M ATC H MATCH Commun. Math. Comput. Chem. 88 (2022) 747-765

Communications in Mathematical ISSN: 0340-6253

and in Computer Chemistry doi: 10.46793/match.88-3.747L

77, Polynomials of Regular m-tier Benzenoid
Strips as Extended Strict Order Polynomials of
Associated Posets Part 3. Compilation of
Results for m =1 — 6

Johanna Langner!, Henryk A. Witek'?

! Department of Applied Chemistry and Institute of Molecular Science,
National Yang Ming Chiao Tung University, Hsinchu, Taiwan

2Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung
University, Hsinchu, Taiwan

johanna.langner@arcor.de, hwitek@mail.nctu.edu.tw

(Received March 8, 2021)

Abstract

We report closed-form formulas for the ZZ polynomials of all m-tier regular strips
with m = 1-6 and an arbitrary length n. The ZZ polynomials were calculated
fully automatically using the equivalence between the ZZ polynomial ZZ(S, z) of a
regular benzenoid strip S and the extended strict order polynomial Eg(n,1 + z) of
the corresponding poset S, demonstrated formally in Part 1 of this series and the
corresponding algorithm introduced in Part 2. The results for m = 1-5 reproduce
the previous, laboriously-derived collection of formulas, while the results for m = 6,
constituting about 70% of the presented compilation, are new. The applied algo-
rithm can be employed just as well for larger regular strips; the scope of the present
tabulation is limited by the sheer amount of conceivable regular strips with 7 and
more tiers.
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1 Introduction

In the papers preceding the presented here compilation of ZZ polynomials, we have demon-
strated that the ZZ polynomial of a regular m-tier strip S, ZZ(S, z), can be computed as
the extended strict order polynomial Eg(n, 1+x) of the corresponding poset S [32,33] and
we have given a guide demonstrating how to carry out such computations in practice [34].
The current publication is concerned with an application of the designed machinery to
the determination of the ZZ polynomials of all m-tier regular strips with m = 1-6 and
arbitrary length n. The results for the m-tier regular strips with m = 1,2,3,...,5 have
been published previously [19,41,42,50], but we re-derive them here using the new algo-
rithm for the sake of completeness of the present tabulation and to facilitate comparisons
between strips with a different number of tiers. The new, binomial-like presentation of
these formulas provides also a unified framework for understanding and explaining the
“quantum numbers” a; and ay appearing in the previous tabulation [42]. The results for
the 6-tier regular strips—constituting the major part (circa 70%) of the compiled here
results—are new and—with a few exceptions—have never been reported before. The only
reason preventing us from extending the presented compilation to larger regular strips is
the bulky volume of such a collection, originating both from an abundance of regular strips
for larger widths m and from the relatively complex formulas of their ZZ polynomials.
Regular m-tier strips constitute an important subclass of benzenoids; their detailed
characterization can be found in [15]. Topological invariants of regular m-tier strips are
well known for small values of m; their most compact representation is given the ZZ
polynomial, ZZ(S, z) [44,45,48,50,51]|, which comprises the following information: (i) the
number of KekulA(©) structures of S can be computed as K (S) = ZZ(S,0) [13,15-17,
37,43, (i¢) the total number of Clar covers of S, as C(S) = ZZ(S,1) [33, 34,41, 42|,
(¢it) the Clar number of S, Cl(S), as the degree of ZZ(S,z) |2, (v) the number of
Clar formulas of S, as the leading coefficient of ZZ(S,z) [46], (v) the first Herndon
number of S, as the coefficient in ZZ(S,z) at x, and (vi) the number of Clar covers
with k aromatic sextets, as he coefficient in ZZ(S, ) at x*. Closed-form ZZ polynomial
formulas for numerous classes of elementary benzenoids have been obtained using various
methods: elementary considerations [4, 18, 45,48, 50, 51|, analysis of recurrence relations
[12,19,21], generalization of ZZ polynomials for sequences of isostructural benzenoids |7,8],

application of ZZDecomposer [6,9-11,22-26, 35, 38-40, 53, 54], transfer matrix approach
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[49], connectivity graph technique [27], interface theory of benzenoids [28,30,31], and now,
the equivalence with the extended strict order polynomial [32-34| and other polynomials
[3,29,47,52]. Tt is important to stress that the presented here results are valid for an
arbitrary length n of the studied regular m-tier strips, and can be, for example, used to

study the asymptotic transition from the molecular to graphene-like bulk regime [5,36].

2 Results

The ZZ polynomials for the regular 1-3, 4, 5, and 6-tier benzenoid strips are given in
Tables 1, 2, 3 and 4, respectively. The presented tables can be thought of as an extension
of the compilation of the formulas for K (S) presented in Chapter 10 of [15] for strips S
with m = 1-5 and in Chapter 13 of [15] (see also partially [14,20]) for strips S with

m = 6. The table entry for each strip S consists of: a sequence of m — 1 fragment shapes

YN Y YYYY rYY Y

shape W shape N shape R shape L
which uniquely define the shape of S by specifying the transition from each row to the
next, a symbol for S (if previously established), a depiction of S with a gray row of
hexagons schematically symbolizing a sequence of n — 3 such rows, the Hasse diagram of
the poset S associated with S, and the ZZ polynomial of S computed as E%(n, z) using
the variable z = 1 + 2. In the electronic PDF version of the manuscript, a clickable
comment on the right side of each table row contains a Maple [1| formula of ZZ(S, z),
which can be copied and pasted directly into Maple. The ZZ polynomial formulas are
kept unevaluated to highlight the correspondence with the general form of the extended
strict order polynomial given by
al |S] — fixs(w)\ (n+ des(w)\
Es(n,2) = Zz<k—ﬁxsw))< k )Z M
weL(S) k=0

where the detailed meaning of: a poset S and its cardinality |S|, the Jordan-HAqIder set
L(S) of linear extensions w of S, the number of descents des(w) in w, and the number of

fixed elements fixs(w) in w is explained in our earlier work [32-34].
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Table 1. ZZ polynomials of all regular 1-, 2-) and 3-tier benzenoid strips.

Structure 77 polynomial
ORI (IR
CRIETCURE: NIRRT
LR A P (GIRIE
il | Prz) | 88| e 0| X (G0 + (D0
Rl | Che2m | B | AL S @0+ (L)
wal | o2 |8 & | SO0+ ()0
Table 2. Z7Z polynomials of all regular 4-tier benzenoid strips
Structure 77 polynomial
SR - AP AR
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Table 3. ZZ polynomials of regular 5-tier benzenoid strips

Structure 77 polynomial
man gl S
[N,R,R, W]
[NX(R(L)»)n % 1 E (@0 wem)
[I\;:?Y;}:] % o 53\ (n 1 1y Lk
S (B0 +202)(0) =
[N,R,W,L] % N £=0
L(n)-M(2.n) °
[N,W,R,R] @ . / 24: ((4)(n) +3( 2 )(n+l)>zk
7(2,4,n) P k) \k k—2)\ &
Y - I A (TR AAIC)
[R,N,W,R]
M(2,n)? ' 4 .
[R;IVW)L] % A;Q((i)(Z)J”i(kiZ)(”Zl)Jr QL)("IZ))Z’“
o) s
mrE [ | A | S (00 00+ (0)
Baen VR A SO0+ 0 () 0) #
SR AP DS (TR ARG RRICS) B
WAL CVEER o o o | X (OM (01 () ()0)
AL 2 (@O0 (62 (L) e
i | 88| (G + ()0
0,3, RPAGIORCONERNICS
o | B O (G2 +2080) (1) +
RLLE] > (D + (65 +(29) (1)
M, (LALAL) % /\\/’ ke N ((kid) +5(ki4)) (n-]:l)) o




wmwmmwwu AwwwHﬂ%m@f@&iwxwvvow @ @ s
L) (ET) + L+ (502) + woa
wmwﬁmws“ ﬁwW25???5:Nv@vw R @ W
M:wMM“,\wNHMwMWMH AMWWHizv%xviﬁs&imv@vo% N % EA%_%E
(4 0208+ (50) + (L (60 + 00 + 0) T | | BB |
)+ G2 (679 + 0308+ ) + (L (60 + G2) = 00) X | | B |
D+ I (E + e+ 090) + () (6 + 699) + D) I | 7 | & | v
V4 GI(E) + e+ (0) + (1) (62 + (599) + D) T | A | Bl | g
(IO + (LI (E+ O0)T | & | G | waa
A (GO + IO+ (LEN0+ O0) T | & | EH | e
A (IIC+ (L9 + (LI O) X | 7 | EE |

oo 77 ST

752

sdurys prouszuaq 191)-G Ie[ndal jo sperwouijod 77 *(penuijuod) ¢ o[qel,




753

Table 4. ZZ polynomials of regular 6-tier benzenoid strips

Structure

77 polynomial
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3 Discussion

The Z7Z polynomials presented in Tables 1-4 correspond to KekulA@an strips, i.e., strips
for which at least one Clar cover can be constructed. For every Kekul]&@an strip S,
there exists an associated poset S that can be used to determine the extended strict order
polynomial E%(n,1 + x), which in turn is equal to the ZZ polynomial of S, ZZ(S, z).
However, starting from m = 5, each family of regular m-tier benzenoid strips contains also
some non—KekulA@an strips. It is easy to identify these structures using interface theory
of benzenoids [30,31] as those which possess a row with fewer than n — 1 hexagons (which
corresponds to an interface with a negative order). Simple geometrical considerations

show that there exists exactly one such structure, the goblet X (3,3,n) % (see p. 169

of [15]), for m = 5 and three such structures for m = 6: the goblet X (3,4, n) @@7

the streamer 37 (3,4, n) %, and the streamer g (3,4,n) % (see p. 232 of [15]).
The ZZ polynomials—and thus, the numbers of Clar covers—of these four structures are
identically equal to 0. For non—KekulA@an structures S, no associated poset S can be
constructed, as it would be required by the interface theory of benzenoids that S contains
a negative number of elements associated with the short row(s) of S, which is absurd.
The collection presented in Tables 1-4 might be also of interest for a mathematician
looking for a closed-form formula of the extended strict order polynomial E%(n,z) for
some particular poset S. Note that in this sense, the presented catalog of formulas is
not complete. The regular m-tier benzenoid strips always generate a poset that is an
induced subposet of the lattice m x m, with some further restrictions. For a poset S
which does not belong to this category, Eq. (1) still computes a valid extended strict order
polynomial, but no regular m-tier strip can be associated with it and consequently such
a formula is missing from our tables. For small S with |S| < 3, all possible posets are
included in our collection. (Note that a poset S and its order dual S’ share the same
extended strict order polynomial, Eg(n, z) = E% (n, 2).) However, for larger posets, only
a small portion belong to the studied here category of m x m subposets; for |S| = 4, we
tabulate the extended strict order polynomials of only 62% of conceivable posets, and for
|S| = 5, only of 25% of conceivable posets. The remaining posets are yet to be studied.
A short reflection suggests how one could possibly generalize the presented here tech-
nique to non-regular m-tier strips. In the extended strict order polynomial Eg(n, z) de-

fined by Eq. (1), it is assumed that vertices in every column of the Hasse diagram of S



761

are assigned numbers between 1 and n and that such an assignment is order-preserving,
i.e., that if two elements t; and ¢, being in a relation ¢; <g tj in the poset S, are as-
signed the numbers \; and A, respectively, then \; < A;. A detailed analysis of such
order-preserving assignments led us to the discovery of the formula for E%(n, z) given by
Eq. (1). In order to generalize this approach to non-regular strips, one needs to allow for
the flexibility associated with the fact that each row of the non-regular m-tier strip might
have a distinct length n; = p; — v; defined by the pair of numbers [v;, y1;], where the se-
quence vy, Vs, ..., Vpy, describes the shape of the left rim of the non-regular m-tier strip S,
and the sequence ji1, {12, . . ., [y, its right rim. Then, the map ¢ : ¢; — \; should be order-
preserving in § and the number A; should satisfy v; < A; < i;, where the element ¢t; € S
is located in the interface i of S. Detailed construction of the sequences vy, s, ..., Uy,
and [, fto, . . ., fim, which should simultaneously encompass the information about the
shape of S and the order of interfaces in S, remains to be elucidated. The suggested here
line of development might produce an useful viable algorithm for finding ZZ(S, x), but
we seriously doubt if the corresponding formula for Eg(n, z) can be expressed in some

general, structured, closed form.

4 Conclusion

We have presented a compilation of ZZ polynomials of regular m-tier strips of an arbitrary
length n for m = 1-6. For each regular strip S, its ZZ polynomial ZZ(S,z) has been
computed as the extended strict order polynomial EZ(n, z) of a poset S associated with S.
The presented collection of formulas could be derived owing to the equivalence between
the ZZ polynomials and extended strict order polynomials recently discovered by us [33].
A detailed explanation of techniques and methods needed to evaluate the extended strict
order polynomial E%(n, z) defined by Eq. (1) is given in [34]. The presented tabulation

can be easily extended to regular m-tier strips with m > 6.
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