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Abstract

Harary et al. put forward the concept on the minimum cardinal-
ity over all subsets of perfect matching M that are not included by
any other ones, to be the forcing number for M . A counting polyno-
mial for perfect matchings possessing the same forcing number was
introduced by Zhang et al., using the name ‘forcing polynomial’.
This research deduces recurrence formulas of forcing polynomials
for monotonic constructable hexagonal systems and constructable
hexagonal systems with one turning. From them, a characterization
of continuity of forcing spectrum for hexagonal systems with forcing
edges can be derived.

1 Introduction

Given a graph G, denote E(G) and V (G) for its edge set and vertex set,

respectively. A set M of disjoint edges of G is called perfect matching

(or PM for convenience) if it covers all vertices of G. If all the edges of a

cycle appear in M and E(G)\M alternately, then we call it M -alternating
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cycle. Harary et al. [6] introduced the forcing number for M , and Klein

and Randić [7, 11] presented a similar chemical concept as innate degree

of freedom a few years ago.

Some relevant definitions about forcing are as follows. A subset S of

M is defined as its forcing set if it is not included by any other PMs of G.

NamelyM\S is the only PM inG−V (S), whereG−V (S) represents for the

subgraph of G deleting the ends of edges that belong to S. The minimum

cardinality of all forcing sets of M is defined as the forcing number of M ,

and denoted by f(G,M). If an edge forms a forcing set of G, then we call

it a forcing edge. The maximum (resp. minimum) forcing number of G,

denoted by F (G) (resp. f(G)), refers to the maximum (resp. minimum)

value of f(G,M) over all PMs M of G. The forcing numbers of all PMs

of G form its forcing spectrum.

Recently, a related concept called anti-forcing number for M in G was

proposed [8]. In detail, it is the minimum cardinality over all subsets of

E(G) \M , whose removal from G makes M to be the only PM in the rest.

Similar to forcing, anti-forcing edge and anti-forcing spectrum of a graph

could be defined.

In this paper, we mainly talk about hexagonal system, which is a 2-

connected plane graph such that every interior face is a regular hexagon.

A hexagonal system is called constructable, or briefly CHS, if it can be

dissected into m+1 paths P1, P2, . . . , Pm+1 by parallel lines L1, L2, . . . , Lm

that are perpendicular to some of its edges, such that P1 and Pm+1 are

of even length, and all the other paths are of odd length. We can see

that all the hexagons which intersect Li form a linear hexagonal chain for

i = 1, 2, . . . ,m, called the ith row of CHS. For convenience, we always

place CHS satisfying that each Li is horizontal, see Fig. 1.
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Figure 1. A CHS.
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In fact, if two hexagonal systems H and H ′ are isomers and H has

larger F (H) than that of another one H ′, then H is more stable than

H ′. This is because F (H) equals the Clar number [13], namely the max-

imum number of disjoint alternating hexagons. Furthermore, for any PM

M with f(H,M) = F (H), f(H,M) equals the maximum number of dis-

joint M -alternating hexagons [23]. In the following, we will prove that

for monotonic CHS and CHS with one turning, and an arbitrary PM M

of them, f(H,M) coincides with the maximum number of disjoint M -

alternating hexagons. It is worth mentioning that by a similar proof as

that in Ref. [16], one can see that the stated fact holds for general CHS,

and general hexagonal system without coronene as nice subgraph.

Recently, some researchers focused on matching forcing and anti-forcing

problems of CHS. Zhang and Deng showed that the forcing spectrum of

a particular class of CHS presented in this paper, say hexagonal system

with forcing edges, is an integer interval either from 1 to the Clar number

or with only the gap 2 [16]; and the anti-forcing spectra of monotonic CHS

and CHS with one turning are integer intervals [4]. The conclusion of

forcing spectrum can be showed by its forcing polynomial in the following.

If the reader want to know more conclusions about forcing number of a

PM, then one can see from Refs. [2, 17,19,20].

For the sake of distribution for forcing number in PMs, Zhang et al. [18]

introduced the forcing polynomial of a graph G as

F (G, x) =
∑

M∈M(G)

xf(G,M) =

F (G)∑
i=f(G)

ω(G, i)xi, (1)

whereM(G) denotes the collection of all PMs of G, and ω(G, i) represents

for the number of PMs of G with forcing number i. Furthermore, the

forcing spectrum {f(G,M) : M ∈ M(G)} coincides with the collection of

degrees of forcing polynomial F (G, x). Here we make a convention that

F (G, x) = 1 if G contains no vertices, called empty graph. This is because

∅ is the only PM of an empty graph, which has forcing number 0.

Afterwards, forcing polynomials for benzenoid parallelograms [22], cat-

acondensed hexagonal systems [18], rectangle grids [21], and pyrene sys-
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tems [3] were obtained.

In the following text, we will deduce forcing polynomials of two classes

of CHSs. In Section 3, we focus on monotonic CHS using the preliminar-

ies in Section 2. According to which vertical edge in the last row that

belongs to PM, we classify all the PMs and give an edge subset SM that

is contained in some minimum forcing set for PM M in each class. By the

variation of forcing numbers between M and M \ SM , the forcing poly-

nomial was obtained. Similarly, we derive the forcing polynomial of CHS

with one turning in Section 4. As consequences, we get a characterization

of continuity of forcing spectrum for hexagonal systems with forcing edges

and forcing polynomials for some particular examples.

2 Some preliminaries

Given PM M in a graph G, we now give two equivalent definitions of

forcing set, and a method of calculation on forcing number for M .

Theorem 2.1. [1, 12] Let G be a graph possessing a PM M. A subset

S ⊆M is a forcing set of M if and only if each M -alternating cycle of G

intersects S.

From the above theorem we have that the forcing number of M is

bounded below by the maximum number of disjoint M -alternating cycles.

Furthermore, planar bipartite graphs satisfy the lower bound with equality

[10], especially for hexagonal systems.

For S ⊆ M , an edge e of G − V (S) is said to be forced by V (S) if it

is contained in every PM of G − V (S), thus belongs to M . Hence given

S ⊆M and an edge e forced by V (S), we know

f(G− V (S),M \ S) = f(G− V (S)− V (e),M \ (S ∪ {e})).

Let G⊖V (S) denote the subgraph obtained from G−V (S) by deleting the

ends of all the edges forced by V (S), and M ⊖ V (S) = M ∩E(G⊖ V (S))

be a PM of G⊖ V (S). Obviously we can deduce the following lemma.
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Lemma 2.2. Let G be a graph possessing a PM M. A subset S ⊆M is a

forcing set of M if and only if G⊖ V (S) is empty.

Lemma 2.3. Given a graph G possessing a PM M, and a collection C
consisting of disjoint M -alternating cycles of G. Given a subset S ⊆ M,

which consists of precisely one edge from each cycle in C. If V (S) forces

all the other edges in M ∩ E(C), then

f(G,M) = f(G⊖ V (S),M ⊖ V (S)) + |S|.

Proof. Given a minimum forcing set S′ for M ⊖ V (S) in G⊖ V (S). Then

f(G⊖V (S),M ⊖V (S)) = |S′|. Since G⊖V (S∪S′) = (G⊖V (S))⊖V (S′)

is empty, by Lemma 2.2 S ∪ S′ is a forcing set for M in G. Suppose S0

is another forcing set for M in G such that |S0| < |S ∪ S′|. Then either

|S0 ∩ E(G ⊖ V (S))| < |S′|, or |S0 ∩ (E(G) \ E(G ⊖ V (S)))| < |S| = |C|.
By assumption, E(C) ⊆ E(G) \ E(G ⊖ V (S)) can be deduced. It follows

that either S0 ∩ E(G⊖ V (S)) could not be a forcing set for M ⊖ V (S) in

G ⊖ V (S), or C possessing an M -alternating cycle containing no edges of

S0 ∩ (E(G) \ E(G ⊖ V (S))). This implies that there is an M -alternating

cycle inG containing no edges of S0, which contradicts Theorem 2.1. Hence

f(G,M) = |S|+ |S′|.

By the above lemma, from a special collection of disjoint M -alternating

cycles we can find a subset that is contained in some minimum forcing set

of a PM M . In particular, for hexagonal systems we can find a minimum

forcing set directly.

3 Monotonic CHS

A CHS is called left-monotonic (resp. right-monotonic) if the leftmost

hexagon in each row is located on the left (resp. right) to the leftmost

hexagon of the row immediately above. Since inverting a right-monotonic

CHS upside down derives a left-monotonic CHS, we only talk about left

one in the following and call it monotonic CHS for convenience, see Fig.

2. In order to label each hexagon, we suppose the length between the
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center of two adjacent hexagon is 1. Denote the hexagon in the top right

corner by C1,1, and its center by O. From O draw two rays OA and OB

perpendicular to the bottom left oblique edge and the left vertical edge of

C1,1, respectively. For a hexagon with center W , if two lines can be drawn

through W such that one is parallel to OB and intersects OA at the point

WA and the other is parallel to OA and intersects OB at the point WB ,

and the length of OWA and OWB are i and j respectively, then we denote

it by Ci+1,j+1, see Fig. 2.
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Figure 2. CHS(3, 3, 3, 4, 5; 1, 1, 2, 2, 3) with PM (0, 3, 3, 4, 4).

If a monotonic CHS has m(⩾ 1) rows, and the leftmost and rightmost

hexagons in ith row are Ci,ki and Ci,hi respectively (ki+1 ⩾ ki ⩾ hi+1 ⩾ hi

for i = 1, 2, . . . ,m− 1), then we denote it by CHS(k1, k2, . . . , km;h1, h2,

. . . , hm), or briefly CHS({ks;hs}ms=1). Furthermore, for i = 1, 2, . . . ,m

and j = hi, hi + 1, . . . , ki, denote the left vertical edge of Ci,j by ei,j ,

and along the clockwise direction denote the rest edges by li,j , ri,j , ei,j−1,

li+1,j−1, and ri+1,j , see Fig. 2.

In Figs. 3(a-h), we illustrate some special examples of monotonic CHS,

where CHS({ks; 1}ms=1) is a truncated parallelogram, CHS({k; 1}ms=1) is a

benzenoid parallelogram, CHS(k1; 1) is a linear hexagonal chain, CHS(k1,

k2; 1, h2) is a double linear hexagonal chain, CHS(k1, k2, k3; 1, h2, h3) is

a triple linear hexagonal chain, and CHS(1, 2, . . . , k, k; 1, 1, 2, . . . , k) and

CHS(2, 3, . . . , k, k; 1, 2, . . . , k) are zigzag hexagonal chains with even and

odd number of hexagons respectively. And the graph showed in Fig. 3(h) is

a hexagonal chain with n(⩾ 1) maximal linear hexagonal chains, in which

containing r1, r2, . . . , rn (ri ⩾ 2 for i = 1, 2, . . . , n) hexagons in turn.
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Figure 3. Examples of monotonic CHS.

Zhang and Li [14] proved that a CHS has a PM, and every PM of a

CHS has only one vertical edge in every row. An immediate conclusion is

as follows.

Lemma 3.1. [14] We have a bijection g from the set of PMs M of

CHS({ks;hs}ms=1) to the set of non-decreasing sequences (u1, u2, . . . , um)

with ui ∈ {hi − 1, hi, . . . , ki} for 1 ⩽ i ⩽ m. In detail, corresponding

relationship g(M) = (u1, u2, . . . , um) if ei,ui
∈M for 1 ⩽ i ⩽ m.

By the above conclusion, a sequence g(M) could denote a PM M of a

monotonic CHS. Let g(M) = (g1(M), g2(M), . . . , gm(M)). As an example,

(0,3,3,4,4) could denote the PM showed in Fig. 2, by a set of bold lines,

of CHS(3, 3, 3, 4, 5; 1, 1, 2, 2, 3).

In the following, we will give forcing polynomial for CHS({ks;hs}ms=1).

For convenience, from now on we define CHS({bs; ds}is=1) = CHS({bs;
ds}i−1

s=1) if bi < di and i ⩾ 1, and CHS({bs; ds}js=1) as an empty graph if

j = 0. And we make a convention

M({ks;hs}ms=1) =M(CHS({ks;hs}ms=1)),

F ({ks;hs}ms=1) = F (CHS({ks;hs}ms=1), x).

According to different values of gm(M), we divide M({ks;hs}ms=1) into

km − hm + 2 subsets:

Mi({ks;hs}ms=1) = {M ∈M({ks;hs}ms=1) : gm(M) = i}
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for i = hm − 1, hm, . . . , km. By Eq. (1), we have

F ({ks;hs}ms=1) =

km∑
i=hm−1

∑
M∈Mi({ks;hs}m

s=1)

xf(CHS({ks;hs}m
s=1),M)

:=

km∑
i=hm−1

Fi({ks;hs}ms=1). (2)

Theorem 3.2. The forcing polynomial of CHS({ks;hs}ms=1) is

F ({ks;hs}ms=1) =

km−1∑
i=hm−1

F ({min{ks, i};hs}m−1
s=1 )x

+

m∑
j=min{s:ks=km}

F ({min{ks, km − 1};hs}j−1
s=1)x, (3)

where F ({bs; ds}is=1) = F ({bs; ds}i−1
s=1) if bi < di and i ⩾ 1, and F ({bs;

ds}js=1) = 1 if j = 0.

Proof. Given i ∈ {hm− 1, hm, . . . , km− 1} and M ∈Mi({ks;hs}ms=1). On

the one hand em,i belongs to M -alternating hexagon Cm,i+1, and on the

other hand by Lemma 3.1 the edges rm+1,i+1 and lm,i+1 of Cm,i+1 are

forced by V (em,i), see Fig. 4(a). By Lemma 2.3 we know

f(CHS({ks;hs}ms=1),M)

=f(CHS({ks;hs}ms=1)⊖ V (em,i),M ⊖ V (em,i)) + 1

=f(CHS({min{ks, i};hs}m−1
s=1 ),M ∩ E(CHS({min{ks, i};hs}m−1

s=1 ))) + 1.

It follows that

Fi({ks;hs}ms=1)

=
∑

M∈Mi({ks;hs}ms=1)

xf(CHS({min{ks,i};hs}m−1
s=1 ),M∩E(CHS({min{ks,i};hs}m−1

s=1 )))+1

=
∑

M∈M({min{ks,i};hs}m−1
s=1 )

xf(CHS({min{ks,i};hs}m−1
s=1 ),M) · x

=F ({min{ks, i};hs}m−1
s=1 )x. (4)
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Figure 4. (a) CHS({ks;hs}ms=1) ⊖ V (em,i), (b) CHS({ks;hs}ms=1) ⊖
V (rj,km ).

Given M ∈ Mkm
({ks;hs}ms=1). Let p = min{s : ks = km} and j =

min{j : gj(M) = km}. Then p ⩽ j ⩽ m and rj,km
∈M . On the one hand

rj,km
belongs to M -alternating hexagon Cj,km

, and on the other hand by

Lemma 3.1 the edges ej,km
and lj+1,km−1 of Cj,km

are forced by V (rj,km
),

see Fig. 4(b). By Lemma 2.3 we know

f(CHS({ks;hs}ms=1),M)

=f(CHS({ks;hs}ms=1)⊖ V (rj,km
),M ⊖ V (rj,km

)) + 1

=f(CHS({min{ks, km − 1};hs}j−1
s=1),

M ∩ E(CHS({min{ks, km − 1};hs}j−1
s=1))) + 1.

It follows that

Fkm
({ks;hs}ms=1)

=

m∑
j=p

∑
M∈Mkm ({ks;hs}m

s=1)
j=min{j:gj(M)=km}

xf(CHS({min{ks,km−1};hs}j−1
s=1),M∩E(CHS({min{ks,km−1};hs}j−1

s=1)))+1

=

m∑
j=p

∑
M∈M({min{ks,km−1};hs}j−1

s=1)

xf(CHS({min{ks,km−1};hs}j−1
s=1),M) · x

=

m∑
j=p

F ({min{ks, km − 1};hs}j−1
s=1)x. (5)
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Substituting Eqs. (4,5) into Eq. (2), we could obtain Eq. (3).

From the proof above, we can derive the following conclusion and a fast

algorithm to find a minimum forcing set of PM for CHS({ks;hs}ms=1).

Corollary 3.3. [16] For PM M of CHS({ks;hs}ms=1), the forcing number

of M equals the maximum number of disjoint M -alternating hexagons.

Algorithm 3.4.

Input: CHS(k1, k2, . . . , km;h1, h2, . . . , hm) with PM (a1, a2, . . . , am).

Output: A minimum forcing set S of (a1, a2, . . . , am).

(1) Let s← m; t← m; S ← ∅;
while s ⩾ 1 do ls ← ks, s← s− 1.

(2) While t ⩾ 1 do

if lt ⩾ ht then

if at = lt then

i← min{i : ai = at}, j ← i−1, t← i−1, S ← S∪{ri,ai
},

while j ⩾ 1 do lj ← min{lj , li − 1}, j ← j − 1;

else i← t, j ← i− 1, t← i− 1, S ← S ∪ {ei,ai
},

while j ⩾ 1 do lj ← min{lj , ai}, j ← j − 1;

else t← t− 1.

(3) Output S.

For instance, by inputting CHS(3, 3, 3, 4, 5; 1, 1, 2, 2, 3) and PM g(M)

= (0, 3, 3, 4, 4), we could get output {e5,4, r4,4, r2,3, e1,0} showed by a set

of double lines in Fig. 2. On the other hand, we use a set of solid cycles

to illustrate a set of disjoint M -alternating cycles {C5,5, C4,4, C2,3, C1,1}.
Hexagonal systems possessing anti-forcing edges are exactly CHS({ks;

1}ms=1) [9]. From the above theorem, we can derive the forcing polynomial.

For convenience, we make a convention F ({ks}ms=1) = F ({ks; 1}ms=1).

Corollary 3.5. The forcing polynomial of CHS({ks; 1}ms=1) (see Fig.3(a))

is

F ({ks}ms=1)

=

km−1∑
i=0

F ({min{ks, i}}m−1
s=1 )x+

m∑
j=min{s:ks=km}

F ({min{ks, km − 1}}j−1
s=1)x,
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where F ({bs}is=1) = F ({bs}i−1
s=1) if bi = 0 and i ⩾ 1, and F ({bs}js=1) = 1

if j = 0.

Zhang and Deng [16] obtained the continuity of forcing spectrum for

CHS({ks; 1}ms=1) by Z-transform graph, and here we show the result by

degrees of forcing polynomial. For convenience, SD is short for set of

degrees.

Corollary 3.6. [16] The forcing spectrum of CHS({ks; 1}ms=1) is an inte-

ger interval from 1.

Proof. By the induction for the number m of rows. When m = 1, the

conclusion can be obtained by the following Example 3.8. Let m ⩾ 2. By

Corollary 3.5, we have

F ({ks}ms=1) =

km−1∑
i=1

F ({min{ks, i}}m−1
s=1 )x+ x

+

m∑
j=min{s:ks=km}

F ({min{ks, km − 1}}j−1
s=1)x.

By inductive hypothesis, we can derive that SD of F ({min{ks, i}}m−1
s=1 )x is

an integer interval from 2, SD of F ({min{ks, km − 1}}j−1
s=1)x is an integer

interval from 1 or 2, and x has degree 1. Then the forcing spectrum is an

integer interval from 1.

We now give some forcing polynomials of particular monotonic CHSs.

Example 3.7. [22] The forcing polynomial of CHS({k; 1}ms=1) = M(k,m)

(see Fig. 3(b)) is

F ({k}ms=1) =

k−1∑
i=0

F ({i}m−1
s=1 )x+

m∑
j=1

F ({k − 1}j−1
s=1)x,

where F ({b}ns=1) = 1 if b = 0 or n = 0.

From the above recurrence formula, explicit form of forcing polyno-

mial for benzenoid parallelograms can be deduced, which has already been

obtained in Ref. [22].
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Example 3.8. [18] The forcing polynomial of CHS(k1; 1) (see Fig. 3(c))

is

F (k1) =

k1−1∑
i=0

x+ x = (k1 + 1)x.

Example 3.9. The forcing polynomial of CHS(k1, k2; 1, h2) (see Fig.

3(d)) is

F (k1, k2; 1, h2)

=

k2−1∑
i=h2−1

F (min{k1, i})x+

2∑
j=min{s:ks=k2}

F ({min{ks, k2 − 1}}j−1
s=1)x

=

k2−1∑
i=k1

F (k1)x+

k1−1∑
i=h2

F (i)x+ F (h2 − 1)x+ β

=

[
(k2 − k1)(k1 + 1) +

(k1 + h2 + 1)(k1 − h2)

2

]
x2 + α+ β,

where

α =

{
x if h2 = 1,

h2x
2 if h2 ̸= 1,

β =


2x if k2 = k1 = 1,

k2x
2 + x if k2 = k1 ̸= 1,

(k1 + 1)x2 if k2 ̸= k1.

In particular, the forcing polynomials of CHS(k, k; 1, h2) and CHS(k1,

k2; 1, h2) (k ̸= 1, k2 ̸= k1, h2 ̸= 1) are

F (k, k; 1, h2)

=
(k + h2 + 1)(k − h2)

2
x2 + h2x

2 + kx2 + x =
k2 − h2

2 + 3k + h2

2
x2 + x,

F (k1, k2; 1, h2)

=

[
(k2 − k1)(k1 + 1) +

(k1 + h2 + 1)(k1 − h2)

2

]
x2 + h2x

2 + (k1 + 1)x2

=
2k1k2 − k21 − h2

2 + k1 + 2k2 + h2 + 2

2
x2.

Example 3.10. The forcing polynomial of CHS(k1, k2, k3; 1, h2, h3) (see



779

Fig. 3(e)) is

F (k1, k2, k3; 1, h2, h3) =

k3−1∑
i=h3−1

F ({min{ks, i};hs}2s=1)x

+

3∑
j=min{s:ks=k3}

F ({min{ks, k3 − 1};hs}j−1
s=1)x

=γ + χ,

where

γ =



k3−1∑
i=k2

F (k1, k2; 1, h2)x+

k2−1∑
i=k1

F (k1, i; 1, h2)x+

k1−1∑
i=h3−1

F (i, i; 1, h2)x

if h3 ⩽ k1,

k3−1∑
i=k2

F (k1, k2; 1, h2)x+

k2−1∑
i=h3−1

F (k1, i; 1, h2)x if h3 > k1,

χ =


F (k1, k2; 1, h2)x if k3 ̸= k2,

F (k1, k3 − 1; 1, h2)x+ F (k1)x if k3 = k2 ̸= k1,

F (k3 − 1, k3 − 1; 1, h2)x+ F (k3 − 1)x+ x if k3 = k2 = k1.

In particular, we can derive the following forcing polynomials.

F (3, 4, 5; 1, 2, 3) = 2F (3, 4; 1, 2)x+ F (3, 3; 1, 2)x+ F (2, 2; 1, 2)x

=2× 2× 3× 4− 32 − 22 + 3 + 2× 4 + 2 + 2

2
x3

+

[
32 − 22 + 3× 3 + 2

2
x2 + x

]
x+

[
22 − 22 + 3× 2 + 2

2
x2 + x

]
x

=38x3 + 2x2,

F (3, 4, 4; 1, 2, 4) = F (3, 3; 1, 2)x+ F (3, 3; 1, 2)x+ F (3)x

=2

[
32 − 22 + 3× 3 + 2

2
x2 + x

]
x+ 4x2 = 16x3 + 6x2.

Example 3.11. [18] The forcing polynomial of zigzag hexagonal chain Zn
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with n(⩾ 3) hexagons (see Figs. 3(f,g)) is

F (Z2k, x) =F (1, 2, . . . , k, k; 1, 1, 2, . . . , k)

=2F (1, 2, . . . , k − 1, k − 1; 1, 1, 2, . . . , k − 1)x

+ F (1, 2, . . . , k − 1; 1, 1, 2, . . . , k − 2)x

=2F (Z2k−2, x)x+ F (Z2k−3, x)x,

F (Z2k−1, x) =F (2, 3, . . . , k, k; 1, 2, . . . , k)

=2F (2, 3, . . . , k − 1, k − 1; 1, 2, . . . , k − 1)x

+ F (2, 3, . . . , k − 1; 1, 2, . . . , k − 2)x

=2F (Z2k−3, x)x+ F (Z2k−4, x)x.

From Example 3.11, explicit form of forcing polynomial for zigzag

hexagonal chains can be deduced, which has already been obtained in

Ref. [18]. In fact, recurrence formula of forcing polynomial for an arbi-

trary hexagonal chain (see Fig. 3(h)) can be deduced from Eq. (3), which

coincides with that in Ref. [18].

4 CHS with one turning

We now turn to CHS with one turning. It can be obtained from two mono-

tonic CHSs, say CHS({ks;hs}ms=1) and CHS({k′t;h′
t}m

′

t=1) with m,m′ ⩾ 2

and km − hm = k′m′ − h′
m′ . First place the first one in left-monotonic way

and the second one in right-monotonic way, and then paste the mth row of

the first one and them′th row of the second one, see Fig. 5. The pasted row

is called turning row. We denote the CHS by CHS(k1, k2, . . . , km;h1, h2,

. . . , hm|k′1, k′2, . . . , k′m′ ;h′
1, h

′
2, . . . , h

′
m′), or briefly CHS({ks;hs}ms=1|{k′t;

h′
t}m

′

t=1). What’s more, its labels of hexagons and edges follow the corre-

sponding two monotonic ones with only an apostrophe in the second one.

Note that the hexagons in the turning row have two labels, such as Cm,i =

C ′
m′,i−hm+h′

m′
. Denote p(y) = min{p : kp ⩾ y} and q = min{q : k′q = k′m′}.

Similar to Lemma 3.1, we have the following lemma.

Lemma 4.1. [14] We have a bijection g′ from the set of PMs M of

CHS({ks;hs}ms=1|{k′t;h′
t}m

′

t=1) to the set of binary non-decreasing sequences
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Figure 5. The way of obtaining CHS({ks;hs}ms=1|{k′t;h′
t}m

′
t=1).

((u1, u2, . . . , um), (u′
1, u

′
2, . . . , u

′
m′)) with um−hm = u′

m′ −h′
m′ , ui ∈ {hi−

1, hi, . . . , ki}, u′
j ∈ {h′

j−1, h′
j , . . . , k

′
j} for 1 ⩽ i ⩽ m, 1 ⩽ j ⩽ m′. In detail,

corresponding relationship g′(M) = ((u1, u2, . . . , um), (u′
1, u

′
2, . . . , u

′
m′)) if

ei,ui , e
′
j,u′

j
∈M for 1 ⩽ i ⩽ m, 1 ⩽ j ⩽ m′.

By the above conclusion, a binary sequence g′(M) could denote a PM

M of a CHS with one turning. Let g′(M) = ((g11(M), g12(M), . . . , g1m(M)),

(g21(M), g22(M), . . . , g2m′(M))). As an example, ((0,1,1,5),(0,0,3)) may de-

note the PM M in CHS(3, 3, 5, 5; 1, 2, 2, 4|1, 2, 3; 1, 1, 2) illustrated in Fig.

5. In the figure, we also show a minimum forcing set {e′2,0, r4,5, e3,1, e1,0}
of M , and a set {C ′

2,1, C4,5, C3,2, C1,1} of disjoint M -alternating cycles.

For convenience, in the following part we make a convention

H = CHS({ks;hs}ms=1|{k′t;h′
t}m

′

t=1), M =M(H), F = F (H, x).

Now we can give a recurrence formula of F . According to different values

of g1m(M), we divideM into km − hm + 2 subsets:

Mi = {M ∈M : g1m(M) = i}

for i = hm − 1, hm, . . . , km. By Eq. (1), we obtain

F =

km∑
i=hm−1

∑
M∈Mi

xf(H,M) :=

km∑
i=hm−1

Fi. (6)
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Theorem 4.2. The forcing polynomial F of H has the following form:

(1) if either p(km) = m or q = m′, then

F =

km−1∑
i=hm−1

F ({min{ks, i};hs}m−1
s=1 )F ({min{k′t, i− hm + h′

m′};h′
t}m

′−1
t=1 )x

+

m∑
j=p(km)

m′∑
i=q

F ({min{ks, km − 1};hs}j−1
s=1)F ({min{k′t, k′m′ − 1};h′

t}i−1
t=1)x;

(7)

(2) if p(km) < m and q < m′, and the maximal zigzag hexagonal chain

Z starting from Cm,km (see Figs. 3 (f,g)) contains n hexagons (2 ⩽ n ⩽

min{2m− 1, 2km}), namely Z = Cm,kmCm−1,kmCm−1,km−1Cm−2,km−1

Cm−2,km−2 · · ·Cm−⌊n
2 ⌋,km−⌊n−1

2 ⌋, then

F =

km−1∑
i=hm−1

F ({min{ks, i};hs}m−1
s=1 )F ({min{k′t, i− hm + h′

m′};h′
t}m

′−1
t=1 )x

+

m−1∑
j=p(km)

F ({min{ks, km − 1};hs}j−1
s=1)F ({k′t;h′

t}m
′−1

t=1 )x

+

km−1−1∑
i=hm−1−1

m′−1∑
j=q

F ({min{ks, i};hs}m−2
s=1 )F ({min{k′t, k′m′ − 1};h′

t}
j−1
t=1 )x

2

+

km−2∑
i=hm−1−1

F ({min{ks, i};hs}m−2
s=1 )F ({min{k′t, k′m′ − 1};h′

t}m
′−1

t=1 )x2

+

⌊n
2 ⌋−1∑
w=1

m−w−1∑
i=p(km−w)

k′
m′−1∑

j=h′
m′−1

−1

F ({min{ks, km − w − 1};hs}i−1
s=1)

· F ({min{k′t, j};h′
t}m

′−2
t=1 )xw+2

+

⌊n
2 ⌋−1∑
w=1

km−w−2∑
i=hm−w−1−1

F ({min{ks, i};hs}m−w−2
s=1 )

· F ({min{k′t, k′m′ − 1};h′
t}m

′−1
t=1 )xw+2 + δ, (8)
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where

δ =



k′
m′−1∑

j=h′
m′−1

−1

F ({min{ks, km −
n

2
};hs}

m−n
2 −1

s=1 )

· F ({min{k′t, j};h′
t}m

′−2
t=1 )x

n
2 +1 if n is even,

F ({ks;hs}
m−n+1

2
s=1 )F ({min{k′t, k′m′ − 1};h′

t}m
′−1

t=1 )x
n+1
2 if n is odd.

Proof. Given i ∈ {hm−1, hm, . . . , km−1} and M ∈Mi. On the one hand

em,i belongs to M -alternating hexagon Cm,i+1, and on the other hand by

Lemma 4.1 the edges rm+1,i+1 and lm,i+1 of Cm,i+1 are forced by V (em,i),

see Fig. 6(a). By Lemma 2.3 we know

f(H,M) = f(H⊖ V (em,i),M ⊖ V (em,i)) + 1.

Furthermore, from Fig. 6(a) we observe that

H⊖ V (em,i) =CHS({min{ks, i};hs}m−1
s=1 )

∪ CHS({min{k′t, i− hm + h′
m′};h′

t}m
′−1

t=1 ).

It follows that

Fi =
∑

M∈Mi

x · xf(CHS({min{ks,i};hs}m−1
s=1 ),M∩E(CHS({min{ks,i};hs}m−1

s=1 )))

· xf(CHS({min{k′
t,i−hm+h′

m′};h′
t}

m′−1
t=1 ),M∩E(CHS({min{k′

t,i−hm+h′
m′};h′

t}
m′−1
t=1 )))

=
∑

M∈M({min{ks,i};hs}m−1
s=1 )

x · xf(CHS({min{ks,i};hs}m−1
s=1 ),M)

·
∑

M ′∈M({min{k′
t,i−hm+h′

m′};h′
t}

m′−1
t=1 )

xf(CHS({min{k′
t,i−hm+h′

m′};h′
t}

m′−1
t=1 ),M ′)

= F ({min{ks, i};hs}m−1
s=1 )F ({min{k′t, i− hm + h′

m′};h′
t}m

′−1
t=1 )x. (9)

In the remaining part, we calculate Fkm
according to different values

of p(km) and q.

Case 1. p(km) ⩽ m and q = m′. Given M ∈ Mkm
. Let j = min{j :

g1j (M) = km}. Then p(km) ⩽ j ⩽ m and rj,km
∈ M . On the one hand
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,m ie
, 1m iC

+

(a) (b)

, mj kC

, mj kr

, mj ke

1, 1mj kl
+ -

, 1m il
+

1, 1m ir
+ +

Figure 6. (a) H ⊖ V (em,i), and (b) H ⊖ V (rj,km ).

rj,km belongs to M -alternating hexagon Cj,km , and on the other hand by

Lemma 4.1 the edges ej,km and lj+1,km−1 of Cj,km are forced by V (rj,km),

see Fig. 6(b). By Lemma 2.3 we know

f(H,M) = f(H⊖ V (rj,km
),M ⊖ V (rj,km

)) + 1.

Furthermore, from Fig. 6(b) we observe that

H⊖ V (rj,km
) = CHS({min{ks, km − 1};hs}j−1

s=1) ∪ CHS({k′t;h′
t}m

′−1
t=1 ).

Similar to the calculation of Eq. (9), we have

Fkm
=

m∑
j=p(km)

F ({min{ks, km − 1};hs}j−1
s=1)F ({k′t;h′

t}m
′−1

t=1 )x. (10)

Substituting Eqs. (9,10) into Eq. (6), we immediately obtain Eq. (7) in

this case.

Case 2. p(km) = m and q < m′. Since inverting the CHS upside down

derives another one satisfying Case 1, we can derive

Fkm
=

m′∑
i=q

F ({ks;hs}m−1
s=1 )F ({min{k′t, k′m′ − 1};h′

t}i−1
t=1)x. (11)

Substituting Eqs. (9,11) into Eq. (6), we immediately obtain Eq. (7) in

this case.
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Case 3. p(km) < m and q < m′. For 1 ⩽ w ⩽ ⌊n2 ⌋, denote

P (m− w) =
∑

M∈Mkm , g2
m′−1

(M)⩽k′
m′−1, g1

m−i(M)=km−i for 1⩽i⩽w

xf(H,M).

Let M1 = {M ∈ Mkm : g1m−1(M) = km}, M2 = {M ∈ Mkm :

g2m′−1(M) = k′m′}, M3 = {M ∈ Mkm : g1m−1(M) = km, g2m′−1(M) =

k′m′},M4 = {M ∈Mkm : g1m−1(M) ⩽ km − 2, g2m′−1(M) ⩽ k′m′ − 1}, and
M5 = {M ∈ Mkm : g1m−1(M) = km − 1, g2m′−1(M) ⩽ k′m′ − 1}. Then we

have

Fkm =
∑

M∈M1

xf(H,M) +
∑

M∈M2

xf(H,M) −
∑

M∈M3

xf(H,M)

+
∑

M∈M4

xf(H,M) +
∑

M∈M5

xf(H,M)

:=P 1 + P 2 − P 3 + P 4 + P (m− 1). (12)

Given M ∈ M1. Let j = min{j : g1j (M) = km}. Then p(km) ⩽

j ⩽ m − 1 and rj,km
∈ M . In fact, Cj,km

is an M -alternating hexagon

containing rj,km
. Similar to Case 1, by Lemmas 2.3 and 4.1 we can derive

f(H,M) = f(H⊖ V (rj,km
),M ⊖ V (rj,km

)) + 1.

Furthermore, we can observe from Fig. 7(a) that

H⊖ V (rj,km) = CHS({min{ks, km − 1};hs}j−1
s=1) ∪ CHS({k′t;h′

t}m
′−1

t=1 ).

Similar to the calculation of Eq. (9), we have

P 1 =

m−1∑
j=p(km)

F ({min{ks, km − 1};hs}j−1
s=1)F ({k′t;h′

t}m
′−1

t=1 )x. (13)

Given M ∈M2. Similar to the calculation of P 1, we can derive

P 2 =

m′−1∑
j=q

F ({ks;hs}m−1
s=1 )F ({min{k′t, k′m′ − 1};h′

t}
j−1
t=1 )x.
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Figure 7. Illustration of calculations for P 1, P 3 and P 4.

Given M ∈ M3. Let i = min{i : g1i (M) = km} and j = min{j :

g2j (M) = k′m′}. Then p(km) ⩽ i ⩽ m−1, q ⩽ j ⩽ m′−1, and ri,km
, r′j,k′

m′
∈

M . On the one hand ri,km
belongs to M -alternating hexagon Ci,km

, r′j,k′
m′

belongs to M -alternating hexagon C ′
j,k′

m′
, and the two hexagons are dis-

joint. On the other hand by Lemma 4.1 the edges ei,km
and li+1,km−1

of Ci,km
, and the edges e′j,k′

m′
and l′j+1,k′

m′−1 of C ′
j,k′

m′
are forced by

V ({ri,km
, r′j,k′

m′
}), see Fig. 7(b). By Lemma 2.3 we know

f(H,M) = f(H⊖ V ({ri,km
, r′j,k′

m′
}),M ⊖ V ({ri,km

, r′j,k′
m′
})) + 2.

Furthermore, it is observed from Fig. 7(b) that

H⊖ V ({ri,km , r′j,k′
m′
})

=CHS({min{ks, km − 1};hs}i−1
s=1) ∪ CHS({min{k′t, k′m′ − 1};h′

t}
j−1
t=1 ).

Similar to the calculation of Eq. (9), we have

P 3 =

m−1∑
i=p(km)

m′−1∑
j=q

F ({min{ks, km − 1};hs}i−1
s=1)

· F ({min{k′t, k′m′ − 1};h′
t}

j−1
t=1 )x

2,

P 2 − P 3 =

km−1−1∑
i=hm−1−1

m′−1∑
j=q

F ({min{ks, i};hs}m−2
s=1 )

· F ({min{k′t, k′m′ − 1};h′
t}

j−1
t=1 )x

2. (14)
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Given M ∈ M4. Let i = g1m−1(M). Then hm−1 − 1 ⩽ i ⩽ km −
2. In fact, Cm−1,i+1 and C ′

m′,k′
m′

are disjoint M -alternating hexagons

containing em−1,i and r′m′,k′
m′
, respectively. Similar to the calculation of

P 3, by Lemmas 2.3 and 4.1 and Fig. 7(c) we can derive

P 4 =

km−2∑
i=hm−1−1

F ({min{ks, i};hs}m−2
s=1 )F ({min{k′t, k′m′ − 1};h′

t}m
′−1

t=1 )x2.

(15)

It remains to consider P (m − 1). Given M ∈ M5. The value of

P (m−1) varies with different values of n, and we distinguish according to

the following subcases.

Subcase 3.1. n = 2. Then the last hexagon of Z is Cm−1,km
, and

Cm,km−1 is nonexistent, which implies that rm,km−1 is nonexistent. Let

j = g2m′−1(M). Then h′
m′−1 − 1 ⩽ j ⩽ k′m′ − 1. In fact, Cm−1,km

and C ′
m′−1,j+1 are disjoint M -alternating hexagons containing rm,km

and

e′m′−1,j , respectively. Similar to the calculation of P 3, by Lemmas 2.3 and

4.1 and Fig. 8(a) we can derive

P (m− 1)

=

k′
m′−1∑

j=h′
m′−1

−1

F ({min{ks, km − 1};hs}m−2
s=1 )F ({min{k′t, j};h′

t}m
′−2

t=1 )x2.

1, mm kC
-

, mm kr

1, 1m jC
¢- +

¢

´

´

(a) (d)(b) (  )c
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¢
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¢
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¢

¢ ¢
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¢ ¢
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¢
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- -
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¢

¢ ¢
¢

, mm kr
¢

¢ ¢
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- + 2,m ie

-

Figure 8. Illustration of calculation for P (m− 1).

Subcase 3.2. n = 3. Then the last hexagon of Z is Cm−1,km−1, and
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Cm−2,km is nonexistent, which implies that em−2,km−1 is nonexistent. In

fact, Cm−1,km−1 and C ′
m′,k′

m′
are disjoint M -alternating hexagons contain-

ing em−1,km−1 and r′m′,k′
m′
, respectively. Similar to the calculation of P 3,

by Lemmas 2.3 and 4.1 and Fig. 8(b) we can derive

P (m− 1) =F ({ks;hs}m−2
s=1 )F ({min{k′t, k′m′ − 1};h′

t}m
′−1

t=1 )x2.

Subcase 3.3. n ⩾ 4. Then m ⩾ 3, km ⩾ 2, and p(km−w) ⩽ m−w−1
for 1 ⩽ w ⩽ ⌊n2 ⌋ − 1. LetM6 = {M ∈ M5 : g1m−2(M) = km − 1},M7 =

{M ∈ M5 : g1m−2(M) ⩽ km − 3}, and M8 = {M ∈ M5 : g1m−2(M) =

km − 2}. Then we have

P (m− 1) =
∑

M∈M6

xf(H,M) +
∑

M∈M7

xf(H,M) +
∑

M∈M8

xf(H,M)

:=P 6 + P 7 + P (m− 2). (16)

Given M ∈M6. Let i = min{i : g1i (M) = km − 1} and j = g2m′−1(M).

Then p(km−1) ⩽ i ⩽ m−2 and h′
m′−1−1 ⩽ j ⩽ k′m′−1. In fact, Ci,km−1,

Cm−1,km
and C ′

m′−1,j+1 are disjoint M -alternating hexagons containing

ri,km−1, rm,km
and e′m′−1,j , respectively. Similar to the calculation of P 3,

by Lemmas 2.3 and 4.1 and Fig. 8(c) we can derive

P 6 =

m−2∑
i=p(km−1)

k′
m′−1∑

j=h′
m′−1

−1

F ({min{ks, km − 2};hs}i−1
s=1)

· F ({min{k′t, j};h′
t}m

′−2
t=1 )x3. (17)

Given M ∈ M7. Let i = g1m−2(M). Then hm−2 − 1 ⩽ i ⩽ km −
3. In fact, Cm−2,i+1, Cm−1,km−1 and C ′

m′,k′
m′

are disjoint M -alternating

hexagons containing em−2,i, em−1,km−1, and r′m′,k′
m′
, respectively. Similar

to the calculation of P 3, by Lemmas 2.3 and 4.1 and Fig. 8(d) we derive

P 7 =

km−3∑
i=hm−2−1

F ({min{ks, i};hs}m−3
s=1 )F ({min{k′t, k′m′ − 1};h′

t}m
′−1

t=1 )x3.

(18)
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Substituting Eqs. (17,18) into Eq. (16), we obtain P (m− 1) in this case.

Similar to the above three subcases, we deduce P (m− w) =

k′
m′−1∑

j=h′
m′−1

−1

F ({min{ks, km − w};hs}m−w−1
s=1 )F ({min{k′

t, j};h′
t}m

′−2
t=1 )xw+1

if n = 2w,

F ({ks;hs}m−w−1
s=1 )F ({min{k′

t, k
′
m′ − 1};h′

t}m
′−1

t=1 )xw+1 if n = 2w + 1,

m−w−1∑
i=p(km−w)

k′
m′−1∑

j=h′
m′−1

−1

F ({min{ks, km − w − 1};hs}i−1
s=1)

· F ({min{k′
t, j};h′

t}m
′−2

t=1 )xw+2

+

km−w−2∑
i=hm−w−1−1

F ({min{ks, i};hs}m−w−2
s=1 )F ({min{k′

t, k
′
m′ − 1};h′

t}m
′−1

t=1 )xw+2

+ P (m− w − 1) if n ⩾ 2w + 2.

for 1 ⩽ w ⩽ ⌊n2 ⌋. Substituting each P (m − w) into P (m − 1) and

substituting Eqs. (13-15) into Eq. (12), we immediately obtain Fkm
in

this case. Furthermore, substituting the result and Eq. (9) into Eq. (6),

we could get Eq. (8).

From the proof above, we can deduce the following conclusion.

Corollary 4.3. [16] For every PM M in CHS({ks;hs}ms=1|{k′t;h′
t}m

′

t=1),

the forcing number of M coincides with the maximum number of disjoint

M -alternating hexagons.

In Fig. 9, we illustrate some particular examples of CHS with one

turning. Hexagonal systems possessing forcing edges are CHS({ks; 1}ms=1)

and CHS({ks; 1}ms=1|{k′t; 1}m
′

t=1) (see Fig. 9(a)) [5, 15]. For the second

class, from the above theorem we deduce the forcing polynomial and a

characterization of the continuity of forcing spectrum as follows, while by

Z-transform graph Zhang and Deng [16] have already talked about the

forcing spectrum.

Corollary 4.4. [16] The forcing spectrum of CHS({ks; 1}ms=1|{k′t; 1}m
′

t=1)

is an integer interval from 1 if either p(km) = 1 or q = 1, and an integer

interval from 1 with the only gap 2 if p(km) > 1 and q > 1.
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Figure 9. Examples of CHS with one turning.

Proof. From Theorem 4.2, we know that the forcing polynomial has the

following same part no matter what the values of p(km) and q are:

km−1∑
i=1

F ({min{ks, i}}m−1
s=1 )F ({min{k′t, i}}m

′−1
t=1 )x+ x.

By Corollary 3.6 we can derive that SD of F ({min{ks, i}}m−1
s=1 )F ({min{k′t,

i}}m
′−1

t=1 )x is an integer interval from 3, and the second term has degree 1.

For the rest part of the forcing polynomial, denoted by I, we distinguish

according to different values of p(km) and q.

Case 1. p(km) = m and q = 1, or p(km) = 1 and q = m′. By

symmetry, we only need to talk about the first case. By Eq. (7), we know

I =

m′∑
i=2

F ({ks}m−1
s=1 )F ({k′m′ − 1}i−1

t=1)x+ F ({ks}m−1
s=1 )x.

By Corollary 3.6 we have that SD of F ({ks}m−1
s=1 )F ({k′m′ − 1}i−1

t=1)x is an

integer interval from 3, and SD of F ({ks}m−1
s=1 )x is an integer interval from

2, which implies that the forcing spectrum is an integer interval from 1.

Case 2. p(km) = m and 1 < q ⩽ m′, or 1 < p(km) < m and q = m′.

By symmetry, we only need to check the first case. By Eq. (7), we know

I =

m′∑
i=q

F ({ks}m−1
s=1 )F ({min{k′t, k′m′ − 1}}i−1

t=1)x.

By Corollary 3.6 we have that SD of each term is an integer interval from
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3, which implies that the forcing spectrum is an integer interval from 1

with the only gap 2.

Case 3. 1 < p(km) < m and 1 < q < m′. Then m,m′ > 2. By Eq.

(8), we know

I =

m−1∑
j=p(km)

F ({min{ks, km − 1}}j−1
s=1)F ({k′t}m

′−1
t=1 )x

+

km−1−1∑
i=1

m′−1∑
j=q

F ({min{ks, i}}m−2
s=1 )F ({min{k′t, k′m′ − 1}}j−1

t=1 )x
2

+

m′−1∑
j=q

F ({min{k′t, k′m′ − 1}}j−1
t=1 )x

2 + F ({min{k′t, k′m′ − 1}}m
′−1

t=1 )x2

+

km−2∑
i=1

F ({min{ks, i}}m−2
s=1 )F ({min{k′t, k′m′ − 1}}m

′−1
t=1 )x2

+

⌊n
2 ⌋−1∑
w=1

km−w−2∑
i=0

F ({min{ks, i}}m−w−2
s=1 )F ({min{k′t, k′m′ − 1}}m

′−1
t=1 )xw+2

+

⌊n
2 ⌋−1∑
w=1

m−w−1∑
i=p(km−w)

k′
m′−1∑
j=0

F ({min{ks, km − w − 1}}i−1
s=1)

· F ({min{k′t, j}}m
′−2

t=1 )xw+2 + ε, (19)

where

ε =



k′
m′−1∑
j=0

F ({min{ks, km −
n

2
}}m−n

2 −1
s=1 )F ({min{k′t, j}}m

′−2
t=1 )x

n
2 +1

if n is even,

F ({ks}
m−n+1

2
s=1 )F ({min{k′t, k′m′ − 1}}m

′−1
t=1 )x

n+1
2 if n is odd.

By Corollary 3.6, we have that SD of terms in the 1st, 3th and 4th

summations are integer intervals from 3, SD of terms in the 2nd and

5th summations are integer intervals from 4. If ⌊n2 ⌋ ⩾ 2, then the 7th

summation is nonzero. Furthermore for w = 1, 2, . . . , ⌊n2 ⌋ − 1, SD of

F ({min{k′t, j}}m
′−2

t=1 )xw+2 is an integer interval from w + 2 or w + 3, and
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both appear since the existent of j = 0 and j = k′m′ − 1, which implies

that SD of F ({min{ks, km − w − 1}}i−1
s=1)F ({min{k′t, j}}m

′−2
t=1 )xw+2 is an

integer interval from w+2, w+3 or w+4, and the w+3 one must appear.

Hence SD of terms in the 7th summation is an integer interval from 3 or

4 including ⌊n2 ⌋ + 2. Similarly, if ⌊n2 ⌋ ⩾ 2, then SD of terms in the 6th

summation is an integer interval from 4. And SD of ε is an integer interval

from ⌊n2 ⌋+1, ⌊n2 ⌋+2, or ⌊n2 ⌋+3. Then the forcing spectrum is an integer

interval from 1 with the only gap 2.

Case 4. p(km) = 1 and 1 ⩽ q < m′, or 1 < p(km) < m and q = 1. By

symmetry, we only need to talk about the first case. The case of km = 1

can be obtained in the following Example 4.6, and here we suppose km > 1.

Note that if m > km, then n = 2km; if m ⩽ km, then n = 2m− 1. By Eq.

(8), we can derive the forcing polynomial same as Eq. (19). However, we

can rewrite the 1st summation as follows

m−1∑
j=2

F ({min{ks, km − 1}}j−1
s=1)F ({k′t}m

′−1
t=1 )x+ F ({k′t}m

′−1
t=1 )x,

which implies that SD of term is an integer interval from 2. Furthermore,

SD of term in each of the following summation is an integer interval, but

from different values. In detail, from 2, 3 or 4 in the 2nd summation; from

2 or 3 in the 3th summation; from 3 in the 4th summation; from 3 or 4

in the 5th summation if it is nonzero; from 4 in the 6th summation if it is

nonzero and ⌊n2 ⌋ ⩾ 2; from 3 including ⌊n2 ⌋ + 1 in the 7th summation if

⌊n2 ⌋ ⩾ 2; from ⌊n2 ⌋ + 1 or ⌊n2 ⌋ + 2 in ε. Then the forcing spectrum is an

integer interval from 1.

We now give some forcing polynomials of particular CHSs with one

turning.

Example 4.5. If k2 − k1 ⩽ k′2 − k′1, then the forcing polynomial Fb of

CHS(k1, k2; 1, h2|k′1, k′2; 1, h′
2) (see Fig. 9(b)) has the following form:
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(1) if k′2 > k′1, then

Fb =

k2−1∑
i=h2−1

F (min{k1, i})F (min{k′1, i− h2 + h′
2})x

+

2∑
j=p(k2)

F ({min{ks, k2 − 1}}j−1
s=1)F (k′1)x

=

k2−1∑
i=k1

F (k1)F (k′1)x+

k1−1∑
i=k′

1−h′
2+h2

F (i)F (k′1)x

+

k′
1−h′

2+h2−1∑
i=h2

F (i)F (i− h2 + h′
2)x+ λ+ η

= [(k2 − k1)(k1 + 1)(k′1 + 1)

+
(k′1 + 1)(k1 + k′1 − h′

2 + h2 + 1)(k1 − k′1 + h′
2 − h2)

2

+
(k′1 − h′

2 + h2 + 1)(k′1 − h′
2 + h2)(2k

′
1 − 2h′

2 + 2h2 + 1)

6

−h2(h2 + 1)(2h2 + 1)

6
+

(h′
2 − h2)(k

′
1 − h′

2 + 2h2 + 1)(k′1 − h′
2)

2

]
x3

+ λ+ η;

(2) if k′2 = k′1, then

Fb =

k2−1∑
i=h2

F (i)F (i− h2 + h′
2)x+ λ+ F (k′1)x+

k1−1∑
i=0

x2

+

k2−2∑
i=0

F (k′2 − 1)x2 + κ,

= [
k2(k2 + 1)(2k2 + 1)− h2(h2 + 1)(2h2 + 1)

6

+
(h′

2 − h2)(k2 + h2 + 1)(k2 − h2)

2

]
x3 + λ+ (k′1 + k1 + 1)x2 + µ+ κ,
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where

λ =



x if h2 = h′
2 = 1,

h2x
2 if h2 ̸= 1 and h′

2 = 1,

h′
2x

2 if h2 = 1 and h′
2 ̸= 1,

h2h
′
2x

3 if h2 ̸= 1 and h′
2 ̸= 1,

η =



k2(k
′
1 + 1)x3 + (k′1 + 1)x2

if k2 = k1,

(k1 + 1)(k′1 + 1)x3

if k2 ̸= k1,

µ =

{
(k2 − 1)x2 if k′2 = 1,

(k2 − 1)k′2x
3 if k′2 ̸= 1,

κ =

{
k′2x

2 if k2 = 1 or k′2 = 1,

k′2x
3 if k2 ̸= 1 and k′2 ̸= 1.

In particular, we can derive the following forcing polynomials.

F (3, 4; 1, 2|2, 3; 1, 1)

=

[
(4− 3)(3 + 1)(2 + 1) +

(2 + 1)(3 + 2− 1 + 2 + 1)(3− 2 + 1− 2)

2

+
(2− 1 + 2 + 1)(2− 1 + 2)(2× 2− 2 + 2× 2 + 1)− 2(2 + 1)(2× 2 + 1)

6

+
(1− 2)(2− 1 + 2× 2 + 1)(2− 1)

2

]
x3 + 2x2 + (3 + 1)(2 + 1)x3

=30x3 + 2x2,

F (4, 4; 1, 2|3, 4; 1, 2)

=

[
(3 + 1)(4 + 3− 2 + 2 + 1)(4− 3 + 2− 2)

2

+
(3− 2 + 2 + 1)(3− 2 + 2)(2× 3 + 1)− 2(2 + 1)(2× 2 + 1)

6

]
x3

+ 2× 2x3 + 4(3 + 1)x3 + (3 + 1)x2 = 45x3 + 4x2,

F (1, 1; 1, 1|2, 2; 1, 2)

=

[
(1 + 1)(2 + 1)− (1 + 1)(2 + 1)

6
+

(2− 1)(1 + 1 + 1)(1− 1)

2

]
x3

+ 2x2 + (2 + 1 + 1)x2 + 2(1− 1)x3 + 2x2 = 8x2,

F (4, 4; 1, 2|4, 4; 1, 2)

=

[
4(4 + 1)(2× 4 + 1)− 2(2 + 1)(2× 2 + 1)

6

]
x3

+ 2× 2x3 + (4 + 4 + 1)x2 + 4(4− 1)x3 + 4x3 = 45x3 + 9x2.
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Example 4.6. [18] The forcing polynomial Fc of CHS(1, . . . , 1, k; 1, 1, . . . ,

1|1, . . . , 1, k; 1, 1, . . . , 1) (see Fig. 9(c)) has the following form:

Fc =



k−1∑
i=1

F ({1}m−1
s=1 )F ({1}m

′−1
t=1 )x+ x+ F ({1}m−1

s=1 )F ({1}m
′−1

t=1 )x

= kmm′x3 + x if k ⩾ 2,

x+

m−1∑
j=1

F ({1}m
′−1

t=1 )x+

m′−1∑
j=1

x2 + x2 = mm′x2 + x if k = 1.

Example 4.7. The forcing polynomial Fd of CHS(k, . . . , k, k; 1, 1, . . . , 1|
1, . . . , 1, k; 1, 1, . . . , 1) (k ⩾ 2) (see Fig. 9(d)) is

Fd =

k−1∑
i=1

F ({i}m−1
s=1 )F ({1}m

′−1
t=1 )x+ x+

m∑
j=1

F ({k − 1}j−1
s=1)F ({1}m

′−1
t=1 )x

=m′F (M(k,m), x)x−m′x2 + x.

Example 4.8. The forcing polynomial Fe of CHS({k; 1}ms=1|{k; 1}m
′

t=1)

(k ⩾ 2) (see Fig. 9(e)) is

Fe =

k−1∑
i=0

F ({i}m−1
s=1 )F ({i}m

′−1
t=1 )x+

m−1∑
j=1

F ({k − 1}j−1
s=1)F ({k}m

′−1
t=1 )x

+

k−1∑
i=0

m′−1∑
j=1

F ({i}m−2
s=1 )F ({k − 1}j−1

t=1 )x
2 +

k−2∑
i=0

F ({i}m−2
s=1 )F ({k − 1}m

′−1
t=1 )x2

+

min{m−2,k−1}∑
w=1

m−w−1∑
i=1

k−1∑
j=0

F ({k − w − 1}i−1
s=1)F ({j}m

′−2
t=1 )xw+2

+

min{m−2,k−1}∑
w=1

k−w−2∑
i=0

F ({i}m−w−2
s=1 )F ({k − 1}m

′−1
t=1 )xw+2 + ϵ,

where

ϵ =


k−1∑
j=0

F ({j}m
′−2

t=1 )xk+1 if m > k,

F ({k − 1}m
′−1

t=1 )xm if m ⩽ k.
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