4 is
denoted by K = [K1, Ko, ..., K,]" : Qf — RZ,. The pair (A, K) is called
the chemical kinetic system (CKS).

In this paper, in order to study the dynamics of chemical kinetic sys-
tems through systems of ordinary differential equations (ODE), we gen-
erally assume that the rate functions are differentiable functions of the
variables.

Once a kinetics is associated with a CRN, we can determine the rate at

which the concentration of each species evolves at composition ¢ € RZ,.

Definition 4. The species formation rate function f : RT; — R™ of

a chemical kinetic system (4, K) is given by

fle)=NK()= > K;j, -y

Yj *}’y; ER

The equation de/dt = f(c) is the ODE or dynamical system of the
CKS. A positive equilibrium or steady state c* is an element of RZ,
for which f(c¢*) = 0.The set of positive equilibria of the system is given
by By (4, K) = {c € RY' | f(c*) = O},

A chemical kinetic system is multistationary (or has the capacity to

admit multiple steady states) if there exist positive rate constants such
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that the corresponding ODEs system admits at least two distinct stoichio-
metrically compatible equilibria. That is, there are at least two positive
equilibria belonging to different stoichiometric compatibility class. Other-
wise, it is monostationary.

The complex formation rate function is the analogue of the species

formation rate function for complexes.

Definition 5. The complex formation rate function g : RY, — R"

of a chemical kinetic system is the given by

90 =LE@©) = Y Ki(c)(wy —wy,). (1)

Yj 4)1/; cER

Horn and Jackson [16] introduced the notion of complex balancing in
chemical kinetics, which proved to have profound uses in CRNT. Ob-
serve from Equation (1) that the function g gives the difference between
the production and degradation of each complex. Thus, “complex bal-
ancing” occurs when g(c¢) = 0. A chemical kinetic system (A7, K) is
called complex balanced if it has a complex balanced steady state. The
set of positive complex balanced steady states of the system is given by
Zo(N K) = {c € R | g(c) = 0}.

Power law kinetics is defined by an r x m matrix F' = [F};], called the

kinetic order matrix, and vector k € RY, called the rate vector.

Definition 6. A kinetics K : Ry — R" is a power law kinetics (PLK)
if
Ki(z) = k2™ forallic 1,7,

with k; € Ry and F;; € R. A PLK system has reactant-determined
kinetics (of type PL-RDK) if for any two reactions R;, R; € #Z with
identical reactant complexes, the corresponding rows of kinetic orders in
F are identical, i.e. F;;, = Fjj, for h € 1,m. Otherwise, a PLK system has
non-reactant-determined kinetics (of type PL-NDK).

An example of PL-RDK is the well-known mass action kinetics
(MAK), where the kinetic order matrix is the transpose of the map of

complexes Y [6].
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Arceo et al. [2] identified two large sets of kinetic systems, namely
the complex factorizable (CF) kinetics and its complement, the non-
complex factorizable (NF) kinetics. Complex factorizable kinetics gen-
eralize the key structural property of MAK that the species formation
rate function decomposes as da/dt =Y o Ay o Uk, where Y is the map
of complexes, A is the Laplacian map, and W : R‘?O — REO such that
I,oK(z) = AoV (x)forallz € R§o~ In the set of power law kinetics, the

complex-factorizable kinetic systems are precisely the PL-RDK systems.

2.3 Decomposition theory

We refer to [5] for more details on the concepts and results in decomposition

theory.

Definition 7. Let A4 = (&, %,%) be a CRN. A covering of ./ is a
collection of subsets {Z#1, %>, ..., %,} whose union is Z. A covering is

called a decomposition of 4 if the sets %; form a partition of Z.

Each %; defines a subnetwork .4; of .4 wherein %, consists of all
complexes occurring in Z%; and .¥; consists of all the species occurring in
6;.

Feinberg [7] identified an important class of network decomposition
called independent decomposition. A decomposition is independent if the
stoichiometric subspace S of a network is the direct sum of the subnet-
works’ stoichiometric subspaces S; or equivalently, if s = 51 + 52+ -+ 5p,.

Fortun et al. [10] derived a basic property of independent decompositions:

Proposition 1. If /" = AU A U---UA, is an independent decompo-
sition, then 6 < 81+ 02+ -+ 6,, where d; represents the deficiency of the
subnetwork ;.

Feinberg [7] established the following relationship between the positive
equilibria of the “parent network” and those of the subnetworks of an

independent decomposition:

Theorem 2 (Feinberg Decomposition Theorem, [7]). Let {%#1, %>, ...,
Xy} be a partition of a CRN A and let K be a kinetics on A . If N =
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MUMNU- UM, is the network decomposition generated by the partition
and E (AN, K;) = {z € RY|N;K;(z) = 0}, then

(Z) QE+(€/%>K1') - E+(L/V’K)

(ii) If the network decomposition is independent, then equality holds.

Farinas et al. [5] introduced the concept of an incidence independent
decomposition, which naturally complements the independence property.
A decomposition of a CRN .4 is incidence independent if the image of
the incidence map I, of .4 is the direct sum of the images of the incidence
maps of the subnetworks. It follows that the dimension of the image of the
incidence map I, equals the sum of the dimensions of the subnetworks’
incidence maps. That is, n — ¢ = > (n; — ¢;). The linkage classes form
the primary example of an incidence independent decomposition, since
n=> n;and £ =>_¢;.

The following result is the analogue of Proposition 1 for incidence in-

dependent decomposition.

Proposition 3 (Prop. 7, [5]). Let & = A UAU---UA, be an incidence
independent decomposition. Then § > 01 + do + -+ - + 0p.

%-decompositions form an important class of incidence independent

decompositions:

Definition 8. A decomposition A = M U A U - U Ay, with A =
(S5, €6i, %;) is a €-decomposition if €; N €; = 0 for i # j.

A %-decomposition partitions not only the set of reactions but also
the set of complexes. The primary examples of €-decomposition are the
linkage classes.

The following result shows the relationship between the set of incidence
independent decompositions and the set of complex balanced equilibria of
any kinetic system. It is the precise analogue of Feinberg’s result (Theorem
2).

Theorem 4 (Theorem 4, [5]). Let N = (%, €, %) be a CRN and N; =
(S, 61y ;) for i € 1,p be the subnetworks of a decomposition. Let K be
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any kinetics, and Z (N, K) and Z (N, K;) be the set of complex balanced
equilibria of N and N;, respectively. Then

(i) () Z+ (M. K:) C Zy (N, K)
ielp
If the decomposition is incidence independent, then
(ii) Zo(N K) = () Z4(H, K)
i€l,p

(iii) Z (N, K) # 0 implies Z(Ni, K;) # 0 for eachi € 1,p.

The converse statement of Theorem 4 (iii) holds for a subset of inci-

dence independent decompositions with any kinetics:

Proposition 5 (Theorem 5, [5]). Let 4 = M U A U---U A, be a
weakly reversible € -decomposition of a chemical kinetic system (N, K).
If Zo (N, K;) # 0 for each i € 1,p, then Z (N ,K) # (.

3 Complex balanced poly-PL kinetic

systems

Poly-PL systems were introduced by Talabis et al. in [26] and applied to
study evolutionary games with replicator dynamics and polynomial payoff
functions. A computational approach to determine their multistationarity
was developed by Magpantay et al. [19]. In this section, we first collect
concepts, techniques and results from these papers and then apply them
to the extension of the results of Miiller and Regensburger on Generalized

Mass Action Systems (GMAS) to classes of poly-PL systems.

3.1 Poly-PL systems: canonical PL-representation
and STAR-MSC transformation

We recall the definition and introduce some additional notation for a PY-
RDK system from Talabis et al. [26]:



116
Definition 9. A kinetics K : RT; — R" is a poly-PL kinetics if

KZ(J)) =k; (ai’1$F1’1 + ai,gl‘Fi‘Q + -+ ai7hi$Fi"”) for i € ﬁ (2)

written in lexicographic order with k; € Rso, a;; € R>o, F;; € R™, and
j € 1, h; (where h; is the number of terms in reaction 7). Power-law kinetics
is defined by the r x m kinetic order matrices [F; ;], the rate vector
[k;] € RL,, and the poly-rate vectors [a;;] € RL,. If h = maxh;,
we normalize the length of each kinetics to h by replacing the last term
with (h — h; +1) terms with #ﬁ_lxﬂ,m. We call this the canonical
representation of a poly-PL kinetics.

Henceforth, for each j € 1,h, we set K;(x) := k;a; jofs where i € 1,r.
Furthermore, we use the notation {K;} (where j € 1,h) or K = K; + Ko+
-+ + K, to denote the PL-representation of a poly-PL kinetics.

Running Example - Part 1. Consider the ODE system:

X=—-aX2Y + X2V )4 8(Y +Y 1)
YV =a(X2Y +X2Y 1) —B(Y +Y 1)

The corresponding weakly reversible network and kinetics will be

X+Y

L K(X)= l a(X2Y + X2y 1) ]
BY +Y 1)

2Y

The kinetic order matrices, rate vector and poly-rate vectors are given

N S ) R S

We extend the definition of PL-RDK kinetics to poly-PL kinetics.

below.

= F> =

O Nl

Definition 10. A poly-PL kinetic system (.47, K) is said to be have



117

reactant-determined kinetics if and only if for each (.4, KC;) obtained
from the PL-representation {K;} of the system, (.4, ;) is PL-RDK and
a;; = ay ; for any two reactions R;, Ry of a branching node. We denote
such poly-PL system by PY-RDK.

Running Example - Part 2. The kinetics K in the running example is
PY-RDK. The K;’s are

aX1/2y

X_2Y_1
2( ): [ “ BY_I

Clearly, K = K1 + Ks.

The S-invariant termwise addition of reactions via maximal
stoichiometric coefficients (STAR-MSC) method is based on the idea
to use the maximal stoichiometric coefficient (MSC) among the complexes
in the CRN to construct reactions whose reactant complexes and prod-
uct complexes are different from existing ones. This is done by uniform
translation of the reactants and products to create a “replica” of the CRN.
The method creates h — 1 replicas of the original network and hence its
transform, .4/ becomes the union (in the sense of [13]) of the replicas and
the original CRN.

We now describe the STAR-MSC transformation. Since the domain of
definition of a poly-PL kinetics is RZ, all z = (X1, Xs,...,X,n) are pos-
itive vectors. Let M =14 max{y; | y € €}, where the second summand
is the maximal stoichiometric coefficient.

For any positive integer z, define the vector z to be the vector

(2,2,...,2) € R™. For each complex y € ¢, form the (h — 1) complexes

Each of these complexes are different from each other and from all exist-
ing complexes. Further properties of the STAR-MSC transformation are
discussed in [19].

Example 1. Consider the following weakly reversible network with two
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species X and Y. The kinetics are also given below.

k1
X 2X +Y
\_/ kix
k
ko K(X) _ 2?1
ks ks iz
Y \/)( +2Y
k4

K3 and K are of Hill type kinetics. Using the transformation of Hernandez
and Mendoza [14], the associated kinetics will be a poly-PL kinetics given
by:

kiz(1+2)(1+y)

kay(1+2)(1+y)
ksz(1+y)
kay(1 + )

Kpy(X) =

The canonical PL-representation of a poly-PL kinetics is

ki(z + 22 + 2y + 2%y)
ko(y + zy + y* + 29?)
ks(xy + %x + %IE + %x)
ka(zy + 3y + 3y + 39)

pr(X) =

Example 2. Consider the following Michaelis-Menten kinetic system from
Enzyme biology with set of biochemical species S = {57, 52, 53,54}, set
of complexes {S1 + S2,51 + S35, 54}, and reactions:

Ky ks
/—\ /—\
S1+ 5o Sy S1+ 853
\_/ ~_
ko ky
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This network assumes the Michaelis-Menten enzyme mechanism, in which
a substrate Sy is modified into a substrate S3 through the formation of an
intermediate S4. The reaction is catalyzed by an enzyme S;. The kinetic

systems associated to the ODE system are:

k1S152 kISISQ
ko S: koS
Kyak(X) = o and Kpox (X) = 253
ksSs = vy Sy e
k45153 = vy k2 1+k3%2+54

The kinetics Kpgr(X) is taken from the collection of enzymatic re-
actions in Appendix 2 of [12]. The forward rate vy and the backward

rate v, are replaced by rational expressions k1 1 +k3%2 5 and ko g +k35§2 T

respectively.
Using the transformation in Section 6.1 of [14], the associated kinetics

will be a poly-PL kinetics in the form:

[ k(8185 + k35152 + S15581) |
ka(Ss + k3S2S5 + S3S4)
k1 Sa
koS

Kpy(X) =

The canonical PL-representation of a poly-PL kinetics is

[ k(8185 + k35152 + S15554) |
ko (S5 + k35253 4+ S354)
k1(352 + 152 + 152)
ko (5S4 + 554+ 354)

Kpy(X) =

3.2 Extension of GMAS theory to PY-RDK systems

A kinetics K on a weakly reversible network .4 has conditional com-
plex balancing (CCB) if there exist rate constants such that (A, K) is
complexed balanced, i.e., Z, (A", K) # 0. A kinetics is unconditionally
complex balanced (UCB) on a weakly reversible network if for all rate
constants, Z, (AN, K) # 0.
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Poly-PL kinetic systems belong to a large set of chemical kinetics called
rate constant-interaction map decomposable (RID) kinetics. RID
kinetic systems are chemical systems with constant rates [23]. In Appendix
A, we define this system formally and we derive the Conditional Complex
Balancing (CCB) property for any poly-PL kinetics on a weakly reversible
network from a general result on RID kinetics.

We recall, from [22], that a generalized mass action system
(GMAS) is a 4-tuple (G,y,y, k) where G is a digraph with n vertices
and ¢ connected components, ¥ maps the complexes into R™, § maps the
reactant complexes to R™ and k is a vector of rate constants. The image
of y can be viewed as the (stoichiometric) complexes of a CRN. The image
of y is the set of kinetic complexes. It was shown in [25] that a PL-RDK
system corresponds to a GMAS with an injective map .

The cornerstone of the theory of Miiller-Regensburger for GMAS sys-
tems [21] is the concept of kinetic deficiency &, which in turn is based on
the concept of a kinetic order subspace S. The kinetic deficiency is defined
asd=n—1— dim(§ ). Recall that for a weakly reversible GMAS system,
the kinetic order subspace S is the span (' — y) where ¥,y are kinetic
complexes of y — ' in R

We extend the concept of kinetic order subspace to a PY-RDK system
as follows: to each reaction, we assign the h-vector of kinetic complexes
of (A, K;) in the direct sum of R™ h-times. Since the system is complex
factorizable, this is also map from the set of reactant complexes of 4. We

define S as follows:

Definition 11. The kinetic order subspace of a poly-PL system is the
direct sum S = 51 +-+ §h, considered as a subspace of the direct sum of
R™ h-times. Here, §j is the kinetic order subspace of the GMAS system
(A, K;) (where j € 1,h). The dimension of the kinetic order subspace,
sj, and the kinetic deficiency, 5~, of the poly-PL system (A4, K) are
defined as § = 3, 4+ -+~ + 5, and 6 = 6y + -+~ + gh, respectively. Here,
5; = dim S, and gj =n—1—3; (for each j € 1,h).

We present partial extensions of the GMAS results to PY-RDK sys-

tems. First, we show that zero kinetic deficiency is sufficient for uncondi-
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tional complex balancing:

Proposition 6. Let (A, K) be a weakly reversible PY-RDK system with
5=0. Then Z (AN, K) # D for any set of rate constants.

Proof. Let (A, K*) be the STAR-MSC transform of (.47, K). Since .4 is
weakly reversible, each .47 is weakly reversible. Moreover, 5=0 implies
that §; = 0. By the GMAS unconditional complex balancing, we have
Zy (A, K;j) # 0 and hence, Z (A7, K5) # (. Since these sets form a -
decomposition of (A%, K7), we have § # Z, (A", K7) = (Z4. (A, Kj).
Therefore, Z, (A, K) # () for any set of rate constants. |

The poly-PL systems in Examples 1 and 2 are weakly reversible PY-
RDK with & = 0. Hence, these systems are unconditionally complexed
balanced. The following corollary illustrates the usefulness of the above

extension:

Corollary. Let (A, K) be a weakly reversible PY-RDK system. If its
canonical PL-representation {IC;} consists of PL-RDK systems with zero
kinetic deficiency, then Z, (AN, K) # () for any set of rate constants.

The STAR-MSC transform (A4*, K*) as a PL-RDK system also has
a kinetic deficiency, which we denote by 5*. We document an interesting

relation to & as well as two other bounds in the following proposition:

Proposition 7. Let (A*, K*) be the STAR-MSC transform of (AN, K).
Then

(i) 6* <h(n—10)—1.
(ii) If h > m, then §*>4.
(ii) If AN is open (i.e., non-mass conserving), then 5 > 6%,

Proof. For the kinetic rank s* we have 1 < s* < m. Hence, h(n—£€)—m <
§* < h(n — £) — 1, which shows (i). For (ii), note that h(n — ¢) — m =
h(n —€) — 5+ (5—m) so that 6 — & > 35 —m > h — m, since 5; > 1. The
assumption that A > m shows the claim. For (iii), by assumption, s = m

and s = s* so that the claim follows as well. [ |
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We introduce equilibria subsets to which the full analogues of the
parametrization and monostationarity results for GMAS systems can be

extended.

Definition 12. The set of PL-equilibria E. p1(4",K) and of PL-
complex balanced equilibria Z, p1, (.4, K) of a poly-PL kinetic sys-
tem are defined as Ey pr(A, K) = (EL(A,K;) and Zy pp (A, K) =
NZ (A, K5).

A PYK system is called PL-complex balanced if () # Z (A, K) =
Zy pr(A, K). The next result is the parametrization of a subset of the

set of complex balanced equilibria:

Proposition 8. For any PY-RDK system with complex balanced equilib-
rium c* € Zy pr(AN,K),

Zpr( N K) = {c € RZ, | In(e) — In(e”) € (5)*}. 3)

Proof. By assumption, for each j € 1,h, ¢* € Z, (A ,K;). By GMAS
parametrization (Prop. 2.21 of [21]), we have Z, (A, K;) = {c € RY, |
In(c) — In(c*) € (S;)*}. This is equivalent to

Zipu( N K) = (V{c € RZy | n() ~In(e") € (§j)i}

:{CER>O|IH n(c*) Eﬂ }
= {c € RY) | In(c) — In(c) € (S)* } since r](g])l
~\L
-(>5) m
Recall that the sign function of a real vector assigns to each coordi-
nate either —1, 1 or 0 depending on whether the coordinate is negative,
positive or zero. When applied to a kinetic vector in R™ x --- x R™, it
can be viewed both as a “long” vector (signg,...,sign;) or a vector of
m-~tuples, since the sign function does not depend on the ambient vector

space. Finally, we obtain the criterion for monostationarity in a restricted

form:
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Proposition 9. A weakly reversible PY-RDK system has at most one
complex balanced PL-equilibrium in a stoichiometric class if and only if

sign(S) Nsign(S)+ = 0.

Proof. We have
sign(S)* = (sign(S1)™*, ... ,sign(Sy)™) and sign(S) = (sign(9), . . . ,sign(S)).

For the forward implication, let ¢* be a PL-equilibrium. It is contained
in each Z, (4", K;) where for each j € 1, h, the sign conditions hold. This
results in the Am O-vector for the overall sign condition. For the backward
direction, if the intersection is the hm 0-vector, we have h m-tupled zero
vectors for the intersections of sign(S) N Sign(fS\;)J—. If we consider S and
S;’s as subspaces of Im Y* (i.e. the map of complexes of 4™ in a single
R™), we can conclude, since the sign values do not change, that (A, K*)
is a weakly reversible PL-RDK system with at most one equilibria in every
stoichiometric class. Since Z (A, K*) = Z, pr(A, K) and S* = S, we

obtain the claim. [ |

Proposition 10. If a weakly reversible PY-RDK system is PL-complex
balanced, i.e., has the property Zy (N, K) = Z1 pr(AN, K), then we have:

(i) Unconditional complex balancing: 5§ =0 if and only if
Z (N, K) # D for any set of rate constants

(i) Parametrization: Z, (4, K) = {c € RY, | In(c) — In(c*) €
(5)*}

(#ii) Monostationarity criterion: The poly-PL kinetic system

(AN, K) is monostationary if and only if sign(S) N sign(S)+ = 0.

4 Weakly reversible poly-PL systems with

zero kinetic reactant deficiency

In this Section, we present the set PY-TIK of poly-PL systems with zero
kinetic reactant deficiency as an interesting example of PL-complex bal-

anced systems with zero kinetic deficiency. We first review briefly the
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results in the special case h = 1, i.e. power law systems. We then present
the Zero Kinetic Reactant Deficiency (ZKRD) Theorem for PY-TIK, from
which the PL-complex balancing property of PY-TIK systems follows. We
conclude with a discussion of particular aspects of PY-TIK systems arising
from the extension of GMAS properties to PL complex balanced systems

presented in Section 3.

4.1 A brief review of concepts and results for h = 1
(PL-TIK systems)

When studying PL-RDK systems, it is more convenient to use the m x n,.
T-matrix rather than the r x m kinetic order matrix: T ;) : =FT 0. where
i =1,....,m,qg = 1,...,r and p is the reactant map. PL-TIK systems
were first identified by Talabis et al [25] as a subset of PL-RDK systems
whose T matrix columns in each linkage class were linearly independent
(PL-LLK, s. Figure 1). Their defining property was the maximal rank of
their augmented T-matrix, e.g. the (mx1) X n, matrix T formed by adding

the characteristic function of reactants per linkage class to the T-matrix.

PL- RDK(N)
PL ILK(N)
PL-FSK(N) PL- TIK(N) /PL -LLK(N)
PL-IRK(N) /PL -TLK(N)
PL-RLK(N)

Figure 1. PL-ILK and related kinetic sets
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Analogues of the Deficiency Zero Theorem (DZT) and the Deficiency
One Theorem (DOT) for mass action systems were derived. While the
DZT is a special case of a general result by Miiller and Regensburger for
GMAS [21], the DOT extension, to our knowledge, remains unique to date.
In parallel, Arceo et al [1] studied the relations of reactant subspaces of
CRN to kinetics and by introducing the concept of reactant deficiency
showed similarities to work on PL-TIK. After a special case was derived
as a “Weak Reversibility Theorem” by Mendoza et al [20], the full Zero
Kinetic Reactant Deficiency (ZKRD) Theorem was established by Talabis
et al [27] where the new characterization of PL-TIK via the concept of

kinetic reactant deficiency was introduced.

4.2 The zero kinetic reactant deficiency (ZKRD) the-
orem for PY-TIK implies PL-complex balancing

Let (A, K) be a PY-RDK system with canonical PL-representation K =
K14 -+ Kp. We now formally define the kinetic reactant deficiency of
(S, K).

For each kinetic order matrix Fj (Vj € 1, h), we define the m x n matrix
§7j defined as:

(}7) o (Fj)m', if j is a reactant complex of reaction r
3lig =
0, otherwise

Definition 13. The mxn, poly T-matrix T} (Vj € 1, k) is the truncated
}7j where the non-reactant columns are deleted. Define the n, x [ matrix

L = [e1,ea,...,e;] where e’ is a characteristic vector for linkage class .Z".
The block matrix T; € Rm+Dxn- (v € T ) is defined as

~

J

T;
LT

(4)
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Definition 14. The block matrix T € R (m+Dxhnr ig defined as

T= (5)

Definition 15. Let .4 be a network with n, reactant complexes and K
a poly-PL kinetics with poly T-matrices T4, ..., T,. If ¢ = rank(f), then

the kinetic reactant deficiency 8 is defined as
S=h-n, —q. (6)

Definition 16. The set PY-TIK consists of all complex factorizable poly-

PL kinetics with zero kinetic reactant deficiency.

We have the following basic relationships between the kinetic reactant
properties of the PY-TIK system and its PL-representation systems. Note
that the block matrices fj is that of the PLK system (4", ;). Set g; and

S\j be its kinetic reactant rank and kinetic reactant deficiency, respectively.

Proposition 11. Let (A, K) be a poly-PL system with canonical PL-
representation K =Ky +--- 4+ Kp. Then

(i) 5= 8\1 +"'+8\h;
(i1) (AN, K) is PY-TIK if and only if each (N, K;) is PL-TIK.
Proof. (i) follows directly from the definition of the block matrix 7' as

direct sum of the fj, which implies & = 8y + - - - + 0p,. (ii) follows from (i)
directly, too. |

We recall from [26] the complex equilibria existence parametriza-
tion and uniqueness statements of the Zero Kinetic Reactant Deficiency
(ZRKD) Theorem for PY-TIK:

Theorem 12. Let (A, K) be a PY-TIK systems, that is, (A, K) has a
complez factorizable kinetics and 5 =0. Then N is weakly reversible if
and only if Z (N ,K) # 0.
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Theorem 13. Let (A, K) a weakly reversible poly-PL kinetic system with
poly T-matrices Ty, ..., Ty and 5 =0. Consider an arbitrary poly T-matriz
Ty

(i) if ZL(N,K)#0 and x* € Z (AN, K) then

Zy (N, K) = {Jc € Rg“log(m) —log(z*) € (gj)l}

(it) if Zy (AN, K) # 0 then | Z1 (A, K)NQ;| =1 for each positive kinetic

reactant flux class Q.
Corollary. A weakly reversible PY-TIK system is PL-complex balanced.

Proof. Since (A,K;) is a weakly reversible PL-TIK, according to the
ZKRD Theorem for PL-TIK [20], it is complex balanced and Z; (A", K;) =
{m € R;f‘log(x) —log(z*) € (gj)J-} . The intersection NZ; (A", K;) is, ac-
cording_to Theorem 13 the intersection of Z (4", K) with itself (h — 1)
times, and hence equal to Z; (A, K). [ |

Running Example - Part 3. Considering the weakly reversible kinetic

system in the running example, ﬁ and fg will be

05 0 2 1
=11 1 =1 0 -1
1 1 11

Computing the ranks of ﬁ and fg, we conclude that (.4, K;)’s are PL-
TIK. Thus, by Proposition 11, (A4, K) is PY-TIK. To illustrate Corollary
4.2, note that

2ok = 2o K = { (S e e} = o)

Hence, (4, K) is PL-complex balanced, i.e,

Z+(</V,K) = Z+’PL(</V,K).
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4.3 PY-TIK properties as PL complex balanced sys-

tems

Am important property that can be inferred from the previous Section’s
results is that PY-TIK systems belong to the set of PY-RDK systems with

zero kinetic deficiency:
Proposition 14. If (A, K) is a PY-TIK system, then 5=0.

Proof. According to the ZKRD Theorem, (4, K) is unconditionally com-
plex balanced, i.e. Z (A, K) # ( for any set of rate constants. According
to Proposition 10, for PL complex balanced systems, this is equivalent to

zero kinetic deficiency property. |

Remark. An alternative proof is provided by using the representation of
the PY-TIK system with PL-TIK systems, and using their Unconditional
Complex Balancing to conclude that their kinetic deficiencies are all 0.

The sum formula for kinetic deficiencies then shows the claim.

In the case of power law systems (h = 1), weakly reversible PL-RDK
systems with zero kinetic deficiency display special properties. For ex-
ample, Johnston [17] showed that complex balanced equilibria of systems
with both network and kinetic deficiencies equal to zero are “translations”
of toric steady states of mass action systems. We expect similar special
properties in the poly-PL case, too. In the following Sections, properties of
PL complex balanced systems regarding linear stability and concentration

robustness will be derived, which naturally also hold for PY-TIK systems.

5 Linear stability of complex balanced PY-
RDK systems

This section utilizes the STAR-MSC transform of a weakly reversible PY-
RDK system in order to expand the results of Boros et al. [3] on linear
stability to a subset of Z, (A4, K) and a subset of PY-RDK system. We

first recall some notions of square matrix stability reviewed in [3].
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Definition 17. Let S be a linear subspace. A square matrix A with
Im A C S is said to be stable on S if all eigenvalues of the linear map
Als : S — S have negative real part. If all eigenvalues of this linear map

have non-positive real part, then the square matrix A is semistable on

S.

Denote the set of diagonal matrices with positive diagonal by D, C
Rmxm'

Definition 18. Let S be a linear subspace. A square matrix A € R™*"™
withIm AC S is

1. diagonally stable on S (respectively, diagonally semi-stable
on ) if there exists P € Dy such that PA+ ATP < 0 on S
(respectively, PA+ AT P <0 on S)

2. D-stable on S (respectively, D-semistable on S) if AD is stable
on S (respectively, semistable on S) for all D € Dy.

3. diagonally D-stable on S (respectively, diagonally D-semistable
on §) if, for all D € D, there exists P € Dy such that PAD +
DATP <0on S (respectively, PAD + DATP <0on S.

Recall that for a differentiable species formation rate function f, the

Jacobian matrix of f at ¢, denoted by J(c¢), is the m x m matrix where
9f5(c)

J(0)]ji = 2.

T = =5

Definition 19. An equilibrium c¢* is linearly stable in its stoichiometric

class ¢* + S if the Jacobian matrix J(c*) is stable on S. We say that ¢* is

diagonally D-stable, diagonally stable, or D-stable in ¢*+ S if J(c*)

is diagonally D-stable, diagonally stable, or D-stable on S, respectively.

One of the main results in [3] was that linear stability of a complex
balanced equilibrium of a GMAS system implies uniqueness in a stoichio-

metric class. The analogous result we have so far is the following:
Theorem 15. Let (AN, K) be a weakly reversible PY-RDK system.

(i) If a PL-complex balanced equilibrium c* is linearly stable, then it

s unique in its stoichiometric class.
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(i1) If (AN, K) is PL-complex balanced, then any linearly stable com-

plex balanced equilibrium is unique in its stoichiometric class.

Proof. To prove (i), note that since ¢* is PL-complex balanced, it is a
complex balanced equilibrium of (4*, K*). Since the latter is dynamically
equivalent to (A, K), ¢* is a linearly stable equilibrium for (A*, K*).
According to the GMAS result (i.e. Theorem 10 of [3]), it is unique in its
stoichiometric class under .4#*. However, since S* = S, it is also unique
in the stoichiometric class of 4. Statement (ii) follows from the equation
Zypu(N,K) = Z (N, K). |

Example 3. The following is a weakly reversible system with two species
X and Y:

1
X 2X
\_/ yx + 2x
2
2
! Ka)=| & 7%
05 0.5(x + )
Y \_/ 2Y
0.5

The system is PY-RDK. An example of monostationary PL-complex
balanced equilibrium is ¢* = (2,2) € NZy(A,K;) = Zy(AN,K) =
{(z,z)|x € R;}. Calculating the Jacobian matrix evaluated at (2,2), we

L

Thus, the eigenvalues are all negative and ¢* is linearly stable.

get

Finally, we briefly state the analogues of Theorems 11 and 13 from [3]
for PL-complex balanced PY-RDK systems on cyclic and weakly reversible

networks respectively.

Theorem 16. Let (A, K) be a PL-complex balanced PY-RDK system on
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a cyclic network. Let A =Y Ap_1V g ,where Vi is the factor map of K
and Agp—1 is the Laplacian map with all rate constants equal to 1. Then

we have the following relationships:

For all rate constants, For all rate constants,
complex balanced equilibria complex balanced equilibria
are diagonally stable = are linearly stable
in their stoichiometric classes. in their stoichiometric classes.
) ()

A is diagonally D-stable on S. = A is D-stable on S.

Theorem 17. Let (A, K) be a PL-complex balanced PY-RDK system
on a weakly reversible network. For each cycle C, let A = YAkCZI\PK
and S be the corresponding stoichiometric subspace. Then we have the

following relationships:

For all rate constants, For all rate constants,
complex balanced equilibria complex balanced equilibria
are diagonally stable = are linearly stable
in their stoichiometric classes. in their stoichiometric classes.
4 4
For all cycles C, For all cycles C,

A% is diagonally D-semistable on S¢. = AC is D-semistable on S°.

6 Concentration robustness in PYK systems

In this section, we derive new results about concentration robustness in
poly-PL systems after reviewing and consolidating previous ones. We be-
gin with balanced concentration robustness (BCR), where the set of com-
plex balanced equilibria is best understood and a simple computation pro-
cedure is available. We then consider sufficient conditions for absolute

concentration robustness in PYK systems .
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6.1 Concentration robustness in poly-PL systems of
CLP type

We recall the general definition of concentration robustness in a species X

over a set of positive equilibria Y.

Definition 20. A kinetic system (.4, K) has concentration robustness in
a species X over a subset Y of positive equilibria if the concentration value

for X is invariant over all equilibria in Y.

Most studied sets have been absolute concentration robustness (ACR)
where Y = E, (A4, K) and balanced concentration robustness (BCR)
when Y = Z, (A, K).

In the following, we first study balanced concentration robustness in
PYK systems of CLP type, i.e. those with Z; (A", K) = {x € R |logx —
logz*| € Pz}, with 2* a given complex balanced equilibrium, Pz the
system’s flux subspace and PZl its parameter subspace. Lao et al derived

the following “Species Hyperplane Criterion for BCR”:

Theorem 18 (Theorem 3.12, [18]). Let (A", K) be a kinetic system, macr
and mpcor be the number of species with ACR and BCR, respectively. If
(A, K) is a weakly reversible CLP system then it has BCR in a species
X if and only if its parameter subspace Py is a subspace of the species

hyperplane {x € R” |xx = 0}. Furthermore, macr < mpcor < s.

The criterion above leads to a simple procedure for determining BCE in
a weakly reversible CLP system. If P4 = 0, then the system has a unique
complex balanced equilibrium, which is trivially equivalent to BCR in all
species. Otherwise, one constructs a basis of PZl7 and and BCR holds in
X if and only if all basis vectors have a zero coordinate in X.

In Proposition 10, we showed that every PL-complex balanced PY-
RDK system is a CLP system with P, = S; + - -- + S,. Hence, balanced
concentration robustness in such PYK systems can be determined by the
results reviewed above.

Proposition 6.4 of [18] shows that the samd conclusion as in Proposition
(10) holds even if the CLP summands are not necessarily PL-RDK. A class
pf such PLK systems is given by the following result of [11]:
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Theorem 19. Let (A, K) be a weakly reversible power law kinetic system
with a complex balanced PL-RDK decomposition 9 : N = M U---U M
with Pz; = S;. If 2 is incidence independent and the induced covering
2 is independent, then (AN, K) is a weakly reversible CLP system with

P;=Y5;.

A PL-NDK system with such PL-RDK decomposition is a subnetwork
of Schmitz’s earth pre-industrial carbon cycle model [10]. Such summands
can be combined with PL-RDK systems to yield PL-complex balanced
PY-NDK systems of CLP type.

If a PL-complex balanced PYK system is absolutely complex balanced,
then ACR in a species if and only if BCR in a species. The case of sys-
tems with positive non-complex balanced equilibria is discussed in the next

section.

6.2 Absolute concentration robustness in poly-PL sys-

tems

We first introduce the analogue of PL-complex balanced PYK systems for

the study of absolute concentration robustness.

Definition 21. A poly-PL system (A4,K) is PL-equilibrated
(PL-complex balanced) if E (A4, K) = Eipre(A,K)
(Z (AN, K)=Z4 prc(A, K)) where

Eypia(A,K) = (| Bo(N K)(Zy pro(A K) = [ Zo(A K))).

jELh jELh

Our aim is to derive sufficient conditions for ACR in species of PL-
equilibrated systems. These will be based on “low deficiency ACR building

blocks” similar to those for PLK systems, which we now briefly recall.

6.2.1 A brief review of ACR in low deficiency PL-RDK systems

The concept of absolute concentration robustness (ACR) was first
introduced by Shinar and Feinberg in their well-cited paper published in

Science [24]. ACR pertains to a phenomenon in which a species in a
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chemical kinetic system carries the same value for any positive steady
state the network may admit regardless of initial conditions. The work of
Shinar and Feinberg is influential largely because they established simple
yet sufficient criteria for a mass action system to exhibit ACR. In [9],
this result is slightly modified to come up with an analogous theorem for
PL-RDK systems.

Fortun and Mendoza [8] further investigated ACR in power law kinetic
systems and derived novel results that guarantee ACR for some classes
of PLK systems. For these PLK systems, the key property for ACR in a
species X is the presence of an SF-reaction pair. A pair of reactions in a
PLK system is called a Shinar-Feinberg pair (or SF-pair) in a species
X if their kinetic order vectors differ only in X. A subnetwork of the PLK
system is of SF-type if it contains an SF-pair in X.

An SF-pair is called linked if both reactions lie in a linkage class. It
is called non-terminal if both reactant complexes do not lie in terminal
strong linkage classes. The following sufficient condition for deficiency
zero PL-RDK systems was derived in [9]:

Theorem 20 (Th. 6, [8]). Let (A, K) be a deficiency zero PL-RDK with
a positive equilibrium. If the system has a linked Sf-pair in a species X,
then it has ACR in X.

We have the following sufficient condition for ACR in larger and higher
deficiency PLK systems [18]:

Proposition 21 (Prop. 5.3, [18]). Let (A, K) be a power law system
with a positive equilibrium and an independent decomposition AN = N1 U
<o U M. If there is a subnetwork (AN;, K;) of deficiency 6; with SF-pair

i species X such that

(i) 0; =0 and (A, K;) is a weakly reversible PL-RDK system with the

SF-pair in a linkage class; or

(ii) 0; = 0, (A, K;) is a PL-RDK system, and the SF-pairs’s reactant

complezes are nonterminal;

then (A, K) has ACR in X.
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Theorem 22 (Shinar-Feinberg Theorem on ACR for PL-RDK systems,
9]). Let A& = (S, €,%) be a deficiency-one CRN and suppose that
(A,K) is a PL-RDK system which admits a positive equilibrium. If

v,y € € are monterminal complexes whose kinetic order vectors differ

only in species X, then the system has ACR in X.

6.2.2 Low deficiency ACR building blocks for PYK systems

The key step is the following extension of the SF-pair concept from PLK
to PYK:

Definition 22. Let {;} the canonical PL-representation of the PYK
system (A, K) and R;, R;; € #. The pair of reactions {R;, R;»} is an SF-
pair in the species X if there is at least one K; where the rows differ in
X. A PYK system with an SF-pair in X is said to be of Shinar-Feinberg
type (SF-type) in X.

An SF-pair is called linked if both reactions lie in a linkage class. It
is called non-terminal if both reactant complexes do not lie in terminal
strong linkage classes.

We derive the deficiency one building block first:

Theorem 23 (SFACR Theorem for PY-RDKpyg). Let {K;} be the canon-
ical PL-representation of a deficiency one (A, K) with K € PY-RDKpLg.
If E.(A,K) # 0 and a non-terminal SF-pair in a species X exists, then
the system has ACR in X.

Proof. We first note that for any kinetic system (4", K) and a decompo-
sition A = M U--- UM, with § # Ef (A, K) = NEL (A, K;), if X has
ACR in (A4, K;), then it has ACR in (A7, K) too. Let (A4, K*) be the
STAR-MSC transform of (4", K). We have E, (A, K;) = B (A", K*),
hence, due to dynamic equivalence, E; (A, K) = E (4™, K*), and PL-
equilibrated implies £ (A7, K*) = NE, (A%, K*). There is at least one
j such that a non-terminal SF-pair for (Jig*, K™*) exists for the deficiency
1 network Jlg* which has a positive equilibrium for the PL-RDK kinetics
K*. Hence the subnetwork .#* has ACR in X. It follows that the whole
network has ACR in X. ]
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An analogous proof can be given for the deficiency zero building block:

Theorem 24 (ACR Theorem for zero deficiency PY-RDKprg). Let {K;}
be the canonical PL-representation of a weakly reversible deficiency zero
(AN,K) with K € PY-RDKprg. If EL(A,K) # 0 and a non-terminal
linked SF-pair in a species X exists, then the system has ACR in X.

Running Example - Part 4. In the running example, the weakly re-

versible deficiency zero system has ACR in X. Computing the set of equi-

E (A, K)= {(iz,y>‘y€R+}-

6.2.3 ACR in larger and higher deficiency PYK systems

libria, we have

We can now provide a sufficient condition for ACR in larger and higher

deficiency PYK systems:

Proposition 25. Let (A, K) be a poly PL- system with a positive equi-

librium and an independent decomposition N = N U---UN. If there is

a subnetwork (A;, K;) of deficiency &; with SF-pair in species X such that

(i) 0; =0 and (A;, K;) is a weakly reversible PY-RDKprg system with
the SF-pair in a linkage class; or

(ii) 6; =0, (A, K;) is a PY-RDKp g system, and the SF-pairs’s reac-

tant complexes are nonterminal;
then (A, K) has ACR in X.

Proof. Since the decomposition is independent, it follows from Feinberg’s
Decomposition Theorem that E, (A4, K) = NE (A4, K;). ACR in X
in the superset of equilibria E (.4}, K;) of a building block implies the

claim. [ |

7 Summary and Outlook

Using tools in chemical reaction network theory (CRNT), this paper as-

sembles relevant results that tackle the dynamical properties of chemical



137

reaction networks endowed with poly-PL kinetics. Poly-PL kinetic sys-
tems consist of nonnegative linear combinations of power law functions.
The main approach used in this paper is the construction of power law
representations of poly-PL systems in order to apply, expand or mimic
existing results in CRNT involving power law kinetic systems. This con-
tribution offers two primary methods in rewriting a poly-PL system into its
power law representation: the canonical PL-representation and the STAR-
MSC representation. Based from these representations, the following main

results are reiterated:

1. For a weakly reversible PY-RDK system, there are rate constants
for which the system is complex balanced. In fact, if its canonical
PL-representation consists of PL-RDK systems with zero kinetic de-
ficiency, then the system is complex balanced for any set of rate of
constants. The parametrization of a subset of the set of complex bal-
anced equilibria is provided in Proposition 8. Further, a necessary
and sufficient condition for the existence of more than one distinct
complex balanced PL-equilibria in a stoichiometric class of a weakly
reversible PY-RDK system is established. All these aforementioned
results form partial extensions of the GMAS results of Miiller and Re-
gensburger [21,22] to a subset of poly-PL kinetics that are reactant-
determined (PY-RDK). Full analogue results for PY-RDK systems
with PL-equilibria and PL-complex balanced equilibria sets are col-

lated and presented in Proposition 10.

2. A class of poly-PL systems called PY-TIK systems that are weakly
reversible were shown to exhibit PL-complex balancing property.
They are precisely the poly-PL systems with zero kinetic reactant

deficiency.

3. STAR-MSC transform of a weakly reversible poly-PL kinetic system
has led us to the extension of the results of Boros et al. [3] on linear
stability to a subset of complex balanced equilibria and a subset of
PY-RDK system.

4. The notions of absolute concentration robustness (ACR) and bal-

anced concentration robustness (BCR) are also extended to PL-
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equilibrated and PL-complex balanced poly-PL kinetic systems, re-
spectively. The results are expansions of the work of Fortun and
Mendoza [8] on deficiency zero ACR, and the detection of ACR and
BCR in larger or higher deficiency networks.

As future perspective, one may look at the extension of the multista-

tionarity algorithm for power law kinetic systems [15] to poly-PL systems.

The results provided in this paper can be further enlarged to include Hill-

type kinetic systems through the transformation introduced in [14].
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Complex Balancing of RID Kinetic Sys-
tems

We derive the Conditional Complex Balancing (CCB) property for any
poly-PL kinetics on a weakly reversible network from a general result on
RID kinetics.
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Definition 23. A rate constant-interaction map decomposable ki-
netics (RIDK) is a kinetics, such that for each reaction R;, the coordinate
function K; : Q — R can be written in the form K;(x) = k;Ix ;(z), with
k; € Ry (called rate constant) and @ C R™. We call the map I : @ — R”
defined by Ik ; as the interaction map.

A poly-PL kinetics K is an RIDK, the interaction Ix being the poly-
PL function. By definition, an RIDK is called complex factorizable if at
each branching point of the network, any branching reaction has the same
interaction [23].

We recall three known facts in a lemma:

Lemma 1. Consider the chemical kinetic system (A, K).

(i) A network A is weakly reversible if and only if Ker I, contains
a positive vector.

(ii) A weakly reversible network A is positive dependent.

(#ii) For any RIDK on a positively dependent network A, there are
rate constants so that (A, K) has a positive equilibrium.

The proofs of (i) and (ii) can be found in [4] and [7], respectively. The
proof in [7] is readily adapted to show (iii).

Theorem 26 (CCB for RIDK on weakly reversible networks). Let K be
an RID kinetics on a weakly reversible network A . Then there exist rate

constants such that (A, K) is complez balanced, i.e. Z (N, K) # 0.

Proof. Since a weakly reversible network is positive dependent, according
to Lemma 1 (ii) and (iii), there are rate constants k such that (.4, K) has
a positive equilibrium z*. Let Ix be the interaction function of K. Fur-
thermore, according to Lemma 1 (i), weak reversibility implies that there is
a positive vector b € Ker I,. Let C = diag (b1/Ix1(x*),..., b/ Ik (%))
and ki = (Ck*)y. Then I, (kI q(27)) = Laq(bg/Ix q(x7))k; K (%) =
k;1,(b) = 0. Hence, for rate constants k;, z* is a complex balanced equi-
librium, and the claim is established. |

B Nomenclature

We list some of the symbols and acronyms used in the paper.

List of Symbols



) Deficiency

K Kinetics of a CRN

Uy Factor map of a kinetics

sum (Bj) Image span sums

I, Incidence map/matrix

J Jacobian matrix

5 Kinetic deficiency

F Kinetic order matrix

A k-Laplacian matrix

Y Map of complexes

Z (N, K Set of complex balanced equilibria

Et pr(A,K) Set of PL-complex balanced equilibria

Ei pr(A,K) Set of PL-equilibria

E.(N,K) Set of positive equilibria

N Stoichiometric matrix
Abbreviations

ACR Absolute concentration robustness

BCR Balanced concentration robustness

CKS Chemical kinetic system

CRN Chemical reaction network

CF Complex factorizable

CCB Conditional complex balancing

GMAS Generalized mass action system

MAK Mass action kinetic

NF Non-complex factorizable

NDK Non-reactant determined kinetics

PLC PL-complex balanced

PLE PL-equilibrated

PY Poly-PL

PYK Poly-PL kinetic system

PL Power law

RID Rate constant-interaction map decomposable

RDK Reactant-determined kinetics

SF Shinar-Feinberg

STAR-MSC S-invariant termwise addition of reactions

via maximal stoichiometric coefficients
UCB Unconditional complex balancing
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