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Abstract

Harary et al. put forward the concept on the minimum cardinal-
ity over all subsets of perfect matching M that are not included by
any other ones, to be the forcing number for M. A counting polyno-
mial for perfect matchings possessing the same forcing number was
introduced by Zhang et al., using the name ‘forcing polynomial’.
This research deduces recurrence formulas of forcing polynomials
for monotonic constructable hexagonal systems and constructable
hexagonal systems with one turning. From them, a characterization
of continuity of forcing spectrum for hexagonal systems with forcing
edges can be derived.

1 Introduction

Given a graph G, denote E(G) and V(G) for its edge set and vertex set,
respectively. A set M of disjoint edges of G is called perfect matching
(or PM for convenience) if it covers all vertices of G. If all the edges of a

cycle appear in M and E(G)\ M alternately, then we call it M -alternating
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cycle. Harary et al. [6] introduced the forcing number for M, and Klein
and Randié¢ [7,11] presented a similar chemical concept as innate degree
of freedom a few years ago.

Some relevant definitions about forcing are as follows. A subset S of
M is defined as its forcing set if it is not included by any other PMs of G.
Namely M\ S is the only PM in G-V (.S), where G—V (.S represents for the
subgraph of G deleting the ends of edges that belong to S. The minimum
cardinality of all forcing sets of M is defined as the forcing number of M,
and denoted by f(G, M). If an edge forms a forcing set of G, then we call
it a forcing edge. The mazimum (resp. minimum) forcing number of G,
denoted by F(G) (resp. f(G)), refers to the maximum (resp. minimum)
value of f(G, M) over all PMs M of G. The forcing numbers of all PMs
of G form its forcing spectrum.

Recently, a related concept called anti-forcing number for M in G was
proposed [8]. In detail, it is the minimum cardinality over all subsets of
E(G)\ M, whose removal from G makes M to be the only PM in the rest.
Similar to forcing, anti-forcing edge and anti-forcing spectrum of a graph
could be defined.

In this paper, we mainly talk about hexagonal system, which is a 2-
connected plane graph such that every interior face is a regular hexagon.
A hexagonal system is called constructable, or briefly CHS, if it can be
dissected into m+1 paths Py, Ps, ..., Py,,41 by parallel lines Ly, Lo, ..., Ly,
that are perpendicular to some of its edges, such that P; and P,,41 are
of even length, and all the other paths are of odd length. We can see
that all the hexagons which intersect L; form a linear hexagonal chain for
i =1,2,...,m, called the ith row of CHS. For convenience, we always

place CHS satisfying that each L; is horizontal, see Fig. 1.

Figure 1. A CHS.
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In fact, if two hexagonal systems H and H’ are isomers and H has
larger F'(H) than that of another one H’, then H is more stable than
H'. This is because F(H) equals the Clar number [13], namely the max-
imum number of disjoint alternating hexagons. Furthermore, for any PM
M with f(H,M) = F(H), f(H, M) equals the maximum number of dis-
joint M-alternating hexagons [23]. In the following, we will prove that
for monotonic CHS and CHS with one turning, and an arbitrary PM M
of them, f(H,M) coincides with the maximum number of disjoint M-
alternating hexagons. It is worth mentioning that by a similar proof as
that in Ref. [16], one can see that the stated fact holds for general CHS,
and general hexagonal system without coronene as nice subgraph.

Recently, some researchers focused on matching forcing and anti-forcing
problems of CHS. Zhang and Deng showed that the forcing spectrum of
a particular class of CHS presented in this paper, say hexagonal system
with forcing edges, is an integer interval either from 1 to the Clar number
or with only the gap 2 [16]; and the anti-forcing spectra of monotonic CHS
and CHS with one turning are integer intervals [4]. The conclusion of
forcing spectrum can be showed by its forcing polynomial in the following.
If the reader want to know more conclusions about forcing number of a
PM, then one can see from Refs. [2,17,19,20].

For the sake of distribution for forcing number in PMs, Zhang et al. [18]
introduced the forcing polynomial of a graph G as

F(G)
F(Ga)= Y /@M= 3" w(G,ia, (1)
MeM(G) i=f(G)

where M (G) denotes the collection of all PMs of G, and w(G, i) represents
for the number of PMs of G with forcing number i. Furthermore, the
forcing spectrum {f(G, M) : M € M(G)} coincides with the collection of
degrees of forcing polynomial F(G,xz). Here we make a convention that
F(G,z) = 11if G contains no vertices, called empty graph. This is because
() is the only PM of an empty graph, which has forcing number 0.
Afterwards, forcing polynomials for benzenoid parallelograms [22], cat-

acondensed hexagonal systems [18], rectangle grids [21], and pyrene sys-
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tems [3] were obtained.

In the following text, we will deduce forcing polynomials of two classes
of CHSs. In Section 3, we focus on monotonic CHS using the preliminar-
ies in Section 2. According to which vertical edge in the last row that
belongs to PM, we classify all the PMs and give an edge subset Sy, that
is contained in some minimum forcing set for PM M in each class. By the
variation of forcing numbers between M and M \ Sy, the forcing poly-
nomial was obtained. Similarly, we derive the forcing polynomial of CHS
with one turning in Section 4. As consequences, we get a characterization
of continuity of forcing spectrum for hexagonal systems with forcing edges

and forcing polynomials for some particular examples.

2 Some preliminaries

Given PM M in a graph G, we now give two equivalent definitions of

forcing set, and a method of calculation on forcing number for M.

Theorem 2.1. [1,12] Let G be a graph possessing a PM M. A subset
S C M is a forcing set of M if and only if each M -alternating cycle of G

intersects S.

From the above theorem we have that the forcing number of M is
bounded below by the maximum number of disjoint M-alternating cycles.
Furthermore, planar bipartite graphs satisfy the lower bound with equality
[10], especially for hexagonal systems.

For S C M, an edge e of G — V(5) is said to be forced by V(S) if it
is contained in every PM of G — V(.S), thus belongs to M. Hence given
S C M and an edge e forced by V(S), we know

F(G=V(9), M\ S) = f(G=V(S) = V(e), M\ (SU{e})).

Let GOV (S) denote the subgraph obtained from G —V(S) by deleting the
ends of all the edges forced by V(S), and M o V(S) =M NE(GoV(S))
be a PM of G © V(S). Obviously we can deduce the following lemma.
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Lemma 2.2. Let G be a graph possessing a PM M. A subset S C M is a
forcing set of M if and only if G © V(S) is empty.

Lemma 2.3. Given a graph G possessing a PM M, and a collection C
consisting of disjoint M -alternating cycles of G. Given a subset S C M,
which consists of precisely one edge from each cycle in C. If V(S) forces
all the other edges in M N E(C), then

f(G,M)=f(GoV(S),MaoV(S)+]S|

Proof. Given a minimum forcing set S” for M © V(S) in G © V(S). Then
f(GoV(S),MoV(S)) =15 Since GoV(SUS") =(GoV(S))oV(s)
is empty, by Lemma 2.2 S U S’ is a forcing set for M in G. Suppose Sy
is another forcing set for M in G such that |Sp| < |S U S’|. Then either
1So N E(G o V(9))] <[5, or [So N (E(G) \ E(G 0 V(5)))| <[S] =I[C].
By assumption, E(C) C E(G) \ E(G © V(S)) can be deduced. It follows
that either Sp N E(G © V(S)) could not be a forcing set for M © V(S) in
G o V(S), or C possessing an M-alternating cycle containing no edges of
So N (E(G)\ E(Go V(S))). This implies that there is an M-alternating
cycle in G containing no edges of Sy, which contradicts Theorem 2.1. Hence

(G, M) = [S] +[5]. u

By the above lemma, from a special collection of disjoint M-alternating
cycles we can find a subset that is contained in some minimum forcing set
of a PM M. In particular, for hexagonal systems we can find a minimum

forcing set directly.

3 Monotonic CHS

A CHS is called left-monotonic (resp. right-monotonic) if the leftmost
hexagon in each row is located on the left (resp. right) to the leftmost
hexagon of the row immediately above. Since inverting a right-monotonic
CHS upside down derives a left-monotonic CHS, we only talk about left
one in the following and call it monotonic CHS for convenience, see Fig.

2. In order to label each hexagon, we suppose the length between the
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center of two adjacent hexagon is 1. Denote the hexagon in the top right
corner by Cy 1, and its center by O. From O draw two rays OA and OB
perpendicular to the bottom left oblique edge and the left vertical edge of
Ch,1, respectively. For a hexagon with center W, if two lines can be drawn
through W such that one is parallel to OB and intersects O A at the point
W4 and the other is parallel to OA and intersects OB at the point W,
and the length of OW 4 and OWp are i and j respectively, then we denote
it by Ciy1,j41, see Fig. 2.

Figure 2. CHS(3,3,3,4,5;1,1,2,2,3) with PM (0,3,3,4,4).

If a monotonic CHS has m(> 1) rows, and the leftmost and rightmost
hexagons in ith row are C; i, and C; p, respectively (k41 > ki > hip1 = hy
for i =1,2,...,m — 1), then we denote it by CHS(k1,ka, ..., km;h1, ha,

.yhp), or briefly CHS({ks; hs}7;). Furthermore, for i = 1,2,...,m
and j = hy,hy +1,...,k;, denote the left vertical edge of C;; by e; ;,
and along the clockwise direction denote the rest edges by I; ;, i ;, €1,
lit1,j—1, and 7341 j, see Fig. 2.

In Figs. 3(a-h), we illustrate some special examples of monotonic CHS,
where CHS({ks; 1}7%,) is a truncated parallelogram, CHS({k;1}7-,) is a
benzenoid parallelogram, C'HS(k1; 1) is a linear hexagonal chain, CHS(k1,
ka;1,hy) is a double linear hexagonal chain, CHS(ky, k2, k3; 1, ha, h3) is
a triple linear hexagonal chain, and CHS(1,2,...,k,k;1,1,2,...,k) and
CHS(2,3,...,k,k;1,2,... k) are zigzag hexagonal chains with even and
odd number of hexagons respectively. And the graph showed in Fig. 3(h) is
a hexagonal chain with n(> 1) maximal linear hexagonal chains, in which

containing r1,r9,...,7, (r; = 2 for i =1,2,...,n) hexagons in turn.



773

S0l0EC00 S
o IR
380 O

(d)

Figure 3. Examples of monotonic CHS.

Zhang and Li [14] proved that a CHS has a PM, and every PM of a
CHS has only one vertical edge in every row. An immediate conclusion is

as follows.

Lemma 3.1. [14] We have a bijection g from the set of PMs M of
CHS({ks; hs}t) to the set of non-decreasing sequences (u1,usa, ..., Un)
with u; € {h; — 1, hyy ..., ki} for 1 < i < m. In detail, corresponding
relationship g(M) = (uy,Ua, ..., Um) if €4, € M for 1 <i<m.

By the above conclusion, a sequence g(M) could denote a PM M of a
monotonic CHS. Let g(M) = (g1(M), g2(M), ..., gm(M)). As an example,
(0,3,3,4,4) could denote the PM showed in Fig. 2, by a set of bold lines,
of CHS(3,3,3,4,5:1,1,2,2,3).

In the following, we will give forcing polynomial for CHS ({ks; hs}T ).
For convenience, from now on we define CHS({bs;ds}._;) = CHS({bs;

d Y2l if by < d; and i > 1, and CHS({bs;ds}_,) as an empty graph if

j = 0. And we make a convention

M({ks; hs i) = M(CHS({ks; hs }iL1)),
F({ks; hs}ity) = F(CHS({ks; hs}Ly), @)

According to different values of g, (M), we divide M({ks;hs}72,) into
Kk — R + 2 subsets:

Mi({ks; hstorr) = {M € M({ks; hs}ily) : gm(M) = i}
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for i =hy — 1, b, ..., km. By Eq. (1), we have

km

F({ksiha} i) = D 2wl
t1=hpm—1 MeM;({ks;hs}T )
o

Z Fi({ks; hs}l0)- (2)

i=hy, —
Theorem 3.2. The forcing polynomial of CHS({ks; hs}iy) is

km—1

F(lkaiho}) = 2 F(fmin{ky, ik ho}750)a
i=hm,—1

+ > F({min{kq, kp, —1}:h ¥ Dz, (3)
j=min{s:ks=kn }
where F({bs;ds}.y) = F({bs;ds}.25) if by < di and i > 1, and F({bs;
d}_) =1ifj=0.

Proof. Given i € {hy, — 1, humy ...,k —1} and M € M;({ks; hs}72q). On
the one hand e, ; belongs to M-alternating hexagon Cy, 11, and on the
other hand by Lemma 3.1 the edges rp41,:+1 and Ly, ;41 of Cy, 41 are
forced by V(em.:), see Fig. 4(a). By Lemma 2.3 we know

F(CHS({ks; hs}ity), M)
=f(CHS({ks; hs}ily) © V(emi) MoV(ens))+1
=f(CHS({min{k,,i}; hs} "), M 0 E(CHS({min{k,,i}; hs}™3"))) + 1.

It follows that

Fi({ks§ hs}gnzl)

xf(CHS({min{ks,i};hs}gql),MmE(CHS({min{ks,z‘};hs}g;*11)>>+1
MeM;({ks;shs}TL )
: . m—1
_ Z pF(CHS{min{ks,i}:shs}(170),M)
MeM({min{ks,i}:hs}T")

— F({min{k., i}; ha} 15 e (4)
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(b)

Figure 4. (a) CHS({ks; hs}™ 1) © V(em,i), (b) CHS({ks; hs}T ) ©
V(i km)-

Given M € My, ({ks;hs}?q). Let p = min{s : ks = k,,} and j =
min{j : g;(M) =k, }. Then p < j <m and rj, € M. On the one hand
Tj k., Delongs to M-alternating hexagon Cj . , and on the other hand by

Lemma 3.1 the edges e, ,, and lj+1,k,,—1 of C;, are forced by V(r;x, ),

m

see Fig. 4(b). By Lemma 2.3 we know

F(CHS({ks; ho}iLy), M)
=f(CHS({ks; hs}7) OV (rjn, ), MOV (rjp, ) + 1
=(CHS({min{ky, km — 1} hs}21),

M N E(CHS({min{ky, kn — 1}; b} 7)) + 1.

It follows that
ka({ks§ hs}gnzl)

J=p MeMy,, {ks;hs}iq)
Jj=min{j:g; (M)=k}

pH(CHS{min{ks K —1}:h: 1 21), MOE(CHS ({min{ks km —1}5hs }21))+1

Z pN(CHS{min{ky kn—1}:h}21),M) |,

P MeM({min{ks,km—1};hs}2 1)

M-

J

F({min{ky, ky, —1}; ho 2] ). (5)

M-

.
I

P
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Substituting Eqgs. (4,5) into Eq. (2), we could obtain Eq. (3). |

From the proof above, we can derive the following conclusion and a fast
algorithm to find a minimum forcing set of PM for CHS({ks; hs}721).

Corollary 3.3. [16] For PM M of CHS({ks; hs}71), the forcing number

of M equals the maximum number of disjoint M -alternating hexagons.

Algorithm 3.4.
Input: CHS(k1,ka, ..., kmn;hi, ho, ..., hy) with PM (a1, a9,...,am).
Output: A minimum forcing set S of (ay,as,...,am).
(1) Let s+ m; t < m; S <+ 0;
while s > 1do g + k;, s+ s—1.
(2) While ¢t > 1 do
if I; > hy then
if a; = [; then
i min{i:a; =a},ji—1,ti—1,5« SU{riq},
while j > 1do l; + min{l;,l; — 1}, j +j—1;
elsei<«t j+i—1,t«i—1, 5« SU{eiqa}
while j > 1do l; < min{l;,a;}, j < j— 1;
elset +t—1.
(3) Output S.

For instance, by inputting CHS(3,3,3,4,5;1,1,2,2,3) and PM g(M)
= (0,3,3,4,4), we could get output {es 4,74.4,723,€1,0} showed by a set
of double lines in Fig. 2. On the other hand, we use a set of solid cycles
to illustrate a set of disjoint M-alternating cycles {Cs 5,C44,C23,C11}.

Hexagonal systems possessing anti-forcing edges are exactly CHS({ks;
1}7 1) [9]. From the above theorem, we can derive the forcing polynomial.

For convenience, we make a convention F'({ks}72,) = F({ks;1}72,).

Corollary 3.5. The forcing polynomial of CHS({ks;1}7) (see Fig.3(a))

18

F({ks}ey)

Ko —1 A
= Z F({min{k,,i}}" "z + Z F({min{k, ky,, —1}}2 27z,
i=0

j=min{s:ks=km }
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where F({bs}'\_,) = F({bs}'ZY) if by = 0 and i > 1, and F({b;}’_,) =1
if 7 =0.

Zhang and Deng [16] obtained the continuity of forcing spectrum for
CHS({ks;1}7) by Z-transform graph, and here we show the result by

degrees of forcing polynomial. For convenience, SD is short for set of

degrees.

Corollary 3.6. [16] The forcing spectrum of CHS({ks; 1} ) is an inte-

ger interval from 1.

Proof. By the induction for the number m of rows. When m = 1, the
conclusion can be obtained by the following Example 3.8. Let m > 2. By

Corollary 3.5, we have

km—1

F({ks}l1) = Z F({min{k,, i}}25 e + @

+ > F({min{k, ky, — 1}}22])a.
j=min{s:ks=km, }
By inductive hypothesis, we can derive that SD of F({min{ks,i}}" ") is
an integer interval from 2, SD of F({min{ks, k., — 1}}1;%)33 is an integer
interval from 1 or 2, and x has degree 1. Then the forcing spectrum is an

integer interval from 1. |

We now give some forcing polynomials of particular monotonic CHSs.

Example 3.7. [22] The forcing polynomial of CHS({k;1}7,) = M(k,m)
(see Fig. 3(b)) is

k—1 m
F({RYL) =) FU e+ ) F({k— 110,
i=0 j=1

where F({b}"_)=1ifb=0 orn=0.

From the above recurrence formula, explicit form of forcing polyno-
mial for benzenoid parallelograms can be deduced, which has already been
obtained in Ref. [22].
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Example 3.8. [18] The forcing polynomial of CHS(k1;1) (see Fig. 3(c))
18

ki1—1

F(ky) = Zx+x:(k1—|—1)a:.

=0

Example 3.9. The forcing polynomial of CHS(k1,ka;1,ha) (see Fig.

3(d)) is
F(kl, ]{ZQ; ]., hQ)
ko—1 2
> F(min{ky,i})x + > F({min{ks, ky — 1} ¥ 1)z
i=ho—1 j=min{s:ks=ka}
ka—1 ki—1
:Z klx—l—z i+ F(he —1)z+
1=k, 1=ho

22 +a+8,

B (k1 + ho + 1) (k1 — ho)
= [(kz—kl)(k1+1)+ 5 ]

where
2x Zf kg = ]{11 = 1,
x if ho =1,
a = ﬂ: k2x2+x ka2:]€17£17
h2x2 thg 7é 1, 9
(1{31 + 1)37 if ko #£ kq.

In particular, the forcing polynomials of CHS(k, k; 1, ha) and CHS(kq,
kg; 1,h2) (k‘ 7é 1, kQ 75 ]{71, h2 7é 1) are

F(k7k;1ah2)
iy k2 —h2+3k+h
:(k+h2+21)(k 2)m2+h2x2+kx2+x: 2;3 = 2%+,

F(ky, k251, ha)

(k1 + ho + 1) (k1 — ho)
2

_ 2kykg — k¥ — h3 + k1 + 2ky + ho + 212

— 5 .

= (k’g — kl)(kl + 1) + I2 + h21‘2 + (kl + 1)1’2

Example 3.10. The forcing polynomial of CHS(ky, ko, k3; 1, ho, hs) (see



779

Fig. 3(e)) is

ks—1
F(ky, kg, ki 1, ho,hg) = > F({min{k,, i} ha}2 )z
i=hz—1
3
+ > F({min{k,, ks — 1}; h} -1z
j=min{s:k;=ks}

=YX

where
ks—1 ko—1 ky—1
N7 F(kykasLho)z+ Y Flkyyislho)z+ Y F(iiz1 ho)z
i=ks i=k i=hg—1

v = Zf h3 < kla
ks—1 ko—1
D Pk kol ho)z+ Y FlkisLho)e if hy > ki,
i=ks i=hg—1
F(ky,ko; 1, ho)x if ks # ko,

x = F(k1, ks — L1, he)x + F(kr)x if ks = ko # k,
F(kg—1,I€3—l;l,hg)x+F(/{53—1)$+$ ifk3=k2=k1.

In particular, we can derive the following forcing polynomials.

F(3,4,5;1,2,3) = 2F(3,4;1,2)x + F(3,3;1,2)z + F(2,2;1,2)x
y 2x3x4-32-224342x4+2+2 4
X

2

32-224+3x3+2 ,
5 r+r|lr+

=2

22 -224+3x%x2+4+2 ,
B) x

+x|x

=38z3 + 222,
F(3,4,4;1,2,4) = F(3,3;1,2)z + F(3,3;1,2)x + F(3)x
s [32—22+3><3+2

5 z2 + J:] x + 422 = 1623 + 622

Example 3.11. [18] The forcing polynomial of zigzag hexagonal chain Z,,
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with n(> 3) hexagons (see Figs. 3(f,g)) is

F(Zog,x) =F(1,2,...,k, k;1,1,2,... k)

—2F(1,2,... k—1,k—1:1,1,2,... .k — 1)
FFQ,2,. . k—11,1,2,. . k=2

=2F(Zog—2,2)x + F(Zap—3,x)z,

F(Zopr,2) =F (2,3, ... k,k:1,2,. .., k)

—2F(2,3,... k—1,k—1:1,2,....k — 1)z
FE2,3,. . k—1:1,2,. . k—2)

=2F(Zak—3,2)x + F(Zag—4, ).

From Example 3.11, explicit form of forcing polynomial for zigzag
hexagonal chains can be deduced, which has already been obtained in
Ref. [18]. In fact, recurrence formula of forcing polynomial for an arbi-
trary hexagonal chain (see Fig. 3(h)) can be deduced from Eq. (3), which
coincides with that in Ref. [18].

4 CHS with one turning

We now turn to CHS with one turning. It can be obtained from two mono-
tonic CHSs, say CHS({ks; hs}",) and CHS({kl; h;}™ ) with m,m’ > 2
and ky,, — hy, = kI, — h!,. First place the first one in left-monotonic way
and the second one in right-monotonic way, and then paste the mth row of
the first one and the m/th row of the second one, see Fig. 5. The pasted row
is called turning row. We denote the CHS by CHS(k1, ks, ..., km;h1, ha,
c h K RS, KL Ry R, R, or briefly CHS ({ks; hs Yoiq |{k};
h;};’il) What’s more, its labels of hexagons and edges follow the corre-
sponding two monotonic ones with only an apostrophe in the second one.
Note that the hexagons in the turning row have two labels, such as C,, ; =
Cfn',i—herh;n,

Similar to Lemma 3.1, we have the following lemma.

. Denote p(y) = min{p : k, > y} and ¢ = min{q : k;, = k. }.

Lemma 4.1. [14] We have a bijection g' from the set of PMs M of
CHS({kg; hs }™ |{k}; RLYTL) to the set of binary non-decreasing sequences
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Figure 5. The way of obtaining CHS({ks; hs }7 [{k}; A} 1124 ).

(w1, ugy oy, (W, by, oo ul)) with W — by, = ul,, — b, u; € {h; —
Lk, ki}, uy € {RG=1,R%, . KL} for 1 <i<m, 1< j <m'. In detail,
corresponding relationship g'(M) = ((u1,u2, ..., um), (u), ub, ..., ul.)) if

€z‘,u“€;,u; eM for1<i<m,1<j<m.

By the above conclusion, a binary sequence g'(M) could denote a PM
M of a CHS with one turning. Let ¢'(M) = ((g1 (M), g3(M), ..., gL, (M)),
(g3 (M), g3(M),...,g2,(M))). As an example, ((0,1,1,5),(0,0,3)) may de-
note the PM M in CHS(3,3,5,5;1,2,2,4|1,2,3;1,1,2) illustrated in Fig.
5. In the figure, we also show a minimum forcing set {6/270,7”4’5, €3.1,€1,0}
of M, and a set {C3 1,Cy5,C32,C1 1} of disjoint M-alternating cycles.

For convenience, in the following part we make a convention
H = CHS({kssha} Sl (ks M}20). M= M(H), F=F(H.z).

Now we can give a recurrence formula of F. According to different values
of gL, (M), we divide M into k,, — h,, + 2 subsets:

M;={M e M: g, (M) =i}

for i =hy — 1, b, - ., km. By Eq. (1), we obtain

Km km
F = Z Z g M) — Z Fi. (6)

i=hp—1 MeM; i=hpy—1
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Theorem 4.2. The forcing polynomial F of H has the following form:
(1) if either p(ky,) =m or g =m’, then

km—1
F= " F({min{ks,i}; 75" F({min{k;, i — b + bl s b e

i=hm—1

+ Y > F({min{ky, ke — 1} s H ) F({mindky, k), — 11 hy2 e

j=p(km) i=q

(7)

(2) if p(km) < m and ¢ < m’, and the maximal zigzag hexagonal chain
Z starting from Cy, 1., (see Figs. 8 (f,g)) contains n hexagons (2 < n <
min{2m — 1,2k, }), namely Z = Cyy k,. Crn—1 k., Cn—1.k, —1Crm—2.k,, —1
Om—2kbn=2""" O3] b= 252> thER

m

Kon—

Z F({min{ks,}; hs ) ({min{k}, ¢ — hp + o }s By ;il_l)z

1=hy, —

—1
+ Z F({min{ks, ky, — 1},hs}i;%)F({k£,h; ?1:,;1)33
J=p(km)
km—1—1 m’—1
+ Y Y F({minfks, i}; he} 252 F({min{kf, kj,, — 1384}
i=hm-1—1 j=q
km—2

+ Y F({min{ks, i}; b} 52 F({min{ky, kl, — 1} by t)a?

i=hpm_1—1
-1

I.% - m—w-—1 k;nlfl
+ >y Z F({min{kq, kp, —w — 1}; hs}121)

=1 i=p(kpm—w)j=n’ , -1

F({min{ky, j}; by} et
I.%J_l kpm—w—2

+ Z F({min{ks,i}; hs} ™" "?)

w=1 i=hpy_—w-1—1

F({min{ky, ky,, — 1}; by} =1 ) w24, (8)
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where
Kl ,—1
> P(min{ke b — )b 5
5— j=h',  —1 /
- F({min{k{, j}; by ?;fz)xgﬂ if n is even,
_ntl , n
F({h )5 VP ({min{k), Ky — 1R TY ™R if s odd.

Proof. Giveni € {hy, — 1,y .., kyy—1} and M € M;. On the one hand
em,; belongs to M-alternating hexagon Cy, ;11, and on the other hand by
Lemma 4.1 the edges 7p,4+1,i+1 and Ly, ;41 of Cyy, 441 are forced by V(e ),
see Fig. 6(a). By Lemma 2.3 we know

fH, M) = f(HOV(em,i), M OV(em,)) +1.
Furthermore, from Fig. 6(a) we observe that

HOV(em:) =CHS({min{ks,i}; hs}75")
UCHS({min{k},i — by + B, BT,

It follows that

Fi = Z z - pf (CHS{min{k.,i}:h} 51, MOE(CHS ({min{k,,i}:he}1251)))
MeM;

S (CHS{min{k}i—hm-+hl,, Sk} ), MOE(CHS({min{k}i—hm-+hl, ik )

m
- Z 2 - pf (CHS({min{k,i};hs} 250 1), M)
MeM({min{ks,i};hs }700)
Z L (CHS{min{ki—hom 1, ik} YT, M)
. . r_
M’ e M({min{k} i—hm-+h! ,};h 37T

= F({min{k,,i}; hs} "5 F({min{k), i — hp + h', b R, (9)

In the remaining part, we calculate F,  according to different values
of p(k,) and q.

Case 1. p(k,) < mand ¢ =m'. Given M € My, . Let j = min{j :
9j (M) = ky,}. Then p(ky,) < j < m and rjx, € M. On the one hand
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Figure 6. (a) H O V(em,i), and (b) H OV (rj k,,)-

Tj k., Delongs to M-alternating hexagon Cj ., and on the other hand by

Lemma 4.1 the edges € ,, and l41 ,,—1 of Cj, are forced by V(rj,.),

m

see Fig. 6(b). By Lemma 2.3 we know
JHM)=f(HoV(rjk,) . MoV(rj,)) + 1.
Furthermore, from Fig. 6(b) we observe that
HOV(rjk,) = CHS{min{ks, by — 1} ha Y2} U CHS({kj; 7).

Similar to the calculation of Eq. (9), we have

m
Fio= > F{min{ke b — Db HIDF({G YA e (10)
J=p(km)
Substituting Eqgs. (9,10) into Eq. (6), we immediately obtain Eq. (7) in
this case.
Case 2. p(k,,) = m and ¢ < m’. Since inverting the CHS upside down
derives another one satisfying Case 1, we can derive

Frn = ) F({kas b 25D F({mindky, k], — 15k} 2D (11)
i=q

Substituting Eqgs. (9,11) into Eq. (6), we immediately obtain Eq. (7) in

this case.



785

Case 3. p(kn,) <m and ¢ <m’. For 1 <w < |§], denote

P(m—w) = E A
MeMy,,, 92,1 (MK, ,—1, gk _;(M)=ky,—i for 1<i<w

m/ —

Let M' = {M € My, : gn1(M) = kp}, M* = {M € My, :
Goy 1 (M) = ki, MP = {M € My, : g, (M) = kp, g (M) =
Ky, MY ={Me My, g}, (M) <kpy—2,6% _,(M)<k 6 —1}, and
MP ={M € My, : gt _ (M) =ky, —1,¢2,_(M) < k., — 1}. Then we

have

Fr = 3 2l M) L §7 f00M) SN (M)

MeMm?! MeM? MeM?3
+ Z gl OLM) o Z 2l (HM)
MeMm4 MeM>
=P'+P? - P>+ P*+ P(m—1). (12)

Given M € M!. Let j = min{j : gjl(M) = kn}. Then p(k,,) <
j<m-—1and rj, € M. In fact, C;,, is an M-alternating hexagon

containing r; .. Similar to Case 1, by Lemmas 2.3 and 4.1 we can derive
fH,M) = fHOV(rjk, ), MOV(rik,)) +1.

Furthermore, we can observe from Fig. 7(a) that

HOV(rjn,) = CHS{min{ky, kn — 1}:h Y 21) UCHS({kp BT,

Similar to the calculation of Eq. (9), we have

m—1 )
P = S F({min{ks, b — 15 B PR R e, (1)
j=p(km)

Given M € M?2. Similar to the calculation of P!, we can derive

m’'—1

P2 = 37 F({kei b} F({min{ky, K, — 1) hiHZ).

Jj=q
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(a) (b) (c)

Figure 7. Illustration of calculations for P!, P3 and P*.

Given M € M3. Let i = min{i : g}(M) = k,,} and j = min{j :
93 (M) =k, }. Then p(ky,) <i<m—1,¢<j<m'—1,and Ti,kmr;,k;n, €
M. On the one hand r; j,, belongs to M-alternating hexagon C; i, , r;’kin/
belongs to M-alternating hexagon C’J’.7 K, and the two hexagons are dis-
joint. On the other hand by Lemma 4.1 the edges e;
of Cik,, and the edges e;»"?in/ and l;‘+1,k;n,71 of C;)k:n/ are forced by
V({Tz‘,kmﬂ”}k;n/}), see Fig. 7(b). By Lemma 2.3 we know

a‘nd li+17k77n_1

m

FOH M) = OV ({1 DM OV {ran, thy D) +2.
Furthermore, it is observed from Fig. 7(b) that

H @ V({T;ng ? T;,k:n, })
=CHS({min{ks, ky, — 1}; hs}'2Y) U CHS({min{k}, k', — 1}; hi}Z]).

try m/

Similar to the calculation of Eq. (9), we have

P = mz_: mz_: F({min{ks, by — 1};hs}i2])

i=p(km) i=4
- F({min{k;, k,,, — 1}; by HZ{)a?,

t> 'vm/
km-1—1 m/—1

PP-P= S 3 F({min{k,,i}; he}752)

i=hm_1—1 j=q

- F({min{ki, k}, — 1} b} 21 )a, (14)

ts m/
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Given M € M*. Let i = gL, _;(M). Then hy—1 —1 < i < ky, —
2. In fact, Cp—1,41 and C/ , ./ | are disjoint M-alternating hexagons

m

containing e,,—1,; and r;nxk/ r respectively. Similar to the calculation of

P3, by Lemmas 2.3 and 4.1 and Fig. 7(c) we can derive

ko —2
Pt= N F({min{k,,i}; hy}752) F({min{k), K, — 1} b} a2,
i=hpm—1—1

(15)

It remains to consider P(m — 1). Given M € M?>. The value of
P(m —1) varies with different values of n, and we distinguish according to
the following subcases.

Subcase 3.1. n = 2. Then the last hexagon of Z is Cp,_1,,, and
Cm k,,—1 1s nonexistent, which implies that r,, ., 1 is nonexistent. Let
j = g2, _1(M). Then b/, ;, —1 < j < ki, — 1. In fact, Cp_1,
and C},,_, ;,, are disjoint M-alternating hexagons containing ry, x,, and
respectively. Similar to the calculation of P2, by Lemmas 2.3 and

/
€m'—1,5>

4.1 and Fig. 8(a) we can derive

Pim—1)
K, -1
= Y F(min{ks, kn — 1} b} 753 F({min{ky, 5} by i 2)a.
J:hin'—171

Figure 8. Illustration of calculation for P(m — 1).

Subcase 3.2. n = 3. Then the last hexagon of Z is Cy,_1 1,1, and

m
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Cm—2,k,, is nonexistent, which implies that e,,_2 ., —1 is nonexistent. In
fact, Cm Lkm—1and C! &, are disjoint M-alternating hexagons contain-
ing epy—1,k,,—1 and rm, K respectively. Similar to the calculation of P3,

by Lemmas 2.3 and 4.1 and Fig. 8(b) we can derive
P(m — 1) =F({ks; hs} "3 F({min{k}, — 1} Ry ?1:’1—1)1132.

Subcase 3.3. n > 4. Thenm > 3, ky, > 2, and p(k,, —w) < m—w—1
for 1 <w< [2]—1. Let M6 ={M € M®: g} _,(M) =k, —1}, M7 =
{M e M? : gt (M) < ky, — 3}, and M® = {M € M> : g} (M) =

m — 2}. Then we have

Plm—1)= Y o) 4 S gf06M) L § i

MeMsS MemM? Memsd
:=P% + P"+ P(m —2). (16)

Given M € /\/l6 Let i = min{i : g} (M) = ky, — 1} and j = g2, _;(M).
Then p(k,, —1) <i<m—2and b, ;—1<j <k, —1 Infact, Ciy, 1,
Cm—1k, and Cm,_Lj 41 are dlsJomt M -alternating hexagons containing
Tikp—1s Tk, and e, ., vespectively. Similar to the calculation of P,

by Lemmas 2.3 and 4.1 and Fig. 8(c) we can derive

PO = Z Z F({min{ks, km — 2}: hs}i21)

i= p(kvn 1) h w1

F({min{k}, j}; b} ?;’;2>w3. (17)

Given M € M". Let i = g, o(M). Then h, o —1 < i < ky, —
3. In fact, Cp—2,i+1, Cr—1,k,,—1 and C! , ko, are disjoint M-alternating
hexagons containing €,,—2.:, €m—1,k,,—1, and 7/ K , respectively. Similar
to the calculation of P?, by Lemmas 2.3 and 4.1 and Fig. 8(d) we derive

km—3

PT = N F({min{k,,i}; hy}75%) F({min{k), K, — 1} b} ta®.

i=hm—2—1
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Substituting Eqgs. (17,18) into Eq. (16), we obtain P(m — 1) in this case.
Similar to the above three subcases, we deduce P(m — w) =

k' ,—1
Z F({min{ks, km — w}; hs }7 5" ) F({min{k}, j}; hi } 1 _Q)ww"'l
jzhfm/_l—l
if n = 2w,
F({ks; hs}T 5" Y F({min{k;, ki, — 1}; R} 71)xw+1 ifn=2w+1,
m—w-—1 klm/*l
> > F({min{ks, kpn —w =1} ho}21)
i=p(km —w) j=h' 1 -1
F({min{k}, j}; b}y *)at
km—w—2
+ > F({min{ks,i}; ho 750 F({mindk], Ky — 1 RS2
1=hpm_w—1—1
+ P(m—w—1) if n > 2w+ 2.

for 1 < w < [§]. Substituting each P(m — w) into P(m — 1) and
substituting Egs. (13-15) into Eq. (12), we immediately obtain Fj_ in
this case. Furthermore, substituting the result and Eq. (9) into Eq. (6),

we could get Eq. (8). |

From the proof above, we can deduce the following conclusion.

Corollary 4.3. [16] For every PM M in CHS({ks; hs}7, |[{k}; R}}™)),
the forcing number of M coincides with the maximum number of disjoint

M -alternating hexagons.

In Fig. 9, we illustrate some particular examples of CHS with one
turning. Hexagonal systems possessing forcing edges are CHS({ks; 1}72,)
and CHS({ky; 1} [{kl; 137} (see Fig. 9(a)) [5,15]. For the second
class, from the above theorem we deduce the forcing polynomial and a
characterization of the continuity of forcing spectrum as follows, while by
Z-transform graph Zhang and Deng [16] have already talked about the

forcing spectrum.

Corollary 4.4. [16] The forcing spectrum of CHS({ke; 137 |{k}; 1}7,)
is an integer interval from 1 if either p(ky,) =1 or ¢ = 1, and an integer

interval from 1 with the only gap 2 if p(k,,) > 1 and ¢ > 1.
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Figure 9. Examples of CHS with one turning.

Proof. From Theorem 4.2, we know that the forcing polynomial has the

following same part no matter what the values of p(k,,) and ¢ are:

e —1
> F({minfky, i} 75" F({min{k, i} 12 + .
i=1
By Corollary 3.6 we can derive that SD of F({min{k,,i}}" ") F({min{k},
2}};1/{ D)z is an integer interval from 3, and the second term has degree 1.
For the rest part of the forcing polynomial, denoted by I, we distinguish
according to different values of p(k,,) and gq.
Case 1. p(k,,) = m and ¢ = 1, or p(k,) = 1 and ¢ = m/. By
symmetry, we only need to talk about the first case. By Eq. (7), we know

/
m

I=3% F{k}IF({kyy — HZDz + F({k} 05z
i=2
By Corollary 3.6 we have that SD of F({ks}" ") F({k!,, — 1}iZ])x is an
integer interval from 3, and SD of F({k,}™ ')z is an integer interval from
2, which implies that the forcing spectrum is an integer interval from 1.
Case 2. p(ky) =mand 1 <g<m/,or 1 < p(ky) <m and g =m'.
By symmetry, we only need to check the first case. By Eq. (7), we know

’
m

I=Y F({k}y5N) F({minfky, k), — 13121

i=q

By Corollary 3.6 we have that SD of each term is an integer interval from
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3, which implies that the forcing spectrum is an integer interval from 1
with the only gap 2.
Case 3. 1 < p(ky) <m and 1 < g < m/. Then m,m’ > 2. By Eq.

(8), we know

m—1

I= %" F({min{ks,kn — 1}PDF{k}E e
j:p(km)

km—1—1m’'—1

+ Z ZF{mm{k‘s»Z}} 2)F ({min{k, ky,, — 1}}27)a?

m’'—1

+ Z ({min{k}, k},, — 1}}-1)a? + F({min{k}, k,,, — 1} 1)a?
km—2
Z ({min{k,,i}}753) F ({min{k], k], — 11377 )2?
L%J —w—2 ,

+ Z Z F({min{k,,i}}"5" ") F({min{k}, k,,, — 1} )av+?
w=1 1=0
LE -1 m—w—1 k;n/ 1

T 22: | Z Z ({min{ks, by —w — 1}}125)

F({min{k;, j}}725 2z 2 +e, (19)
where
K -1
. n -] . Yym — n
F({minke, kn — 5105 F({mingk], )1 2)ed
e = =0
if n is even,
141

Pk} 757 ) F(fmin{k), K — 1T i nis odd,

By Corollary 3.6, we have that SD of terms in the 1st, 3th and 4th
summations are integer intervals from 3, SD of terms in the 2nd and
5th summations are integer intervals from 4. If [5| > 2, then the 7th
summation is nonzero. Furthermore for w = 1,2,...,[%| — 1, SD of

F({min{ké,j}};’;’f%xw” is an integer interval from w + 2 or w + 3, and
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both appear since the existent of j = 0 and j = k/,,, — 1, which implies
that SD of F({min{ks, k,, — w — 1}}2;11)F({min{k:g,j}};’ifQ)ww+2 is an
integer interval from w+ 2, w+3 or w+4, and the w + 3 one must appear.
Hence SD of terms in the 7th summation is an integer interval from 3 or
4 including | %] + 2. Similarly, if [§] > 2, then SD of terms in the 6th
summation is an integer interval from 4. And SD of ¢ is an integer interval
from |5 +1, [§]+2, or [§]+3. Then the forcing spectrum is an integer
interval from 1 with the only gap 2.

Case 4. p(ky,) =1land 1 < g<m/,or 1 < p(ky,)<mand ¢g=1. By
symmetry, we only need to talk about the first case. The case of k,, = 1
can be obtained in the following Example 4.6, and here we suppose k,, > 1.
Note that if m > k,,, then n = 2k,,; if m < k,,, then n = 2m — 1. By Eq.
(8), we can derive the forcing polynomial same as Eq. (19). However, we

can rewrite the 1st summation as follows

i

F({min{ks, kn = HZDFURYE e + PR e,

=2

which implies that SD of term is an integer interval from 2. Furthermore,
SD of term in each of the following summation is an integer interval, but
from different values. In detail, from 2, 3 or 4 in the 2nd summation; from
2 or 3 in the 3th summation; from 3 in the 4th summation; from 3 or 4
in the 5th summation if it is nonzero; from 4 in the 6th summation if it is
nonzero and L%J > 2; from 3 including L%J + 1 in the 7th summation if
5] = 2; from [§] +1or [§]+2ine. Then the forcing spectrum is an

integer interval from 1. |

We now give some forcing polynomials of particular CHSs with one

turning.

Example 4.5. If ks — k1 < k) — k|, then the forcing polynomial F, of
CHS(ky, ko 1, hal|ki, kb; 1, hY) (see Fig. 9(b)) has the following form:
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(1) if k5 > ki, then

ko—1
Fy= Y F(min{ky,i})F(min{k},i — hy + ho})z
i=ho—1
2
+ > F({min{k, ky — 1} F(k))z
j=p(k2)
ko—1 ki1—1
=Y Flk)F(kDe+ > F@F#E)z
i=k; i=k{—hf~+hsy
ki —hh+ha—1
+ > FG)F(i—hay+hy)z+A+n

i=ho
=[(k2 — k1) (k1 + 1)(k} + 1)
N (K 4+ 1)(ky + K, — hh + ho + 1) (ky — kY + hl, — ha)

2
| Ul = P+ ho - 1) (k] = By + ho) (2K — 20 + 2 +1)
6
_ha(he + Do+ 1) | (R — ha)(k) — By + 2ha + 1)(ky = h9) ] s
6 2
+ A+
(2) if kb, =k, then
kgfl klfl
Fy=Y FG)F(i—hy+hh)z+ A+ Fkpz+ > a

i=hgo 1=0

kz -2

+Z (kb — 1)z? + &,

- [kg(kz 4 1)(2ks + 1) — ha(hs +1)(2hs + 1)
N 6

(hy — ho) (k2 + ho + 1) (ko — ho)
+ 2

23N+ (k) R+ D)2 + s,
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where
T if hg = hy =1, ko (K} 4+ 1) + (K + 1)2?
\ hox®  ifhy #1 and by =1, - if ko = ki,
hba? if ho =1 and hly # 1, (ky 4+ 1) (k) + 1)
hohha®  if ho #1 and bl # 1, if ko # Ky,
(kg — 1)2? ifkhy =1, Eha®  ifka=1orkh =1,
K= -1 . / = /.3 . /
(ke — Dkjaz®  if kb # 1, kbx®  if ke # 1 and kb # 1.

In particular, we can derive the following forcing polynomials.

F(3,4;1,2]2,3:1,1)

:{(4_3)(3“)(2“”(2+1)(3+2—1+2+1)(3—2+1—2)

2
+(271+2+1)(271+2)(2><272+2><2+1)72(2+1)(2><2+1)
6
1-2)2—-14+2x2+1)(2—1
+( I +2X + 1( ) 23422+ (3+1D)(2+ 1)

=302 4 222,
F(4,4;1,23,4;1,2)

_{(3+1)(4+32+2+1)(43+22)
2
+(3—2+2+1)(3—2+2)(2><3+1)—2(2+1)(2><2+1)}x3

6
+2 x 223 +4(3 4+ 1)2® + (3 + 1)2? = 4523 + 4a?,
F(1,1;1,1)2,2;1,2)
_ {(1+1)(2+1)(1+1)(2+1) N (21)(1+1+1)(11)]$3
6 2
+202 + (2+ 1+ D)2 +2(1 — 123 + 227 = 827,
F(4,4;1,2/4,4;1,2)

{4(4+1)(2><4+1)2(2+1)(2><2+1)
N 6

+2x22% + (4+4+ )2 +4(4 — 1)2® + 4% = 452° + 922

:173
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Example 4.6. [18] The forcing polynomial F. of CHS(1,...,1,k;1,1,
11,...,1,k;1,1,...,1) (see Fig. 9(c)) has the following form:

ey

.
Z FUL Pz + o+ P P e

<.

F.={ =kmm'2® +x

ifk>2

x—i—ZF({l};’i )z + Zm +at=mm'2®* +z  ifk=1.

Example 4.7. The forcing polynomial Fy of CHS(k,... k,k;1,1,...,1]
1,..., L,k 1,1,...,1) (k> 2) (see Fig. 9(d)) is

k—1 m
=Y PP e+ o+ ) F({k— 1Y) FELE
i=1 j=1

=m'F(M(k,m),z)x —m/z? + x.

Example 4.8. The forcing polynomial F, of CHS({k;1}™ |{k;1}1"))
(k = 2) (see Fig. 9(e)) is

Fo= Y P Z F({k = WPk} e
1=0 j=1
k—1m'—1 k—2 ,
- FU{YAF({k — 112D + > FUHSH P({k — 115 e
i=0 j=1 i=0
min{m—2,k—1} m—w—1k—1 ,
+ > F({k —w— 1} 2D F({G )zt
w=1 i=1 j§=0
min{m—2,k—1} k—w—2
+ ST PGS F{E - e e
w=1 1=0

ZF {j} 2 ifmo> k,

F{k - 1}t:f Y™ if m < k.



796

Acknowledgment: The author would like to sincerely thank the anony-
mous referees for the time they spent in checking the manuscript, as well
as their many valuable suggestions. Additionally, this work is supported
by Science and Technology Plan Foundation of Gansu Province of China
(21JR7RA550), Gansu Provincial Department of Education: Youth Doc-
toral Fund Project (2021QB-090), and NSFC (11871256).

References

[1] P. Adams, M. Mahdian, E. S. Mahmoodian, On the forced matching
numbers of bipartite graphs, Discr. Math. 281 (2004) 1-12.

[2] Z. Che, Z. Chen, Forcing on perfect matchings — A survey, MATCH
Commun. Math. Comput. Chem. 66 (2011) 93-136.

[3] K. Deng, S. Liu, X. Zhou, Forcing and anti-forcing polynomials of per-
fect matchings of a pyrene system, MATCH Commun. Math. Comput.
Chem. 85 (2021) 27-46.

[4] K. Deng, H. Zhang, Anti-forcing spectra of perfect matchings of
graphs, J. Comb. Optim. 33 (2017) 660—680.

[5] P. Hansen, M. Zheng, Bonds fixed by fixing bonds, J. Chem. Inf.
Comput. Sci. 34 (1994) 297-304.

[6] F. Harary, D. J. Klein, T. P. Zivkovi¢, Graphical properties of poly-
hexes: perfect matching vector and forcing, J. Math. Chem. 6 (1991)
295-306.

[7] D.J. Klein, M. Randié, Innate degree of freedom of a graph, J. Com-
put. Chem. 8 (1987) 516-521.

[8] H. Lei, Y. N. Yeh, H. Zhang, Anti-forcing numbers of perfect match-
ings of graphs, Discr. Appl. Math. 202 (2016) 95-105.

[9] X. Li, Hexagonal systems with forcing single edges, Discr. Appl. Math.
72 (1997) 295-301.

[10] L. Pachter, P. Kim, Forcing matchings on square grids, Discr. Math.
190 (1998) 287-294.
[11] M. Randié, D. J. Klein, Kekulé valence structures revisited. Innate

degrees of freedom of m-electron couplings, in: N. Trinajsti¢ (Ed.),
Mathematical and Computational Concepts in Chemistry, Wiley, New
York, 1985, pp. 274-282.



797

[12]

[13]

[14]

[15]

[16]

[19]

[20]

[21]

[22]

[23]

M. E. Riddle, The minimum forcing number for the torus and hyper-
cube, Discr. Math. 245 (2002) 283-292.

L. Xu, H. Bian, F. Zhang, Maximum forcing number of hexagonal
systems, MATCH Commun. Math. Comput. Chem. 70 (2013) 493—
500.

F. Zhang, X. Li, Clar formula of a class of hexagonal systems, MATCH
Commun. Math. Comput. Chem. 24 (1989) 333-347.

F. Zhang, X. Li, Hexagonal systems with forcing edges, Discr. Math.
140 (1995) 253-263.

H. Zhang, K. Deng, Spectrum of matching forcing numbers of a hexag-
onal system with a forcing edge, MATCH Commun. Math. Comput.
Chem. 73 (2015) 457-471.

H. Zhang, X. Jiang, Continuous forcing spectra of even polygonal
chains, Acta Math. Appl. Sin. Engl. Ser. 37 (2021) 337-347.

H. Zhang, S. Zhao, R. Lin, The forcing polynomial of catacondensed
hexagonal systems, MATCH Commun. Math. Comput. Chem. 73
(2015) 473-490.

Y. Zhang, H. Zhang, The minimum forcing and anti-forcing num-
bers of convex hexagonal systems, MATCH Commun. Math. Comput.
Chem. 85 (2021) 13-25.

Y. Zhang, H. Zhang, Continuous forcing spectrum of regular hexago-
nal polyhexes, Appl. Math. Comput. 425 (2022) 127058.

S. Zhao, H. Zhang, Forcing and anti-forcing polynomials of perfect
matchings for some rectangle grids, J. Math. Chem. 57 (2019) 202—
225.

S. Zhao, H. Zhang, Forcing polynomials of benzenoid parallelogram
and its related benzenoids, Appl. Math. Comput. 284 (2016) 209-218.

X. Zhou, H. Zhang, Clar sets and maximum forcing numbers of hexag-
onal systems, MATCH Commun. Math. Comput. Chem. 74 (2015)
161-174.



	Introduction
	Some preliminaries
	Monotonic CHS
	CHS with one turning

