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Abstract

The Wiener index is defined as the sum of all distances between
all pairs of unordered vertices in a connected graph. Replacing the
ordinary distance by resistance distance in Wiener index, one gets
the Kirchhoff index which is defined as the sum of all resistance dis-
tances between all pairs of unordered vertices in a connected graph.
This two distance-based invariants are viewed as important mea-
sures associated with a (molecular) network which correlate nicely
to chemical and physical properties, and have been studied exten-
sively in the past decades. In this paper, we determine respectively
the graphs which have the maximum Wiener index and Kirchhoff
index among all connected graphs of order n with girth g and max-
imum degree ∆. The corresponding extremal graphs are character-
ized completely.

1 Introduction

Let G = (V (G), E(G)) be a graph consisting of a finite set V (G) of vertices

and a finite set E(G) of edges. The degree dG(v) of a vertex v ∈ V (G) is the
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number of vertices adjacent to v. The neighborhood NG(v) of v is the set

of vertices adjacent to v in graph G. The maximum vertex degree of graph

G, denoted by ∆(G) or ∆ for short, is the maximum degree of its vertices.

The girth g = g(G) of a graph G is equal to the length of a shortest cycle in

G. The distance dG(u, v) between a pair of vertices u and v in a connected

graph G is the numbers of edges of a shortest path connecting u and v.

As usual, we denote the path, cycle and star on n vertices by Pn, Cn and

K1,n−1, respectively. If P = uu1u2 . . . uℓ is an induced path of length ℓ

in G such that dG(uℓ) = 1, dG(u1) = dG(u2) = · · · = dG(uℓ−1) = 2 and

dG(u) ≥ 2, then we call P a pendant path with u as its origin and uℓ as

its terminus. If ℓ = 1, the the pendant path P is called the pendant edge.

A topological index is a number to a (molecular) graph which remains

unchanged under graph isomorphisms. Distance-based topological indices

were investigated intensively in the past decades. Among the category of

distance-based topological indices, the Wiener index is regarded as the old-

est and most thoroughly studied invariant related to molecular branching.

It was introduced in 1947 by the chemist H. Wiener [24] who observed it

correlation with the chemical, physical and biological properties of certain

molecules and molecular compounds. The Wiener index W (G) of a graph

G is defined as the distances between all unordered pairs of vertices of a

connected graph G. That is

W (G) =
∑

{u,v}⊆V (G)

dG(u, v) =
1

2

∑
u∈V (G)

D(u|G),

whereD(u|G) denotes the sum of distances between u and all other vertices

of G, namely,

D(u|G) =
∑

v∈V (G)

d(u, v).

The resistance distance was first introduced by Klein and Randić [13]

as a new distance function in 1993. For two vertices u and v in G, the

resistance distance rG(u, v) between u and v is defined as the effective

resistance between u and v in the electrical network for which nodes cor-

respond to the vertices of G and each edge of G is replaced by a resistor

of unit resistance.
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Analogy to the Wiener index, the Kirchhoff index of a graph G is

defined as [13]

Kf(G) =
∑

{u,v}⊆V (G)

rG(u, v) =
1

2

∑
u∈V (G)

R(u|G),

where R(u|G) denotes the sum of resistance distances between u and all

other vertices of G, namely,

R(u|G) =
∑

v∈V (G)

rG(u, v).

Nowadays, due to their extensive applications there are still much in-

teresting work related to Wiener index and Kirchhoff index being reported

constantly. Some recent developments on Wiener index and Kirchhoff in-

dex can be referred to [1–10, 12, 14–18, 21–23]. The present paper was

motivated by a recent article of Horoldagva et al. [11] on average eccen-

tricity, where they obtained the maximum average eccentricity of graphs

of order n in terms of girth and maximum degree. We take further the line

of this extremal problem by investigating the Wiener index and Kirchhoff

index for graphs with given order, girth and maximum degree.

The rest of the paper is organised as follows. In Section 2, we first

recall some necessary known results for Wiener index and Kirchhoff index

and then give some lemmas and definitions which will be used in the proof

of the main results in the subsequent sections. In Section 3, we determine

the maximum Wiener index among all n order connected graphs with

given girth and maximum degree. In Section 4, we study the maximum

Kirchhoff index in graphs of given order, grith and maximum degree. In

the concluding Section 5 we pose some open problems arising from our

investigations.

2 Preliminaries

In what follows we recall some basic known results on Wiener index and

Kirchhoff index, and then give several lemmas and definitions which will
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be needed in the subsequent considerations.

It is well-known that dG(u, v) ≥ rG(u, v) with equality if and only if

there is a unique path connecting vertices u and v in graph G. So, it is

clear that Kf(G) = W (G) when G is a tree.

Let Pn be the path of n vertices from the vertex u to the vertex v. The

most basic upper bound of W (G) states that, if G is a connected graph of

order n, then W (G) ≤ W (Pn) with the equality if and only if G ∼= Pn. It

is known that

W (Pn) = Kf(Pn) =
n(n2 − 1)

6

and

D(v|Pn) = R(v|Pn) = D(u|Pn) = R(u|Pn) =
n(n− 1)

2
.

Let K1,n−1 be the star with n vertices. Then we have

W (K1,n−1) = Kf(K1,n−1) = (n− 1)2.

Let Cn = v1v2 . . . vn be the n-vertex cycle with vertices labeled consecu-

tively by v1, v2, . . . , vn. Then it is known that

dCn
(vi, vj) = min{j − i, n− j + i}

and

rCn
(vi, vj) =

(j − i)[n− (j − i)]

n
,

where 1 ≤ i < j ≤ n. It is easy to verify that max{dCn
(vi, vj) : vi, vj ∈

V (Cn)} = ⌊n
2 ⌋ and max{rCn

(vi, vj) : vi, vj ∈ V (Cn)} = 1
n⌊

n
2 ⌋⌈

n
2 ⌉ with

equality if and only j − i = ⌊n
2 ⌋. Moreover, for any v ∈ V (Cn) we have

D(v|Cn) =

n2−1
4 , n is odd,

n2

4 , n is even
and R(v|Cn) =

n2 − 1

6
.

TheWiener index and Kirchhoff index of cycle Cn can be given respectively

by

W (Cn) =


n(n2−1)

8 , n is odd,

n3

8 , n is even
and Kf(Cn) =

n3 − n

12
.
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The following result is well-known in the literature.

Lemma 2.1. Let v be a cut vertex of a graph G, u and w the vertices

coming from different components which arise upon deletion of v. Then

we have dG(u,w) = dG(u, v)+dG(v, w) and rG(u,w) = rG(u, v)+rG(v, w).

Let v be a cut vertex of a graph G such that G−v consists two disjoint

subgraphs G1 − v and G2 − v, then we denote the graph G by G1vG2.

From Lemma 2.1, one can derive Lemma 2.2 immediately.

Lemma 2.2. [19,20,25] Let G1vG2 be the graph defined as above. Then

(i) W (G1vG2) = W (G1)+W (G2)+ (|V (G2)| − 1)D(v|G1)+ (|V (G1)| −
1)D(v|G2).

(ii) Kf(G1vG2) = Kf(G1)+Kf(G2)+(|V (G2)|−1)R(v|G1)+(|V (G1)|−
1)R(v|G2).

By the definitions of Wiener index and Kirchhoff index, we can see that

this two indices are monotonically increasing when we delete an edge such

that the resulting graph remains connected.

Lemma 2.3. Let G be a connected graph of order n. If G − e is still

connected, then we have W (G− e) > W (G) and Kf(G− e) > Kf(G).

Lemma 2.4. Let G be the graph obtained from a graph H and a tree

Tk ̸∼= Pk on k vertices by identifying one vertex of H and one vertex of

Tk such that V (H) ∩ V (Tk) = {v}, namely G = HvTk. We modify G to

obtain G′ by replacing Tk with Pk, i,e., G
′ is obtained from H and a path

Pk by identifying one pendant vertex of Pk with the vertex v of H. Then

we have W (G′) > W (G) and Kf(G′) > Kf(G).

Proof. For a tree Tk ̸∼= Pk with k vertices, it is known thatW (Pk) > W (Tk)

and D(v|Pk) > D(w|Tk), where v is a pendant vertex of Pk and w is an

arbitrary vertex of Tk. Then, according to Lemma 2.2, it follows that

W (G) =W (H) +W (Tk) + (|V (H)| − 1)D(v|Tk) + (k − 1)D(v|H),

W (G′) =W (H) +W (Pk) + (|V (H)| − 1)D(v|Pk) + (k − 1)D(v|H).
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Thus, we have

W (G′)−W (G) = W (Pk)−W (Tk)+(|V (H)|−1)(D(v|Pk)−D(v|Tk)) > 0,

which leads to W (G′) > W (G).

Analogously, by Lemma 2.2 one can get Kf(G′) > Kf(G).

Lemma 2.5. Let G be the graph obtained from a graph H by attaching

two pendant paths P = uu1u2 . . . us and Q = vv1v2 . . . vt to u and v in H,

respectively. Let G′ = G− vv1 + v1us and G′′ = G− uu1 + u1vt.

(i) If D(v|H) ≤ D(u|H), then W (G′) > W (G). If D(v|H) ≥ D(u|H),

then W (G′′) > W (G).

(ii) If R(v|H) ≤ R(u|H), then Kf(G′) > Kf(G). If R(v|H) ≥ R(u|H),

then Kf(G′′) > Kf(G).

Proof. According to Lemma 2.2, one can get that

W (G) =W (PuH) +W (Q) + (|V (Q)| − 1)D(v|PuH)

+ (|V (PuH)| − 1)D(v|Q) (1)

=W (QvH) +W (P ) + (|V (P )| − 1)D(u|QvH)

+ (|V (QvH)| − 1)D(u|P ), (2)

W (G′) =W (PuH) +W (Q) + (|V (Q)| − 1)D(us|PuH)

+ (|V (PuH)| − 1)D(v|Q), (3)

W (G′′) =W (QvH) +W (P ) + (|V (Q)| − 1)D(vt|QuH)

+ (|V (PvH)| − 1)D(u|P ). (4)

If D(v|H) ≤ D(u|H), then it is easy to see that D(v|PuH) < D(us|PuH).

Thus, from (1) and (3) we have

W (G′)−W (G) = (|V (Q)| − 1)(D(us|PuH)−D(v|PuH)) > 0,

which means that W (G′) > W (G).

On the other hand, if D(v|H) ≥ D(u|H), then it is obvious that
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D(u|QvH) < D(vt|QuH). Thus, from (2) and (4) we have

W (G′′)−W (G) = (|V (Q)| − 1)(D(vt|QuH)−D(u|QvH)) > 0,

which implies that W (G′′) > W (G). We have thus proved the statement

(i).

Using Lemma 2.2, the proof of the second part of this lemma follows

in a similar manner.

x1x2 xg

x⌊ g
2 ⌋ x⌊ g

2 ⌋+2x⌊ g
2 ⌋+1

Cg

. . .
∆− 2

Cg

. . .

∆− 3

Cg

. . .

∆− 1

H1
n,g,∆ H2

n,g,∆ H3
n,g,∆

Figure 1. The graphs H1
n,g,∆, H2

n,g,∆ and H3
n,g,∆.

Let Gn(g,∆) be the set of all simple connected graphs of order n with

the girth g and maximum degree ∆. Then it must have g + ∆ ≤ n + 2.

Denote by H1
n,g,∆ the graph obtained from Cg by attaching ∆−2 pendant

edges and one pendant path of length n−g−∆+2 to two opposite vertices

of Cg, respectively. Denote by H2
n,g,∆ the graph obtained from Cg by

attaching ∆−3 pendant edges and one pendant path of length n−g−∆+3

to one vertex of Cg. Let H
3
n,g,∆ be the graph obtained by identifying two

pendant vertices of the path Pn−g−∆+2 with the center of star K1,∆−1 and

one vertex of cycle Cg, respectively. See Figure 1 for the graphs H1
n,g,∆,

H2
n,g,∆ and H3

n,g,∆. There is just one graph obtained by attaching ∆ − 2

pendant vertices to a vertex of Cg in Gn(g,∆) when ∆ = n− g+2. Thus,
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we consider in this paper that g ≥ 3 and 3 ≤ ∆ ≤ n − g + 1. It is

easy to see that H1
n,g,∆, H

2
n,g,∆ ∈ Gn(g,∆) for 3 ≤ ∆ ≤ n − g + 1 and

H3
n,g,∆ ∈ Gn(g,∆) for 3 ≤ ∆ ≤ n− g.

3 Maximum Wiener index of graphs with

given girth and maximum degree

In this section, we determine the maximum Wiener index among all graphs

in Gn(g,∆).

Theorem 3.1. Let G be a graph in Gn(g,∆).

(i) If g = 3 and ∆ ≥ 3, then W (G) ≤ W (H2
n,3,∆) with equality iff

G ∼= H2
n,3,∆.

(ii) If ∆ = 3 and g > 3, then W (G) ≤ W (H2
n,g,3) with equality iff

G ∼= H2
n,g,3.

(iii) Let ∆ = 4 and g ≥ 4 is even. If 7 ≤ n < 12, then W (G) ≤
W (H1

n,g,4) = W (H2
n,g,4) with equality iff G ∈ {H1

n,g,4, H
2
n,g,4}. If

n ≥ 12 and n−
√
n2−16n+48

2 < g < n+
√
n2−16n+48

2 , then W (G) ≤
W (H3

n,g,4) with equality iff G ∼= H3
n,g,4. If g < n−

√
n2−16n+48

2 or

g > n+
√
n2−16n+48

2 , then W (G) ≤ W (H1
n,g,4) = W (H2

n,g,4) with

equality iff G ∈ {H1
n,g,4, H

2
n,g,4}. If g = 6 and n = 12, then W (G) ≤

W (H1
12,6,4) = W (H2

12,6,4) = W (H3
12,6,4) with equality iff

G ∈ {H1
12,6,4, H

2
12,6,4, H

3
12,6,4}. If g = 8 and n = 13, then W (G) ≤

W (H1
13,8,4) = W (H2

13,8,4) = W (H3
13,8,4) with equality iff

G ∈ {H1
13,8,4, H

2
13,8,4, H

3
13,8,4}.

(iv) Let ∆ = 4 and g ≥ 5 is odd. If 8 ≤ n < 12, then W (G) ≤ W (H2
n,g,4)

with equality iff G ∼= H2
n,g,4. If n ≥ 12 and n−

√
n2−16n+48

2 < g <
n+

√
n2−16n+48

2 , then W (G) ≤ W (H3
n,g,4) with equality iff G ∼= H3

n,g,4.

If n ≥ 12 and g < n−
√
n2−16n+48

2 or g > n+
√
n2−16n+48

2 , then

W (G) ≤ W (H2
n,g,4) with equality iff G ∼= H2

n,g,4. If g = 5 and

n = 13, then W (G) ≤ W (H2
13,5,4) = W (H3

13,5,4) with equality iff

G ∈ {H2
13,5,4, H

3
13,5,4}.
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(v) Let ∆ = g = 5. If n = 11, then W (G) ≤ W (H1
n,5,5) = W (H2

n,5,5) =

W (H3
n,5,5) with equality iff G ∈ {H1

n,5,5, H
2
n,5,5, H

3
n,5,5}. If n > 11,

then W (G) ≤ W (H3
n,5,5) with equality iff G ∼= H3

n,5,5. If 9 ≤
n < 11, then W (G) ≤ W (H1

n,5,5) = W (H2
n,5,5) with equality iff

G ∈ {H1
n,5,5, H

2
n,5,5}.

(vi) Let ∆ > 5 and g ≥ 5 is odd. If ∆ < n − g − 2
g−3 , then W (G) ≤

W (H3
n,g,∆) with equality iff G ∼= H3

n,g,∆. If ∆ > n − g − 2
g−3 , then

W (G) ≤ W (H1
n,g,∆) with equality iff G ∼= H1

n,g,∆. If g = 5 and

∆ = n− 6, then W (G) ≤ W (H1
n,5,n−6) = W (H3

n,5,n−6) with equality

iff G ∈ {H1
n,5,n−6, H

3
n,5,n−6}.

(vii) Let ∆ > 5 and g ≥ 6 is even. If ∆ < n − g − 4
g−4 , then we have

W (G) ≤ W (H3
n,g,∆) with equality iff G ∼= H3

n,g,∆. If ∆ > n−g− 4
g−4 ,

then W (G) ≤ W (H1
n,g,∆) with equality iff G ∼= H1

n,g,∆. If g = 6 and

∆ = n − 8, then W (G) ≤ W (H1
n,g,∆) = W (H3

n,g,∆) with equality iff

G ∈ {H1
n,6,n−8, H

3
n,6,n−8}.

Proof. Let G∗ be a graph in Gn(g,∆) with maximum Wiener index. In

the following, we always assume that w is a maximum degree vertex in

G∗.

Claim 1. G∗ is unicyclic.

Let Ew be the set of edges incident to the maximum degree vertex w and

C a cycle of length g in G∗. If C is the unique cycle in G, then we are

done. Otherwise, there is another cycle C ′ in G. It is clear that there is

an edge e in C ′ satisfying e ̸∈ Ew ∪ E(C). Then, one can consider the

graph G′ = G−e. It is easily seen that G′ ∈ Gn(g,∆) and W (G′) > W (G)

by Lemma 2.3. If G′ is still not a uncyclic graph, then by the same

argument as above, one can finally arrive at a unicyclic graph G′′ such

that W (G∗) < W (G′) < W (G′′). Thus, the claim follows.

Claim 2. Let u be a cut vertex in G∗ other than the maximum degree

vertex w and T an induced subtree of G∗. If G∗ = HuT and w ̸∈ V (T ),

then T is isomorphic to a path.



692

Suppose to the contrary that G∗ can be viewed as the composition graph

HuT , where T is the induced subtree of G∗ and not isomorphic to a

path. Then we let G′ be the graph obtained from H by identifying a

pendant vertex of a path which has the same orders as T to u. Clearly,

G′ ∈ Gn(g,∆). By Lemma 2.4 we have W (G∗) < W (G′), a contradiction.

Claim 3. G∗ has at most one pendant path such that its origin is

different from the maximum degree vertex, and G∗ has at most one

pendant path of length greater than one.

If G∗ has two pendant paths P = uz1z2 . . . zs and P ′ = vv1v2 . . . vt, where

u ̸= w, v ̸= w, t ≥ 1 and s ≥ 1. Let G′ = G − uz1 + z1vt and G′′ =

G − vv1 + v1zs. Clearly, G′ ∈ Gn(g,∆) and G′′ ∈ Gn(g,∆). Then by

Lemma 2.5, we have W (G′) > W (G∗) or W (G′′) > W (G∗), which is a

contradiction.

If G∗ has two pendant paths P = wz1z2 . . . zs and P ′ = ww1w2 . . . wt

where t ≥ s ≥ 2, then let G′ = G − z1z2 + z2wt and it is clear that

G′ ∈ Gn(g,∆). By Lemma 2.4, we have W (G′) > W (G∗), which is a

contradiction.

If G∗ has two pendant paths P = uz1z2 . . . zs and P ′ = ww1w2 . . . wt

where u ̸= w, t ≥ 2 and s ≥ 1. Let G′ = G − uz1 + z1wt and G′′ =

G−w1w2 +w2zs. It is easy to see that G′ ∈ Gn(g,∆) and G′′ ∈ Gn(g,∆).

By Lemma 2.4 we have W (G′) > W (G∗) or W (G′′) > W (G∗), which is a

contradiction.

Thus, the claim follows.

Claim 4. Let C = x1x2 . . . xg be the unique cyclic in G∗. If G∗ has a

pendant path P with length greater than one and the maximum degree

w ̸∈ V (P ), then G∗ ∼= (Tx1C)x⌊ g
2 ⌋+1P , where T is an induced subtree in

G∗.

Clearly, from above we have G∗ ∼= (Tx1C)xiP for some i ∈ {1, 2, . . . , g}
and T is an induced subtree which contains the maximum degree vertex

w. It can be easily verified that W ((Tx1C)xiP ) < W ((Tx1C)x⌊ g
2 ⌋+1P )

for any i ̸= 1 and i ̸= ⌊ g
2⌋+ 1. Thus, the claim follows.
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Claim 5. If the maximum degree vertex w is not on the unique cycle C,

then G∗ does not contain a pendant path of length greater than one.

Otherwise, let P := uu1u2 . . . us be a pendant path in G∗ and P ′ := z1(=

w)z2 . . . zt a path connecting the maximum degree vertex w to the cycle C,

where us is a pendant vertex, zt ∈ V (C), s ≥ 2 and t ≥ 2. If u ∈ V (C), let

G′ = G∗ − zt−1zt + zt−1us. Then, by Lemma 2.2 and direct computation

one can get that W (G′) > W (G∗), a contradiction. If u = w, let G′′ =

G∗ − {wv : v ∈ NG∗(w) \ {z2, u1}} + {us−1v : v ∈ NG∗(w) \ {z2, u1}}.
Then, by the use of Lemma 2.2 one can easily get that W (G′′) > W (G∗),

a contradiction. The required claim follows.

From the discussion above, we can get G∗ ∈ {H1
n,g,∆, H

2
n,g,∆, H

3
n,g,∆},

see Figure 1. According to Lemma 2.2, one can get the Wiener indices of

H1
n,g,∆, H

2
n,g,∆ and H3

n,g,∆, respectively, by direct calculations.

If g is odd, then we have

W (H1
n,g,∆) =

5g3−6g2(n−2∆+6)−g[12n(∆−3)−12∆2+60∆−79]
24

+ 2n3−n(6∆2−36∆+53)+4∆3−24∆2+38∆−12
12 ,

W (H2
n,g,∆) =

(g2−1)(2n−g)
8 + (g−n+∆−4)(g−n+∆−3)(2g+n+2∆−7)

6

+ (n− 1)(∆− 3),

W (H3
n,g,∆) =

5g3−6g2(n+2)+g(12n+7)+4n3−2n(6∆2−18∆+17)
24

+ 2∆3−3∆2−5∆+6
6 .

If g is even, then we have

W (H1
n,g,∆) =

5g3−6g2(n−2∆+6)−4g[3n(∆−3)−3∆2+18∆−25]
24

+ n3−n(3∆2−21∆+31)+2∆3−15∆2+31∆−18
6 ,

W (H2
n,g,∆) =

g2(2n−g)
8 + (g−n+∆−4)(g−n+∆−3)(2g+n+2∆−7)

6

+ (n− 1)(∆− 3),

W (H3
n,g,∆) =

5g3

24 − g2(n+2)
4 + g(3n+1)

6 + n3−n(3∆2−9∆+7)
6

+ 2∆3−3∆2−5∆+6
6 .
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Furthermore, we have

W (H1
n,g,∆)−W (H2

n,g,∆) =


[(g−3)(∆−4)−2](n−g−∆+2)

2 , g is odd,

(g−2)(∆−4)(n−g−∆+2)
2 , g is even,

(5)

W (H1
n,g,∆)−W (H3

n,g,∆) =


(∆−2)[g2+g(−n+∆−3)+3n−3∆+2]

2 , g is odd,

(∆−2)[g2+g(−n+∆−4)+4(n−∆+1)]
2 , g is even

(6)

and

W (H2
n,g,∆)−W (H3

n,g,∆) =g2(∆− 3)− g(∆− 3)(n−∆+ 4)

+ n(3∆− 8)− 3(∆− 2)2. (7)

Next, we consider the following cases respectively.

If g = 3, then from (5) and (7) we have W (H1
n,3,∆) − W (H2

n,3,∆) =

∆−n+1 < 0 and W (H2
n,3,∆)−W (H3

n,3,∆) = n− 3 > 0. Thus, we get the

desired result (i).

If ∆ = 3 and g > 3, then from (5) and (7) we have

W (H1
n,g,3)−W (H2

n,g,3) =


(g−1)(g+1−n)

2 < 0, g is odd,

(g−2)(g+1−n)
2 < 0, g is even,

and

W (H2
n,g,3)−W (H3

n,g,3) = n− 3 > 0.

Thus, we get the result of (ii).

If ∆ = 4 and g ≥ 4 is even, then from (5) we have W (H1
n,g,4) =

W (H2
n,g,4). It is easy to check that W (H2

n,g,4) > W (H3
n,g,4) for 7 ≤ n < 12

by (6). For n ≥ 12, from (6) we have

W (H1
n,g,4)−W (H3

n,g,4) =
(
g − n−

√
n2−16n+48

2

)(
g − n+

√
n2−16n+48

2

)
.

It is easy to verify that 4 < n−
√
n2−16n+48

2 ≤ 6 for n ≥ 12, n−
√
n2−16n+48

2 =
n+

√
n2−16n+48

2 = 6 when n = 12, n−
√
n2−16n+48

2 = 5 and n+
√
n2−16n+48

2 =

8 when n = 13, and n−
√
n2−16n+48

2 and n+
√
n2−16n+48

2 can not be positive
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integers when n > 13. Thus, we can get that W (H1
n,g,4) < W (H3

n,g,4)

for n−
√
n2−16n+48

2 < g < n+
√
n2−16n+48

2 , W (H1
n,g,4) > W (H3

n,g,4) for

g < n−
√
n2−16n+48

2 or g > n+
√
n2−16n+48

2 , W (H1
12,6,4) = W (H2

12,6,4) =

W (H3
12,6,4) and W (H1

13,8,4) = W (H2
13,8,4) = W (H3

13,8,4). The desired re-

sult (iii) follows.

If ∆ = 4 and g ≥ 5 is odd, then from (5) we have W (H1
n,g,4) −

W (H2
n,g,4) = g−n+2 < 0. It is east to check thatW (H2

n,g,4)−W (H3
n,g,4) >

0 for 8 ≤ n < 12. Now, we consider the case of n ≥ 12. When ∆ = 4,

Equation (7) can be phrased as

W (H2
n,g,4)−W (H3

n,g,4) =
(
g − n−

√
n2−16n+48

2

)(
g − n+

√
n2−16n+48

2

)
.

Thus, we have that W (H1
n,g,4) < W (H2

n,g,4) < W (H3
n,g,4) for n ≥ 12

and n−
√
n2−16n+48

2 < g < n+
√
n2−16n+48

2 , W (H2
n,g,4) > W (H3

n,g,4) and

W (H2
n,g,4) > W (H1

n,g,4) for n ≥ 12 and g < n−
√
n2−16n+48

2 or g >
n+

√
n2−16n+48

2 , and W (H2
13,5,4) = W (H3

13,5,4) > W (H1
13,5,4). Therefore,

the desired result (iv) holds.

Let g = ∆ = 5. From (5) and (6) we have W (H1
n,5,5) = W (H2

n,5,5)

and W (H1
n,5,5) − W (H3

n,5,5) = 3(11 − n). So, we have W (H1
11,5,5) =

W (H2
11,5,5) = W (H3

11,5,5) = 151 for n = 11, W (H1
n,5,5) < W (H3

n,5,5)

for n > 11 and W (H1
n,5,5) = W (H2

n,5,5) > W (H3
n,5,5) for 9 ≤ n < 11.

Thus, we get the desired result (v).

Let g ≥ 5 and ∆ > 5. From (5) we have

W (H1
n,g,∆)−W (H2

n,g,∆) =


[(g−3)(∆−4)−2](n−g−∆+2)

2 > 0, g is odd,

(g−2)(∆−4)(n−g−∆+2)
2 > 0, g is even.

Thus, we get that W (H1
n,g,∆) > W (H2

n,g,∆) for g > 5 and ∆ > 5.

From (6) we have

W (H1
n,g,∆)−W (H3

n,g,∆) =
1
2 (g − 3)(∆− 2)

(
∆− n+ g + 2

g−3

)
for odd g ≥ 5. Thus, we have W (H1

n,g,∆) > W (H3
n,g,∆) for n− g − 2

g−3 <

∆ < n − g + 1, W (H1
n,g,∆) < W (H3

n,g,∆) for ∆ < n − g − 2
g−3 and

W (H1
n,g,∆) = W (H3

n,g,∆) for g = 5 and ∆ = n− 6.
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Similarly, we have

W (H1
n,g,∆)−W (H3

n,g,∆) =
1
2 (g − 4)(∆− 2)

(
∆− n+ g + 4

g−4

)
for even g ≥ 6. Thus, we have W (H1

n,g,∆) > W (H3
n,g,∆) for n− g− 4

g−4 <

∆ < n − g + 1, W (H1
n,g,∆) < W (H3

n,g,∆) for ∆ < n − g − 4
g−4 and

W (H1
n,g,∆) = W (H3

n,g,∆) for g = 6 and ∆ = n− 8.

Hence, the statements in (vi) and (vii) are proved.

4 Maximum Kirchhoff index of graphs with

given girth and maximum degree

In this section we proceed to determine the maximum Kirchhoff index

among all graphs with given grith and maximum degree.

Theorem 4.1. Let G be a graph in Gn(g,∆), where g ≥ 3 and 3 ≤ ∆ ≤
n− g + 1.

(i) If g = 3 and ∆ ≥ 3, then we have Kf(G) ≤ Kf(H2
n,3,∆) with equality

iff G ∼= H2
n,3,∆.

(ii) Let g = 4. If n−
√
n2−16n+48

2 < ∆ < n+
√
n2−16n+48

2 , then Kf(G) ≤
Kf(H3

n,4,∆) with equality iff G ∼= H3
n,4,∆. If ∆ < n−

√
n2−16n+48

2

or ∆ > n+
√
n2−16n+48

2 , then Kf(G) ≤ Kf(H2
n,g,∆) with equality iff

G ∼= H2
n,3,∆. If ∆ = n±

√
n2−16n+48

2 , then Kf(G) ≤ Kf(H3
n,4,∆) =

Kf(H2
n,4,∆) with equality iff G ∈ {H2

n,4,∆, H
3
n,4,∆}.

(iii) Let g ≥ 5. We set θ1(n, g) = n+4−g
2 −

√
(g−n)(g2−gn+g+3n−8)

4(g−3) and

θ2(n, g) =
n+4−g

2 +
√

(g−n)(g2−gn+g+3n−8)
4(g−3) . If θ1(n, g) < ∆ < θ2(n, g)

then Kf(G) ≤ Kf(H3
n,g,∆) with equality iff G ∼= H3

n,g,∆. If 3 ≤ ∆ <

θ1(n, g) or θ2(n, g) < ∆ < n − g + 1, then Kf(G) ≤ Kf(H2
n,g,∆)

with equality iff G ∼= H2
n,g,∆. If ∆ = θ1(n, g) or ∆ = θ2(n, g),

then Kf(G) ≤ Kf(H2
n,g,∆) = Kf(H3

n,g,∆) with equality iff G ∈
{H2

n,g,∆, H
3
n,g,∆}.
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(iv) Let ∆ = n − g + 1 and g ≥ 5 is odd. If n < g3+g2−13g−1
g2−4g−1 , then

Kf(G) ≤ Kf(H2
n,g,n−g+1) with equality iff G ∼= H2

n,g,n−g+1. If n >
g3+g2−13g−1

g2−4g−1 , then Kf(G) ≤ Kf(H1
n,g,n−g+1) with equality iff G ∼=

H1
n,g,n−g+1. If n = g3+g2−13g−1

g2−4g−1 , then Kf(G) ≤ Kf(H1
n,g,n−g+1) =

Kf(H2
n,g,n−g+1) with equality iff G ∈ {H1

n,g,n−g+1, H
2
n,g,n−g+1}.

(v) Let ∆ = n − g + 1 and g ≥ 6 is even. If n < g2+g−12
g−4 , then

Kf(G) ≤ Kf(H2
n,g,n−g+1) with equality iff G ∼= H2

n,g,n−g+1. If n >
g2+g−12

g−4 , then we have Kf(G) ≤ Kf(H1
n,g,n−g+1) with equality iff

G ∼= H1
n,g,n−g+1. If n = g2+g−12

g−4 , then Kf(G) ≤ Kf(H1
n,g,n−g+1) =

Kf(H2
n,g,n−g+1) with equality iff G ∈ {H1

n,g,n−g+1, H
2
n,g,n−g+1}.

Proof. Let G∗ be a graph in Gn(g,∆) with maximum Kirchhoff index.

Then, proceeding as in the proof of Theorem 3.1, one can get that G∗ ∈
{H1

n,g,∆, H
2
n,g,∆, H

3
n,g,∆}, and the graphs H1

n,g,∆, H
2
n,g,∆ and H3

n,g,∆ are

illustrated in Figure 1. By Lemma 2.2 and a series of straightforward cal-

culations we can get the explicit expressions for Kf(H1
n,g,∆), Kf(H2

n,g,∆)

and Kf(H3
n,g,∆), respectively. If g is odd, then the Kirchhoff index of

H1
n,g,∆ can be given by

Kf(H1
n,g,∆) =

3g3−g2(4n−9∆+24)+g[n(24−9∆)+9∆2−48∆+63]+2n3

12

− n(6∆2−42∆+64)−4∆3+30∆2−65∆+42
12 − (∆−2)(n−∆+2)

4g .

If g is even, then the Kirchhoff index of H1
n,g,∆ can be given by

Kf(H1
n,g,∆) =

3g3+g2(−4n+9∆−24)+g[n(24−9∆)+9∆2−48∆+63]
12

+ n3+n(−3∆2+21∆−32)+2∆3−15∆2+31∆−18
6 .

The Kirchhoff indices Kf(H2
n,g,∆) and Kf(H3

n,g,∆) can be given respec-

tively by

Kf(H2
n,g,∆) =

3g3−2g2(2n−6∆+21)−3g(2∆−7)(2n−2∆+7)
12

+ n3+n(−3∆2+27∆−56)+2∆3−21∆2+67∆−66
6
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and

Kf(H3
n,g,∆) =

3g3−2g2(2n+3)+g(6n+3)+2[n3−n(3∆2−9∆+8)+2∆3−3∆2−5∆+6]
12 .

Furthermore, we have

Kf(H1
n,g,∆)−Kf(H2

n,g,∆)

=


[g2(∆−6)−4g(∆−4)−∆+2](n+2−g−∆)

4g , g is odd,

[g(∆−6)−4(∆−4)](n+2−g−∆)
4 , g is even,

(8)

Kf(H1
n,g,∆)−Kf(H3

n,g,∆)

=


(∆−2)[3g3+g2(−3n+3∆−10)+g(8n−8∆+9)−n+∆−2]

4g , g is odd,

(∆−2)[3g2+g(−3n+3∆−10)+8(n−∆+1)]
4 , g is even

(9)

and

Kf(H2
n,g,∆)−Kf(H3

n,g,∆) =g2(∆− 3)− g(n+ 4−∆)(∆− 3)

− 3(∆− 2)2 + n(3∆− 8). (10)

Next, we consider the following cases respectively.

If g = 3 and ∆ ≥ 3, then from (8) and (10) we have

Kf(H1
n,3,∆)−Kf(H2

n,3,∆) =
(∆+1)(∆+1−n)

3 < 0

and

Kf(H2
n,3,∆)−Kf(H3

n,3,∆) = n− 3 > 0.

Thus, we have Kf(H2
n,3,∆) > Kf(H1

n,3,∆) and Kf(H2
n,3,∆) > Kf(H3

n,3,∆)

for ∆ ≥ 3. The required result (i) follows.

If g = 4 and ∆ ≥ 3, then from (8) and (10) we have

Kf(H1
n,4,∆)−Kf(H2

n,4,∆) = 2(∆ + 2− n) < 0
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and

Kf(H2
n,4,∆)−Kf(H3

n,4,∆) =
(
∆− n−

√
n2−16n+48

2

)(
∆− n+

√
n2−16n+48

2

)
.

Thus, we can get that Kf(H3
n,4,∆) > Kf(H2

n,4,∆) > Kf(H1
n,4,∆) for

n−
√
n2−16n+48

2 < ∆ < n+
√
n2−16n+48

2 , Kf(H2
n,g,∆) > Kf(H1

n,g,∆) and

Kf(H2
n,g,∆) > Kf(H3

n,g,∆) for ∆ < n−
√
n2−16n+48

2 or ∆ > n+
√
n2−16n+48

2

and Kf(H3
n,4,∆) = Kf(H2

n,4,∆) > Kf(H1
n,4,∆) for ∆ = n±

√
n2−16n+48

2 .

The required result (ii) follows.

If g ≥ 5 and 3 ≤ ∆ ≤ n− g, then from (9) we have

Kf(H1
n,g,∆)−Kf(H3

n,g,∆)

=


(∆−2)(1−8g+3g2)

4g

(
∆− −3g3+3g2n+10g2−8gn−9g+n+2

3g2−8g+1

)
, g is odd,

(∆−2)(3g−8)
4

(
∆− −3g2+3gn+10g−8n−8

3g−8

)
, g is even,

Note that

n− g + 1 > −3g3+3g2n+10g2−8gn−9g+n+2
3g2−8g+1 = n− g + 2g2−8g+2

3g2−8g+1 > n− g

and

n− g + 1 > −3g2+3gn+10g−8n−8
3g−8 = n− g + 2g−8

3g−8 > n− g.

Thus we have Kf(H3
n,g,∆) > Kf(H1

n,g,∆) for all ∆ ≤ n− g.

We can rewrite Equation (10) as

Kf(H2
n,g,∆)−Kf(H3

n,g,∆) =
(
∆− n+4−g

2 +

√
(g−n)(g2−gn+g+3n−8)

4(g−3)

)
×
(
∆− n+4−g

2 −
√

(g−n)(g2−gn+g+3n−8)
4(g−3)

)
=(∆− θ1(n, g))(∆− θ2(n, g)),

where θ1(n, g) =
n+4−g

2 −
√

(g−n)(g2−gn+g+3n−8)
4(g−3) and θ2(n, g) =

n+4−g
2 +√

(g−n)(g2−gn+g+3n−8)
4(g−3) .

It is easy to get that g3−2g2n+g2+gn2+2gn−8g−3n2+8n
4(g−3) −

(
n−g−2

2

)2
=
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3−n
g−3 < 0, then we have

θ2(n, g)− (n− g + 1) =
√

g3−2g2n+g2+gn2+2gn−8g−3n2+8n
4(g−3)

+ g+2−n
2 < n−g−2

2 + g+2−n
2 = 0,

which means θ2(n, g) < n− g + 1.

Thus, we have Kf(H3
n,g,∆) > Kf(H1

n,g,∆) and Kf(H3
n,g,∆) >

Kf(H2
n,g,∆) for θ1(n, g) < ∆ < θ2(n, g), Kf(H2

n,g,∆) > Kf(H3
n,g,∆) >

Kf(H1
n,g,∆) for 3 ≤ ∆ < θ1(n, g) or θ2(n, g) < ∆ ≤ n − g and

Kf(H2
n,g,∆) = Kf(H3

n,g,∆) > Kf(H1
n,g,∆) for ∆ = θ1(n, g) or ∆ =

θ2(n, g). The required result (iii) follows.

If g ≥ 5 and ∆ = n− g + 1, then we have G∗ ∈ {H1
n,g,∆, H

2
n,g,∆}. One

can get by (8) that

Kf(H1
n,g,n−g+1)−Kf(H2

n,g,n−g+1)

=


g2−4g−1

4g

(
n− g3+g2−13g−1

g2−4g−1

)
, g is odd,

g−4
4

(
n− g2+g−12

g−4

)
, g is even.

Thus, if g ≥ 5 is odd, then we have Kf(H1
n,g,n−g+1) < Kf(H2

n,g,n−g+1) for

n < g3+g2−13g−1
g2−4g−1 ,Kf(H1

n,g,n−g+1) > Kf(H2
n,g,n−g+1) for n > g3+g2−13g−1

g2−4g−1

and Kf(H1
n,g,n−g+1) = Kf(H2

n,g,n−g+1) for n = g3+g2−13g−1
g2−4g−1 . If g ≥ 6 is

even, then we have Kf(H1
n,g,n−g+1) < Kf(H2

n,g,n−g+1) for n < g2+g−12
g−4 ,

Kf(H1
n,g,n−g+1) > Kf(H2

n,g,n−g+1) for n > g2+g−12
g−4 and Kf(H1

n,g,n−g+1)

= Kf(H2
n,g,n−g+1) for n = g2+g−12

g−4 . Hence, the statements (iv) and (v)

follows.

5 Open problems

In this paper we have obtained the maximum Wiener index and Kirchhoff

index for graphs of order n in terms of girth and maximum degree, respec-

tively. On the other side, what about the minimum value of Wiener index

(resp. Kirchhoff index) for graphs of given order, girth and maximum

degree? It is still an open problem.
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Problem 5.1. Determine the minimum Wiener index (resp. Kirchhoff

index) among all graphs of order n with given girth and maximum degree.

It is also interesting to consider the problem restricted in 2-connected

graphs.

Problem 5.2. Determine the maximum or minimum Wiener index (resp.

Kirchhoff index) among all 2-connected graphs of order n with given girth

and maximum degree.

Similar questions can be asked for other important graph invariants,

such as the number of subtrees, matching energy, Hosoya index, Merrifield-

Simmons index, spectral radius, (signless) Laplacian spectral radius, dis-

tance spectral radius, Estrada index and so forth. We look forward to see

these problems solved in the near future.
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mal Wiener index for graphs with prescribed number of blocks, Appl.
Math. Comput. 380 (2020) #125274.
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