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Abstract

The dendrimers are highly branched organic macromolecules ha-
ving repeated iterations of branched units that surrounds the central
core. Dendrimers are used in a variety of fields including chemistry,
nanotechnology and biology. For positive integers n and k, the sym-
metric dendrimer Tn,k is defined as the rooted tree of radius n whose
all vertices at distance less than n from the root have degree k and
all pendent vertices have equal distance n from the root. In this
paper, for any positive integer ℓ, we count the number of paths of
length ℓ of Tn,k. As a consequence of our main results, we obtain the
average distance of Tn,k which we can establish an alternate proof
for the Wiener index of Tn,k. Further, we generalize the concept of
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medium domination, introduced by Vargör and Dündar in 2011, of
Tn,k.

1 Introduction

The set of vertices in a graph G = (V (G), E(G)) is V (G) while the set of

edges is denoted by E(G). All graphs in this paper are finite and simple,

with no loops or multiple edges. The the set {u : uv ∈ E(G)} is the

neighbor set NG(v) of a vertex v in G. The degree degG(v) of a vertex

v in G is given by |NG(v)|. If the subgraph of G induced by S has no

edges, then the vertex subset S of V (G) is independent. The maximum

cardinality of an independent set is given by the independence number of

G which denoted by α(G). If every vertex of G has degree k then the graph

G is k-regular. For u, v ∈ V (G), the length of a shortest path from u to

v is the distance dG(u, v) between u and v in G. The maximum distance

between all pairs of vertices of G is the diameter of G and is denoted by

diam(G).

A tree is a connected graph with no subgraphs that are cycles. A leaf,

also known as pendent vertex, is a vertex with degree one. A leaf’s incident

edge is the pendent edge while a leaf’s neighbouring vertex is called a sup-

port vertex. A rooted tree T is a tree whose one vertex is identified as the

root r. Furthermore, if dT (r, v) = i, a vertex v of T is at level i and T has

n-level if the greatest level of all vertices of T is n. The symmetric den-

drimer Tn,k is defined as the rooted tree of n-level whose all vertices at dis-

tance less than n from the root have degree k and all pendent vertices have

equal distance n from the root. A (general) dendrimer is a molecule with a

well-defined chemical structure that is synthesised chemically. Dendrimers

have three key main components: one is the core, and it’s the most fun-

damental aspect in dendrimer development, then branches that are added

at each step sequentially produce a structure like tree, the last component

is end groups. Dendrimers are hyperbranched macromolecules that have

a wide range of applications in domains like supramolecular, drug devel-

opment, and nanotechnology. Some graph variants such as domination

number and some other types of domination numbers are used to describe
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a range of physical characteristics, including physicochemical characteris-

tics, thermodynamic characters, chemical and biological actions, and so

on. In 1978, Buhleier, Vogtle and Wehner [5] were the first to bring these

nanomolecules to researcher’s attention. Bokhary, Imran and Manzoor [2]

introduced the topological indices of dendrimers and some more chemi-

cal structures that can be presented by graphs, inspired by the chemical

relevance of molecular networks.

Figure 1. The symmetric dendrimer T3,4.

The followings are examples of Tn,,k when n or k is small. By the

definition of the symmetric dendrimers, we have that n ≥ 1 and k ≥ 2.

When n = 1, T1,k is a star with k + 1 vertices.

When k = 2, Tn,2 is P2n+1, a path of length 2n.

When n = 2, it can be observed that T2,k can be obtained from T1,k

by introducing k− 1 vertices to each leaf of T1,k and joining these vertices

to that leaf. Hence, when n, k ≥ 2, Tn,k can be obtained from Tn−1,k by

introducing k − 1 vertices to each leaf of Tn−1,k and joining these vertices
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to that leaf. Namely, when n ≥ 2 and k ≥ 0, Tn,k is constructed by n

iterations from the graph that has exactly one vertex. For example, the

symmetric dendrimer T3,4 is illustrated in Figure 1.

For a graph G, the sum of the distance between any pair of vertices of

G is known as the Weiner index W (G) of G. That is:

W (G) =
∑

{u,v}⊆V (G)

dG(u, v).

In the quantitative structure-property relationships (QSPR) [3,18,21], the

Wiener index was the first and most well researched topological index.

Since then dozens of new indices have been developed to link topological

indices with various physical features. The boiling temperatures of alkane

molecules are closely associated with the Wiener index. Later, a study on

quantitative structure activity linkages revealed it is also connected with

some other factors such as the critical point parameters, density, surface

tension, viscosity of the liquid phase and the molecule’s van der Waals

surface area. It was originally called the path number since it was defined

as the total of the lengths between any two carbon atoms in an alkane

in terms of carbon-carbon bonds [24]. Wiener’s works did not make use

of graph theory, and the path number was only used in acyclic systems.

In 1971, Hosoya [11] was the first to define the Wiener index within the

context of chemical graph theory. In 1976, the Weiner index was stud-

ied for the first time by Entringer, Jackson and Snyder [9]. This index

has also been referred by the terms “graph distance” [9] and “transmis-

sion” [12, 19]. Further, Plesnik [19] applied the Laplacian matrix to in-

troduce a new graph-theoretical definition of the Wiener index for trees.

Dobryin, Entringer and Gutman [8] established the Wiener index for sym-

metic dendrimers which states that for every k ≥ 3, the Wiener index of

Tn,k is

W (Tn,k) =
1

(k − 2)3
[(k − 1)2n[nk3 − 2(n+ 1)k2 + k] + 2k2(k − 1)n − k].

(1)
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A graph G fulfilling specific constraints can efficiently simulates nu-

merous scenarios in communication, facility locating, cryptology and other

fields. Due to cost constraint, it is frequently sought to have a spanning

tree of G that is optimal with respect to one or more attributes. One of

these attributes is the average distance of a graph which is defined to be

the sum of all distances between any pair of vertices divided by the number

of pairs of vertices of the graphs. That is,

µ(G) =

∑
u,v∈V (G)

dG(u, v)(
|V (G)|

2

) .

The study of the average distance of graphs was initiated by Plesnik in his

classical result in [19]. The average distance is an important tool to analyse

entire structure of the graph. The parameter globally presents expected

number of edges that an object needs to travel between nodes (vertices)

of networks. This reflects data transmission efficiency of communication

networks as well as capability to deliver objects of transportation net-

works. Hence, the average distance has been continuously studied in both

theoretical, algorithm and application areas. For example of the studies

of average distance of graphs, Fajtlowicz and Waller [10] established the

inequality between the average distance and the independence number in

their classical paper since 1986 that α(G) ≥ µ(G)− 1 for every connected

graph G. Chung [6] improved this bound to be α(G) ≥ µ(G) and further

characterized that the equality holds if and only if G is a complete graph.

For more studies of the average distance of graphs see [7, 22] for example.

Domination in graph has been extensively researched and utilised in

a variety of fields. Vargör and Dündar [23], established the idea of “the

medium domination” which is defined as follows. For a graph G of order n

and for any vertices u, v ∈ V (G), dom(u, v) is the number of vertices that

dominate both u and v (but u and v will contribute eaxctly 1 to dom(u, v)

if uv ∈ E(G)). Then TDV (G) =
∑

u,v∈V (G) dom(u, v) and the medium

domination number of G is defined as
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γm(G) =
TDV (G)(

n
2

) .

The medium domination number of graphs has been studied by [13, 20]

for examples. It can be observed that dom(u, v) is the number of paths of

lengths one and two between u and v. Hence, for a given positive integer

ς ≥ 2, the concept of dom(u, v) can be generalized to Pς(u, v), the number

of paths of lengths at most ς between u and v. Because dom(u, v) is the

main part of the medium domination number, the value Pς(G) generalizes

the concept of medium domination number as well. For examples of the

studies when 1 ≤ ς ≤ 4 see [16,17].

From the above discussion, it can be showed that the Weiner index,

the average distance and the medium domination number of dendrimers

can be found if we know the number of paths of all lengths. Thus, the

problems that arises is:

Problem 1. For non-negative integers n, k and ℓ, how many paths of

length ℓ does a symmetric dendrimer Tn,k have?

Surprisingly, to the best of our knowledge, Problem 1 has not been an-

swered.

In this paper, we solve Problem 1 by establishing the exact and re-

cursive formulas to count the number of paths of length ℓ of Tn,k for all

1 ≤ ℓ ≤ 2n. As a consequence, we easily obtain average distance of Tn,k.

Further, we generalize the concept of medium domination to ς-medium

domination in graphs.

2 Main results and applications

In this section, we state our main results of this paper as well as their

applications in Subsections 2.1 and 2.2 while most of the proofs are given

in Section 4. First, for a graph G, we let

nℓ(G) be the number of paths of length ℓ of G.
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Further, we may call a symmetric dendrimer shortly a dendrimer through-

out. The first main result is the formula of nℓ(Tn,k) for all possible values

of ℓ. Recall that when k = 2, the dendrimer Tn,2 is a path of length 2n.

Thus, we let x1, ..., x2n+1 be Tn,2. Clearly, for a positive integer 1 ≤ ℓ ≤ 2n,

all the paths of length ℓ are xi, xi+1, ..., xi+ℓ for all 1 ≤ i ≤ 2n + 1 − ℓ.

Hence, we obtain the following observation.

Observation 1. Let Tn,k be the dendrimer. If k = 2, then

nℓ(Tn,2) = 2n+ 1− ℓ.

Thus, throughout of this paper, we may assume that k ≥ 3. Further, for

a tree T , we let

n1
ℓ(T ) : the number of paths of length ℓ of T with exactly one end

vertex is a leaf of T .

n2
ℓ(T ) : the number of paths of length ℓ of T whose both end vertices

are leaves of T .

Our main results in this subsection are Theorem 1, Corollaries 1 and 2.

As informed earlier, the proofs are given in Section 4.

Theorem 1. Let Tn,k be the dendrimer and k ≥ 3. If ℓ is even number,

then

nℓ(Tn,k) = (k − 1)n1
ℓ−1(Tn−1,k) + (k − 1)2n2

ℓ−2(Tn−1,k) + nℓ(Tn−1,k).

If ℓ is odd number, then

nℓ(Tn,k) = (k − 1)n1
ℓ−1(Tn−1,k) + 2(k − 1)n2

ℓ−1(Tn−1,k) + nℓ(Tn−1,k).

By Theorem 1, we obtain the following corollaries. It is worth noting that

Corollary 2 is a combinatorial identity which is obtained by the counting

two way principle.

Corollary 1. Let Tn,k be the dendrimer and k ≥ 3. Then
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nℓ(Tn,k) =


k(k−1)ℓ−1

2 [k(k−1)n− ℓ
2 −2

k−2 ] when ℓ is even,

k(k − 1)
ℓ−1
2 [ (k−1)n−(k−1)

ℓ−1
2

k−2 ] when ℓ is odd.

Corollary 2. For natural numbers n and k such that k ≥ 3, we have that

(
1 + k[(k−1)n−1]

k−2

2

)
=

n−1∑
l=0

k(k − 1)l[
(k − 1)n − (k − 1)l

k − 2
]

+

n∑
l=1

k(k − 1)2l−1

2
[
k(k − 1)n−l − 2

k − 2
].

2.1 Wiener index and average distance

In this subsection,We have linked our main problem to distance in den-

drimers. Using the results obtained in Theorem 1, Corollaries 1 and 2,

we have found the Wiener index and average distance of Tn,k. We obtain

Corollaries 3 and 4. However, we still need Theorem 2 and the proof of

this theorem is given in Section 4.

Theorem 2. Let T be a tree having the diameter diam(T ). Then

∑
{u,v}⊆V (T )

dT (u, v) =

diam(T )∑
ℓ=1

ℓnℓ(T ).

By Corollary 1, we have that

2n∑
ℓ=1

ℓnℓ(Tn,k) =

n−1∑
l=0

(2l + 1)k(k − 1)l[
(k − 1)n − (k − 1)l

k − 2
]+

n∑
l=1

(2l)
k(k − 1)2l−1

2
[
k(k − 1)n−l − 2

k − 2
]. (2)
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As diam(Tn,k) = 2n, by (2) and Theorem 2, we immediately obtain the

following corollaries.

Corollary 3. Let Tn,k be the dendrimer with the Weiner index W (Tn,k).

Then

W (Tn,k) =

n−1∑
l=0

(2l + 1)k(k − 1)l[
(k − 1)n − (k − 1)l

k − 2
]

+

n∑
l=1

(2l)
k(k − 1)2l−1

2
[
k(k − 1)n−l − 2

k − 2
].

It is worth noting that the right hand side of the equation in Corollary 3

can be simplified to Equation (1).

Corollary 4. Let Tn,k be the dendrimer with the average distance µ(Tn,k).

Then

µ(Tn,k) =
( n−1∑

l=0

(2l + 1)k(k − 1)l[
(k − 1)n − (k − 1)l

k − 2
]

+

n∑
l=1

(2l)
k(k − 1)2l−1

2
[
k(k − 1)n−l − 2

k − 2
]
)
/

(
1 + k[(k−1)n−1]

k−2

2

)
.

2.2 Medium domination

Motivated by [16,17,23], we generalize their results to ς-medium domina-

tion of Tn,k. For a graph G of order n and for some 2 ≤ ς ≤ diam(G), the

ς-medium domination number γςMD(G) of G is defined as

γςMD(G) =
Pς(G)(

n
2

) ,

where

Pς(G) =

ς∑
ℓ=1

nℓ(G),

the number of all paths whose lengths less than or equal to ς. Hence, when

G is a dendrimer Tn,k, we obtain the ς-medium domination number of Tn,k

as follow:



668

Corollary 5. Let Tn,k be the dendrimer with the ς-medium domination

number γςMD(G). Then

γςMD(Tn,k) =
Pς(Tn,k)(|V (Tn,k)|

2

) ,
where

Pς(Tn,k) =

s∑
ℓ=0

k(k − 1)ℓ[
(k − 1)n − (k − 1)ℓ

k − 2
]

+

⌊ ς
2 ⌋∑

ℓ=1

k(k − 1)2ℓ−1

2
[
k(k − 1)n−ℓ − 2

k − 2
]

and

s =


⌊ ς
2⌋ when ς is odd,

⌊ ς
2⌋ − 1 when ς is even.

3 Preliminaries

In this section, we provide some results that are used in establishing our

main theorems. We begin with a simple but yet useful formula for geo-

metric series. For a geometric series Sn = a+ ar + ar2 + · · ·+ arn−1, we

have that

Sn =

n−1∑
i=0

ari =
a(1− rn)

1− r

where n is the number of terms, a is the coefficient and r ̸= 1 is the

common ratio.

Further, for Tn,k, we may have the following formulas by simple counting

arguments and geometric series,

• the total number of vertices of degree k is equal to k(k−1)n−1−2
k−2 ,

• the total number of vertices of degree 1 (i.e. pendent vertices) is

equal to k(k − 1)n−1,
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• the total number of vertices is equal to 1 + k[(k−1)n−1]
k−2 and

• the total number of edges is equal to k[(k−1)n−1]
k−2 .

4 Proofs

In this section, we give the proofs of Theorem 1, Corollary 1, Corollary 2

and Theorem 2.

4.1 Proof of Theorem 1

To prove this theorem, we need to establish Lemmas 1 and 2 which are

the exact formulas of n1
ℓ(Tn,k) and n2

ℓ(Tn,k).

Lemma 1. for n, k ≥ 1 and 1 ≤ ℓ ≤ 2n, we let n1
ℓ(Tn,k) be the number

of paths of length ℓ of Tn,k having exactly one end vertex as a leaf of Tn,k.

Then

n1
ℓ(Tn,k) = k(k − 1)n+⌈ ℓ

2 ⌉−2.

Proof. First, we let r be the root and let x be an arbitrary leaf of the

graph Tn,k. Further, for 0 ≤ j ≤ n, we let

Lj : the set of all vertices of Tn,k at distance i from r,

and

Px : the family of all paths of Tn,k starting from x and the other end

vertex is not

a leaf of Tn,k.

We distinguish two cases according to the value of ℓ.

Case 1: 1 ≤ ℓ ≤ n.

For a path P ∈ Px, we let

min(P ) = min{j : V (P ) ∩ Lj ̸= ∅}.

Further, for 0 ≤ i ≤ ⌊ ℓ−1
2 ⌋, we let

Px,i = {P ∈ Px : min(P ) = n− ℓ+ i}.

It can be observed that Px,0,Px,1, ...,Px,⌊ ℓ−1
2 ⌋ partition Px.
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When i = 0, we have that |Px,0| = 1 as there is exactly one path of

length ℓ starting from x, goes through vertices in Ln−1, Ln−2, ..., Ln−ℓ+1

and terminates in Ln−ℓ.

For each 1 ≤ i ≤ ⌊ ℓ−1
2 ⌋, all the paths in Px,i start from x and go trough

vertices in Ln−1, ..., Ln−ℓ+i+1, Ln−ℓ+i with exactly one possibility. We may

let y ∈ Ln−ℓ+i+1 and z ∈ Ln−ℓ+i be the vertices that are in all the paths.

Then, from the vertex z, all the paths move back to Ln−ℓ+i+1, ..., Ln−ℓ+2i.

As y is already in every of such path, there are k − 2 possibilities for all

the paths in Px,i. Further, there are k− 1 possibilities for all the paths to

pass each of Ln−ℓ+i+2, ..., Ln−ℓ+2i. Hence,

|Px,i| = (k − 2)(k − 1)i−1

which implies that

|Px| = |Px,0|+ |Px,1|+ · · ·+ |Px,⌊ ℓ−1
2 ⌋|

= 1 + (k − 2) + (k − 2)(k − 1) + · · ·+ (k − 2)(k − 1)⌊
ℓ−3
2 ⌋.

After simplifying this geometric series, we get

|Px| = (k − 1)⌊
ℓ−1
2 ⌋

and this proves Case 1.

Case 2: ℓ = n+ 1 ≤ l ≤ 2n.

In this case, we let

Rx = {P ∈ Px : r ∈ V (P )}

and

Sx = {P ∈ Px : r /∈ V (P )}.

We first count the number of paths in Rx. All the paths in Rx start

from x and pass to the root r with one possibility each. Then, from r,

all the paths pass trough L1, ..., Lℓ−n−1 and terminate in Lℓ−n with k− 1

possibilities. Thus, |Rx| = (k − 1)ℓ−n.
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Next, we count the number of paths in Sx by similar arguments as in

Case 1. For ℓ− n+ 1 ≤ i ≤ ⌊ ℓ−1
2 ⌋, we let

Sx,i = {P ∈ Sx : min(P ) = n− ℓ+ i}.

Clearly, {Sx,ℓ−n+1, ...,Sx,⌊ ℓ−1
2 ⌋} partitions Sx.

For each ℓ − n + 1 ≤ i ≤ ⌊ ℓ−1
2 ⌋, all paths in Sx,i start from x pass

trough Ln−1, ..., Ln−ℓ+i+1 to Ln−ℓ+i with one possibility. Then, the paths

pass back to Ln−ℓ+i+1 with k − 2 possibilities and continue in Ln−ℓ+i+2

until terminating in Ln−ℓ+2i with k − 1 possibilities. Thus

|Sx,i| = (k − 2)(k − 1)i−1

which implies that

|Sx| = |Sx,ℓ−n+1|+ · · ·+ |S
x,⌊ ℓ−1

2
⌋|

= (k − 2)(k − 1)ℓ−n + (k − 2)(k − 1)ℓ−n+1 + · · ·+ (k − 2)(k − 1)⌊
ℓ−3
2

⌋

= (k − 2)
( (k − 1)⌊

ℓ−1
2

⌋ − 1

k − 2
− (k − 1)ℓ−n − 1

k − 2

)
= (k − 1)⌊

ℓ−1
2

⌋ − (k − 1)ℓ−n.

Hence,

|Px| = |Rx|+ |Sx| = (k − 1)⌊
ℓ−1
2 ⌋

and this proves Case 2.

In both cases, we have that |Px| = (k − 1)⌊
ℓ−1
2 ⌋. As x is an arbitrary

leaf of Tn,k and Tn,k has k(k − 1)n−1 leaves, it follows that

n1
ℓ(Tn,k) =


k(k − 1)n+

ℓ
2−2 when ℓ is even,

k(k − 1)n+
ℓ−1
2 −1 when ℓ is odd.

This implies that

n1
ℓ(Tn,k) = k(k − 1)n+⌈ ℓ

2 ⌉−2

which proves Lemma 1.
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Lemma 2. Let n2
ℓ(Tn,k) be the number of paths of length ℓ that start and

end on a leaf vertex of the graph Tn,k. Then, for n, k ≥ 1,

n2
ℓ(Tn,k) =


k(k − 1)n+

ℓ
2−3

(
k−1
2

)
when 2 ≤ ℓ ≤ 2n− 2

(k − 1)ℓ−2
(
k
2

)
when ℓ = 2n.

Proof. First, we let

Qℓ : the family of paths of length ℓ of Tn,k whose both end vertices are

leaves of Tn,k.

Clearly, ℓ must be even. For a path P ∈ Qℓ, we let xP be the center of P

which the distance from xp to the end vertices of P are both equal to ℓ
2 .

We distinguish 2 cases according to the value of ℓ.

Case 1: 2 ≤ ℓ ≤ 2n− 2.

It can be observed that every path in Qℓ has the center in Ln− ℓ
2
. Let

x be a vertex in Ln− ℓ
2
. There are k − 1 neighbors of x in Ln− ℓ

2+1. Each

pair of these k− 1 neighbors can be passed by a path in Qℓ. Hence, there

are
(
k−1
2

)
possibilities for the paths in Qℓ. We may let x1 and x2 be a pair

among these
(
k−1
2

)
possibilities. There are (k − 1)

ℓ
2−1 paths from each of

x1 and x2 to the leaves of Tn,k. Hence, there are(
k − 1

2

)
(k − 1)

ℓ
2−1(k − 1)

ℓ
2−1 = (k − 1)ℓ−2

(
k − 1

2

)
paths whose center is x and both end vertices are leaves. Since x is arbi-

traty and there are k(k − 1)n−
ℓ
2−1 vertices in Ln− ℓ

2
, it follows that

n2
ℓ(Tn,k) = |Qℓ| = k(k − 1)n−

ℓ
2−3

(
k − 1

2

)
.

Case 2: ℓ = 2n

In this case, the root r is the center of all paths in Q2n. There are
(
k
2

)
possibilities for the paths in Q2n to pass these vertices. Similarly, we let

x1 and x2 be a pair among these
(
k
2

)
possibilities. There are (k − 1)

ℓ
2−1
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paths from each of x1 and x2 to the leaves of Tn,k. Hence,

n2
ℓ(Tn,k) = |Q2n| = (k − 1)ℓ−2

(
k

2

)
and this proves Lemma 2.

Now we are ready to prove Theorem 1.

Proof of Theorem 1 Recall that the graph Tn,k can be constructed from

Tn−1,k by introducing k − 1 vertices to each leaf, and joining these k − 1

vertices to the leaf. We have considered two cases.

Case 1: ℓ is an even number.

Every path of length ℓ in this case is either (i) lies completely in Tn−1,k,

(ii) can be formed from a path of length ℓ−1 whose exactly one end vertex

is a leaf of Tn−1,k or (iii) can be formed from a path of length ℓ− 2 whose

both end vertices are at the leaves of Tn−1,k. The Case (i) gives nℓ(Tn−1,k)

paths of length ℓ while the Case (ii) gives (k−1)n1
ℓ(Tn−1,k) paths of length

ℓ as the end vertex at a leaf of Tn−1,k can be extended with k − 1 ways.

Finally, the Case (iii) gives (k − 1)2n2
ℓ−2(Tn−1,k) paths as every path of

length ℓ − 2 whose both end vertices are at the leaves of Tn−1,k can be

extended to the path of length ℓ by (k−1)2 ways, k−1 for each end vertex.

Thus, we have the following recursive formula

nℓ(Tn,k) = (k − 1)n1
ℓ−1(Tn−1,k) + (k − 1)2n2

ℓ−2(Tn−1,k) + nℓ(Tn−1,k).

This proves Case 1.

Case 2: ℓ is an odd number

Similarly, every path of length ℓ in this case is either (i) lies completely

in Tn−1,k, (ii) can be formed from a path of length ℓ−1 whose exactly one

end vertex is a leaf of Tn−1,k or (iii) can be formed from a path of length

ℓ − 1 whose both end vertices are at the leaves of Tn−1,k. The Case (i)

gives nℓ(Tn−1,k) paths while the Case (ii) gives (k − 1)n1
ℓ(Tn−1,k) paths.

For the Case (iii), we can only extend these paths of length ℓ−1 in Tn−1,k

to be a path of length ℓ by extending only one end vertex, k − 1 ways for
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each end vertex. Thus there are 2(k − 1)n2
ℓ−1(Tn−1,k) paths in this case.

Thus, we have a recursive formula:

nℓ(Tn,k) = (k − 1)n1
ℓ−1(Tn−1,k) + 2(k − 1)n2

ℓ−1(Tn−1,k) + nℓ(Tn−1,k).

This proves Case 2 and completes the proof of our theorem.

4.2 Proof of Corollary 1

We distinguish two cases according to the parity of ℓ.

Case 1: ℓ is an even number.

By Theorem 1, we have that

nℓ(Tn,k) = (k − 1)n1
ℓ−1(Tn−1,k) + (k − 1)2n2

ℓ−2(Tn−1,k) + nℓ(Tn−1,k)

nℓ(Tn−1,k) = (k − 1)n1
ℓ−1(Tn−2,k) + (k − 1)2n2

ℓ−2(Tn−2,k) + nℓ(Tn−2,k)

nℓ(Tn−2,k) = (k − 1)n1
ℓ−1(Tn−3,k) + (k − 1)2n2

ℓ−2(Tn−3,k) + nℓ(Tn−3,k)

...

nℓ(T ℓ
2+1,k) = (k − 1)n1

ℓ−1(T ℓ
2 ,k

) + (k − 1)2n2
ℓ−2(T ℓ

2 ,k
) + nℓ(T ℓ

2 ,k
)

nℓ(T ℓ
2 ,k

) = (k − 1)n1
ℓ−1(T ℓ−2

2 ,k) + (k − 1)2n2
ℓ−2(T ℓ−2

2 ,k) + nℓ(T ℓ−2
2 ,k).

As ℓ−2
2 < ℓ

2 , we have nℓ(T ℓ−2
2 ,k) = 0. Further, n1

ℓ−1(T ℓ−2
2 ,k) = 0 because

ℓ−2
2 < ℓ−1

2 . Thus, summing the above equations we have

nℓ(Tn,k) = (k − 1)

n−1∑
i= ℓ

2

n1
ℓ−1(Ti,k) + (k − 1)2

n−1∑
j= ℓ−2

2

n2
ℓ−2(Tj,k). (3)

By Lemma 1 when ℓ− 1 is odd, we have that
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n−1∑
i= ℓ

2

n1
ℓ−1(Ti,k) =

n−1∑
i= ℓ

2

k(k − 1)i+
ℓ−2
2 −1

= k(k − 1)
ℓ
2−2[

n−1∑
i=0

(k − 1)i −
ℓ
2−1∑
i=0

(k − 1)i].

By Geometric Series, we have that

n−1∑
i= ℓ

2

n1
ℓ−1(Ti,k) = k(k − 1)

ℓ
2−2[

(k − 1)n − (k − 1)
ℓ
2

k − 2
]. (4)

For the sum
∑n−1

j= ℓ−2
2

n2
ℓ−2(Tj,k), we may split the first term as

n−1∑
j= ℓ−2

2

n2
ℓ−2(Tj,k) = n2

ℓ−2(T ℓ−2
2 ,k) +

n−1∑
j= ℓ

2

n2
ℓ−2(Tj,k).

By Lemma 2, we have that

n−1∑
j= ℓ−2

2

n2
ℓ−2(Tj,k) = (k − 1)ℓ

(
k

2

)
+

n−1∑
j= ℓ

2

k(k − 1)
ℓ
2−4+j

(
k − 1

2

)

= (k − 1)ℓ
(
k

2

)
+ k(k − 1)

ℓ
2−4

(
k − 1

2

) n−1∑
j= ℓ

2

(k − 1)j .

By Geometric Series, we have that

n−1∑
j= ℓ−2

2

n2
ℓ−2(Tj,k) =(k − 1)ℓ−4

(
k

2

)

+ k(k − 1)
ℓ
2−4

(
k − 1

2

)
[
(k − 1)n − (k − 1)

ℓ
2

k − 2
]. (5)

Putting values from Equation (4) and (5) into Equation (3) and simplify-
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ing, we get

nℓ(Tn,k) =
k(k − 1)ℓ−1

2
[
k(k − 1)n−

ℓ
2 − 2

k − 2
]. (6)

This proves Case 1.

Case 2: ℓ is an odd number

By Theorem 1, we have that

nℓ(Tn,k) = (k − 1)n1
ℓ−1(Tn−1,k) + 2(k − 1)n2

ℓ−1(Tn−1,k) + nℓ(Tn−1,k)

nℓ(Tn−1,k) = (k − 1)n1
ℓ−1(Tn−2,k) + 2(k − 1)n2

ℓ−1(Tn−2,k) + nℓ(Tn−2,k)

nℓ(Tn−2,k) = (k − 1)n1
ℓ−1(Tn−3,k) + 2(k − 1)n2

ℓ−1(Tn−3,k) + nℓ(Tn−3,k)

...

nℓ(T ℓ+1
2 ,k) = (k − 1)n1

ℓ−1(T ℓ−1
2 ,k) + 2(k − 1)n2

ℓ−1(T ℓ−1
2 ,k) + nℓ(T ℓ−1

2 ,k).

Since ℓ−1
2 < ℓ

2 , it follows that nℓ(T ℓ−1
2 ,k) = 0. Further, n1

ℓ−1(T ℓ−1
2 ,k) = 0

because every path of length ℓ− 1 always has both end vertices at leaves

of T ℓ−1
2 ,k. Thus, summing the above equations, we have

nℓ(Tn,k) =(k − 1)

n−1∑
i= ℓ+1

2

n1
ℓ−1(Ti,k) + 2(k − 1)

n−1∑
j= ℓ+1

2

n2
ℓ−1(Tj,k)

+ 2(k − 1)n2
ℓ−1(T ℓ−1

2 ,k). (7)

By Lemma 1 when ℓ− 1 is even, we have that

n−1∑
i= ℓ+1

2

n1
ℓ−1(Ti,k) =

n−1∑
i= ℓ+1

2

k(k − 1)i+
ℓ−1
2 −2

= k(k − 1)
ℓ−1
2 −2

n−1∑
i= ℓ+1

2

(k − 1)i

= k(k − 1)
ℓ−1
2 −2[

n−1∑
i=0

(k − 1)i −

ℓ−1
2∑

i=0

(k − 1)i].
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Hence, we have by Geometric Series that

n−1∑
i= ℓ+1

2

n1
ℓ−1(Ti,k) = k(k − 1)

ℓ−1
2 −2[

(k − 1)n − (k − 1)
ℓ+1
2

k − 2
]. (8)

Further, we have by Lemma 2 that

n−1∑
j= ℓ+1

2

n2
ℓ−1(Tj,k) =

n−1∑
j= ℓ+1

2

k(k − 1)
ℓ+1
2 −2+j

(
k − 1

2

)

= k(k − 1)
ℓ+1
2 −2

(
k − 1

2

) n−1∑
j= ℓ+1

2

(k − 1)j .

We have by Geometric Series that

n−1∑
j= ℓ+1

2

n2
ℓ−1(Tj,k) = k(k − 1)

ℓ+1
2 −2

(
k − 1

2

)
[
(k − 1)n − (k − 1)

ℓ+1
2

k − 2
]. (9)

Putting values from Equations (8) and (9) into Equation (7) and simpli-

fying, we get

nℓ(Tn,k) = k(k − 1)
ℓ−1
2 [

(k − 1)n − (k − 1)
ℓ−1
2

k − 2
]. (10)

This proves Case 2 and completes the proof of Corollary 1.

4.3 Proof of Corollary 2

We let
(
V (Tn,k)

2

)
be the set of all sets of two vertices of Tn,k. Namely,(

V (Tn,k)

2

)
= {{u, v} : u, v ∈ V (Tn,k)}

and

∣∣∣(V (Tn,k)

2

)∣∣∣ = (
|V (Tn,k)|

2

)
=

(
1 + k[(k−1)n−1]

k−2

2

)
.

Construct the (0, 1)-matrix whose rows are the pairs {u, v} of
(
V (Tn,k)

2

)
,
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columns are the path length ℓ for all 1 ≤ ℓ ≤ 2n and the entries a{u,v},ℓ

are defined as follows:

a{u,v},ℓ =


1 if dT (u, v) = ℓ,

0 otherwise.

We first consider Row {u, v}. There is exactly one column, called ℓ,

such that

a{u,v},ℓ = 1

but

a{u,v},j = 0

for all j ∈ {1, ..., 2n} \ {ℓ}. Thus, the summation of all entries in this

matrix is

∑
{u,v}⊆V (T )

1 =
∣∣∣(V (Tn,k)

2

)∣∣∣ = (
1 + k[(k−1)n−1]

k−2

2

)
.

We then consider Column ℓ. By the definition of nℓ(Tn,k), there

are nℓ(Tn,k) rows whose entries are equal to 1 while the entries of the

other rows are all 0. Hence, the summation of all entries of Column ℓ is

equal to nℓ(T ) implying that the summation of all etries in this matrix is∑2n
ℓ=1 nℓ(T ).

By the counting two way principle, we have that

(
1 + k[(k−1)n−1]

k−2

2

)
=

2n∑
ℓ=1

nℓ(Tn,k).

This proves Corollary 2.

4.4 Proof of Theorem 2

We prove this theorem by similar argument as in the proof of Corollary 2.

First, we let T be a tree with the diameter diam(T ) = t. We let
(
V (T )

2

)
be the set of all sets of two vertices of T . Construct the matrix whose
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rows are the pairs {u, v} of
(
V (T )

2

)
, columns are the path length ℓ for all

1 ≤ ℓ ≤ t and the entries a{u,v},ℓ are defined as follows:

a{u,v},ℓ =


ℓ if dT (u, v) = ℓ,

0 otherwise.

Thus, in the column j, all the entries are either j or 0.

We first consider Row {u, v}. There is exactly one column, called ℓ,

such that

a{u,v},ℓ = ℓ = dT (u, v)

but

a{u,v},j = 0

for all j ∈ {1, ..., t} \ {ℓ}. Thus, the summation of all entries of Row {u, v}
is equal to ℓ = dT (u, v) implying that the summation of all entries in this

matrix is
∑

{u,v}⊆V (T ) dT (u, v).

We then consider Column ℓ. By the definition of nℓ(T ), there are nℓ(T )

rows whose entries are equal to ℓ while the entries of the other rows are

all 0. Hence, the summation of all entries of Column ℓ is equal to ℓnℓ(T )

implying that the summation of all etries in this matrix is
∑diam(T )

ℓ=1 ℓnℓ(T ).

By the counting two way principle, we have that

∑
{u,v}⊆V (T )

dT (u, v) =

diam(T )∑
ℓ=1

ℓnℓ(T ).

This proves Theorem 2.
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