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Abstract

The general sum-connectivity index is a molecular descriptor in-
troduced within the field of mathematical chemistry about a decade
ago. For an arbitrary real number α, the general sum-connectivity
index of a graph G is denoted χα(G) and is defined as the sum of
the numbers (d(u) + d(v))α over all edges uv of G, where d(u) and
d(v) denote the degrees of the vertices u and v, respectively. This
paper characterizes the trees attaining the extremum values of χα

over the class of all trees of order n and maximum degree ∆ for
α < 0 as well as for α > 1, where 3 ≤ ⌈n/2⌉ ≤ ∆ ≤ n− 2.
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1 Introduction

In graph theory, a graph invariant is a function I defined on the set of

all graphs such that the equation I(G) = I(G′) holds if and only if G is

isomorphic to G′; provided that the codomain of I contains the extended

real numbers. A graph invariant may be a set of numbers (for exam-

ple, the spectrum of a graph), a numerical value (for example, diameter

of a graph), a polynomial (for example, the characteristic polynomial of

a graph), etc. In chemical graph theory, numerical graph invariants are

usually referred to as topological indices [27]. The connectivity index, pro-

posed by Randić [21] in 1975, (nowadays, known as the Randić index [18])

is one of the most studied and applied topological indices [11,16]; this in-

dex for a graph G is defined as the sum of the numbers [d(u)d(v)]−1/2 over

all edges uv of G, where d(w) denotes the degree of any vertex w of G. The

connectivity index was generalized in [7] by replacing the exponent“−1/2”

with an arbitrary real number. Most of the detail about the mathemat-

ical properties of the connectivity index and general connectivity index,

as well as about their chemical applicability, can be found in the survey

paper [18], books [14, 17] and in the related references cited therein. The

present study is motivated from the paper [19] concerning the general con-

nectivity/Randić index.

Motivated from the success of the connectivity index, Zhou and

Trinajstić [28, 29] proposed the sum-connectivity index χ and the gen-

eral sum-connectivity index χα; these indices for a graph G are defined

as

χ(G) =
∑

uv∈E(G)

1√
d(u) + d(v)

and

χα(G) =
∑

uv∈E(G)

(d(u) + d(v))
α
,

where E(G) is the edge set of G and α is a real number. It was found

that the sum-connectivity index and the connectivity index correlate well

between themselves and with the π-electron energy of benzenoid hydro-

carbons [20].
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In the study of topological indices, it is often of interest to find ex-

tremum values of a given topological index of graphs under certain con-

straints. Along this line, extremum values of the general sum-connectivity

index have been extensively explored. Zhou and Trinajstić [29] determined

the minimum general sum-connectivity index χα of trees of fixed order for

every α ̸= 0 and they found the maximum general sum-connectivity in-

dex χα of trees of fixed order for every non-zero value of α satisfying the

inequality α > α0 ≈ −1.4094. Du et al. [13] found the maximum general

sum-connectivity index χα of trees of fixed order for α < α1 ≈ −4.3586.

Tomescu and Kanwal [26], and Cui and Zhong [10] studied the minimum

and maximum general sum-connectivity index χα, respectively, of trees of

fixed order with a given number of pendent vertices for −1 ≤ α < 0. Ad-

ditional results along these lines concerning the general sum-connectivity

index can be found in the survey [6], articles [2–5,12,24,25], and related ref-

erences cited therein. This paper is concerned with the following extremal

problem.

Problem 1. Characterize graphs attaining the extremum values of the

general sum-connectivity index χα over the class of all trees of maximum

degree ∆ and order n, for all non-zero α.

Rasi et al. [23] solved the maximal part of Problem 1 for α = −1. Jamil

and Tomescu [15] generalized the main result reported in [23] and hence

solved the maximal part of Problem 1 for −1.7036 ≤ α < 0; the same

result for −1 ≤ α < 0 was also proved in [1] independently. The minimal

part of Problem 1 for α = −1 was attacked in [22]. In the present paper,

Problem 1 is solved for the case when 3 ≤ ⌈n/2⌉ ≤ ∆ ≤ n− 2 for α < 0 as

well as for α > 1.

2 Preliminaries

In this section, we recall some graph-theoretical terminology, notation,

and two elementary lemmas that are needed in the remaining part of this

paper. The set of vertices and the set of edges of a graph G are denoted

by V (G) and E(G), respectively. The degree d(u) of a vertex u of a graph
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G is the number of vertices adjacent to u; if there are at least two graphs

under consideration then the notation dG(u) will be used instead of d(u)

for the degree of u in G. A vertex of degree one in a graph is called a

pendent vertex. We use ∆ to denote the maximum degree of G. For an

edge uv ∈ E(G), the vertices u, v are called neighbors of each other. The

set of all neighbors of a vertex u ∈ V (G) is denoted by NG(u), or simply

by N(u) when there is no danger of confusion. A path P = v0v1 · · · vl of
length at least 1 in a graph G is said to be a pendent path if one of the

two vertices v0, vl is pendent and the other has degree at least 3, and every

other vertex (if exists) of P has degree 2. The (chemical) graph theoretical

terminology and notation used in this paper, without defining them here,

can be found in the relevant books, like [8, 9, 27].

Lemma 1. If α < 0 or α > 1 then the function f defined by

f(x) = (x+ 1)α − xα

is strictly increasing for x ≥ 1.

Lemma 2. The function f defined by

f(x) = x(x+ 2)α + (x− 2)xα − 2(x− 1)(x+ 1)α

is a positive-valued function for x ≥ 2 and α ≥ 1.

Proof. We observe that f(x) > 0 for α = 1. In what follows, we assume

that x ≥ 2. Let us take f1(x) = (x − 1)(x + 1)α − (x − 2)xα. Then

f(x) = f1(x+ 1)− f1(x). The second derivative of f1 is given as

f ′′
1 (x) = α(x+ 1)α−2[αx− α+ x+ 3]− αxα−2[αx− 2α+ x+ 2]. (1)

If α ≥ 2 then from Equation (1) it follows that

f ′′
1 (x) ≥ αxα−2[αx− α+ x+ 3]− αxα−2[αx− 2α+ x+ 2]

= αxα−2[α+ 1] > 0.
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If 1 < α < 2 then one has

1 +
α+ 1

αx− 2α+ x+ 2
> 1 +

1

x
>

(
1 +

1

x

)2−α

,

which implies that(
1 +

α+ 1

αx− 2α+ x+ 2

)(
1 +

1

x

)α−2

> 1,

that is equivalent to

(x+ 1)α−2(αx− α+ x+ 3) > xα−2(αx− 2α+ x+ 2),

which together with Equation (1) confirm that f ′′
1 (x) > 0.

Hence, f ′
1 is strictly increasing for x ≥ 2 and α > 1. Therefore,

f ′(x) = f ′
1(x+ 1)− f ′

1(x) > 0,

which implies that f is strictly increasing for x ≥ 2 and α > 1, and hence

f(x) ≥ f(2) = 2(4α − 3α) > 0.

3 Results Concerning the Maximum χ
α

Lemma 3. Let G be a graph, and let u, v ∈ V (G) with dG(u), dG(v) ≥ 3.

Suppose that u0u and v0v1 · · · vl (vl = v) are the pendent paths of G with

end vertices u, v, respectively, where l ≥ 3. Set G∗ = G − v0v1 + u0v0. If

α < 0 or α > 1, then χα(G
∗) > χα(G).

Proof. Let dG(u) = t. Then t ≥ 3. By Lemma 1, we have

χα(G
∗)− χα(G) = (t+ 2)α + (2 + 1)α − (t+ 1)α − (2 + 2)α

= (t+ 2)α − (t+ 1)α + 3α − 4α

> (5α − 4α)− (4α − 3α) > 0,

and hence the lemma holds.



648

Lemma 4. Suppose that G is a graph and u, v ∈ V (G) with dG(u) >

dG(v) ≥ 2. Let uu0, vv0 ∈ E(G) where u0 is a pendent vertex and NG(v0)\
{v} := {v1, v2, · · · vs} (s ≥ 1) and v0 being not on the path connecting u to

v. Set G′ = G− v0v1 − · · · − v0vs + u0v1 + · · ·+ u0vs. If α < 0 or α > 1,

then χα(G
′) > χα(G). Also, if 0 < α < 1, then χα(G

′) < χα(G)

Proof. If α < 0 or α > 1 then we have

χα(G
′)− χα(G) = (s+ 1 + dG(u))

α − (s+ 1 + dG(v))
α

− [(dG(u) + 1)α − (dG(v) + 1)α]

≥ [(2 + dG(u))
α − (dG(u) + 1)α]

− [(2 + dG(v))
α − (dG(v) + 1)α]

> 0.

Similarly, the inequality χα(G
′)− χα(G) < 0 holds for 0 < α < 1.

Lemma 5. Let G be a connected graph. Let u0, v0 ∈ V (G) be two pendent

neighbors of a vertex v ∈ V (G) of degree at least 3. Set G∗ = G − vu0 +

u0v0. Then, for α < 0, χα(G
∗) > χα(G).

Proof. Simple calculations yield

χα(G
∗)− χα(G) =

∑
u∈NG(v)\{v0,u0}

[
(dG(u) + dG(v)− 1)

α

− (dG(u) + dG(v))
α
]
+ 3α − (dG(v) + 1)α

> 3α − (dG(v) + 1)α > 0.

For 2∆ ≥ n, denote by Sn,∆ the tree of order n formed from the star

S∆+1 by attaching a pendent vertex to each of n−∆− 1 pendent vertices

of S∆+1. Let Tn,∆ be the class of all trees of order n and maximum degree

∆.

Theorem 2. Let T ∈ Tn,∆ and 3 ≤
⌈
n
2

⌉
≤ ∆ ≤ n− 2. Then

χα(T ) ≤ (2∆− n+ 1)(∆ + 1)α + (n−∆− 1)3α + (n−∆− 1)(∆ + 2)α
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for α < 0 and equality holds if and only if T ∼= Sn,∆.

Proof. We note that if T ∼= Sn,∆, then

χα(T ) = (2∆− n+ 1)(∆ + 1)α + (n−∆− 1)3α + (n−∆− 1)(∆ + 2)α.

Next, we choose T ∈ Tn,∆ such that χα(T ) is as large as possible. Let

w ∈ V (T ) with dT (w) = ∆ ≥ 3. The assumption ∆ ≥
⌈
n
2

⌉
implies that at

least one of the neighbors of w is pendent (for otherwise, every component

of T − w contains at least two vertices and hence one has n ≥ 2∆ + 1, a

contradiction). Let u0 ∈ V (T ) be a pendent neighbor of w. We will show

three facts.

By Lemma 3, the following fact holds.

Fact 1. Every pendent path of T has length at most 2.

Fact 2. Let v0v1 · · · vl be a pendent path of T , where vl is a branching

vertex and v0 is a pendent vertex. If vl ̸= w, then l = 1.

Proof of the Fact 2. Contrarily, assume that l ≥ 2. Then by Fact 1, l = 2.

Since ∆ ≥
⌈
n
2

⌉
and vl ̸= w, we have

dT (vl) ≤ n−∆− 1 ≤
⌊n
2

⌋
− 1 < ∆ = dT (w).

Set T ′ = T −v0v1+u0v0. Then T ′ ∈ Tn,∆. By Lemma 4, χα(T
′) > χα(T ),

a contradiction with our choice of T .

Fact 3. For every vertex v ∈ V (T ) \ {w}, it holds that dT (v) ≤ 2.

Proof of Fact 3. Assume that dT (v) ≥ 3 for some v ∈ V (T ) \ {w}. We

choose v such that dT (w, v) is as large as possible. From Fact 2, it follows

that T has at least two pendent neighbors. Let u′, v′ ∈ V (T ) be two

pendent neighbors of v. Set T ′ = T − u′v + u′v′. Then T ′ ∈ Tn,∆. By

Lemma 5, we have χα(T
′) > χα(T ), a contradiction with our choice of T .

By Fact 3, the proof of the theorem is now complete.

Lemma 6. Let Qs,t be the graph as shown in Figure 1. If s ≥ t ≥ 2 then,

for α ≥ 1, χα(Qs,t) < χα(Qs+1,t−1).
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s−1︷ ︸︸ ︷

︸ ︷︷ ︸
t−1

u

v

w

Figure 1. The graph Qs,t used in Lemma 6.

Proof. Set dG(w) = p. Then, we note that

χα(Qs+1,t−1)− χα(Qs,t) = s(s+ 2)α + (s+ p+ 1)α + (t− 2)tα

+ (t+ p− 1)α − (s− 1)(s+ 1)α

− (s+ p)α − (t− 1)(t+ 1)α − (t+ p)α

If α = 1, then χ1(Qs+1,t−1) − χ1(Qs,t) = 2(s − t + 1) > 0. If α > 1, then

by keeping in mind the assumption s ≥ t ≥ 2, we get

χα(Qs+1,t−1)− χα(Qs,t) = [s(s+ 2)α − (s− 1)(s+ 1)α]

+ [(s+ p+ 1)α − (s+ p)α]

+ [(t− 2)tα − (t− 1)(t+ 1)α]

+ [(t+ p− 1)α − (t+ p)α]

> [t(t+ 2)α − (t− 1)(t+ 1)α]

+ [(t+ p+ 1)α − (t+ p)α]

+ [(t− 2)tα − (t− 1)(t+ 1)α]

+ [(t+ p− 1)α − (t+ p)α]

= [t(t+ 2)α + (t− 2)tα − 2(t− 1)(t+ 1)α]

+ [(t+ p+ 1)α + (t+ p− 1)α − 2(t+ p)α]

> 0. (2)

The last inequality in (2) holds because of the following facts: From Lemma
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2 it follows that

t(t+ 2)α + (t− 2)tα − 2(t− 1)(t+ 1)α > 0.

Since the function ϕ defined by ϕ(x) = xα is strictly convex for x > 0 and

α > 1, hence by Jensen’s inequality, it holds that

(t+ p+ 1)α + (t+ p− 1)α − 2(t+ p)α = ϕ(t+ p+ 1) + ϕ(t+ p− 1)

− 2ϕ(t+ p) > 0 .

Denote by DSn−∆−1,∆−1 the double star formed by attaching ∆ − 1

pendent vertices to one of the vertices of the path P2 and n−∆−1 pendent

vertices to the other vertex of P2.

Theorem 3. Let T be a tree of order n and maximum degree ∆ such that

3 ≤
⌈
n
2

⌉
≤ ∆ ≤ n− 2. Then

χα(T ) ≤ (∆− 1)(∆ + 1)α + (n−∆− 1)(n−∆+ 1)α + nα (3)

for α > 1 and equality holds if and only if T ∼= DSn−∆−1,∆−1.

Proof. First, we note that if T ∼= DSn−∆−1,∆−1, then equality in (3) holds.

In what follows, we assume that T is a tree of order n and maximum

degree ∆ such that 3 ≤
⌈
n
2

⌉
≤ ∆ ≤ n − 2 and that χα(T ) is as large as

possible. Take w ∈ V (T ) with dT (w) = ∆ ≥ 3. The assumption ∆ ≥
⌈
n
2

⌉
implies that at least one of the neighbors of w is pendent (for otherwise,

every component of T −w contains at least two vertices and hence one has

n ≥ 2∆+ 1, a contradiction). Let u0 ∈ V (T ) be a pendent neighbor of w.

We first show two facts.

Fact 1. Every non-pendent neighbor of w has only one non-pendent neigh-

bor (namely w).

Proof of Fact 1. Contrarily, assume that u ∈ NT (w) is a non-pendent

vertex having a non-pendent neighbor u′ different from w. Take NT (u
′) \

{u} = {u1, . . . , us}, where s ≥ 1. Since T contains at least ∆ pendent
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vertices and ∆ ≥
⌈
n
2

⌉
, one has dT (u) ≤ n−∆−1 ≤

⌊
n
2

⌋
−1 < ∆ = dT (w).

Set T ′ = T − u′u1 − · · · − u′us + u0u1 + · · · + u0us. Observe that T ′ has

order n and maximum degree ∆. However, from Lemma 4, it follows that

χα(T
′) > χα(T ), which is a contradiction with the choice of T .

Fact 2. The vertex w has only one non-pendent neighbor.

Proof of Fact 2. Suppose to the contrary that u, v ∈ NT (w) such that

dT (u) = s ≥ 2 and dT (v) = t ≥ 2. Without loss of generality, we assume

that s ≥ t. By Fact 1, each of the sets NT (u) and NT (v) contains only one

non-pendent neighbor, namely w. Note that T ∼= Qs,t (see Lemma 6) and

hence χα(Qs+t−1,1) > · · · > χα(Qs+1,t−1) > χα(Qs,t) = χα(T ) by Lemma

6. On the other hand, observe that (s− 1) + (t− 1) + (∆+ 1) ≤ n, which

together with the assumption ∆ ≥
⌈
n
2

⌉
implies that s + t − 1 ≤ n −∆ ≤⌊

n
2

⌋
≤ ∆. Thus, the graph Qs+t−1,1 has order n and maximum degree

∆ with χα(Qs+t−1,1) > χα(T ), which is again a contradiction with our

choice of T .

By Facts 1 and 2, the proof of the theorem is complete.

4 Results Concerning the Minimum χ
α

Lemma 7. Suppose that G is a graph and v, w ∈ V (G) with dG(w) >

dG(v) ≥ 2. Let wu, vv0 ∈ E(G) where v0 is pendent and u does not lie

on the w-v path. Let NG(u) \ {w} := {u1, u2, · · · , us}, with s ≥ 1. Set

G′ = G − uu1 − · · · − uus + v0u1 + · · · + v0us. If α < 0 or α > 1, then

χα(G
′) < χα(G). Also, if 0 < α < 1 then χα(G

′) > χα(G).

Proof. If α < 0 or α > 1 then

χα(G
′)− χα(G) = (s+ dG(v) + 1)α − (s+ dG(u) + 1)α

+ (dG(u) + 1)α − (dG(v) + 1)α

≤ (dG(v) + 2)α − (dG(v) + 1)α

− [(dG(u) + 2)α − (dG(u) + 1)α] < 0 .

In a similar way, one gets χα(G
′)− χα(G) > 0 for 0 < α < 1.
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Theorem 4. If T is a tree of order n and maximum degree ∆ such that

3 ≤
⌈
n
2

⌉
≤ ∆ ≤ n− 2, then

χα(T ) ≥ (∆− 1)(∆ + 1)α + (n−∆− 1)(n−∆+ 1)α + nα (4)

and equality holds if and only if T ∼= DSn−∆−1,∆−1 for α < 0.

Proof. We choose T such that χα(T ) is as small as possible. Take w ∈
V (T ) with dT (w) = ∆ ≥ 3. The assumption ∆ ≥

⌈
n
2

⌉
implies that at

least one of the neighbors of w is pendent (for otherwise, every component

of T − w contains at least two vertices and hence one has n ≥ 2∆ + 1, a

contradiction). Let u0 ∈ V (T ) be a pendent neighbor of w. We first show

two facts.

Fact 1. The vertex w has only one non-pendent neighbor.

Proof of Fact 1. Let v ∈ V (T )\{w} be a non-pendent vertex adjacent to a

pendent vertex v0 ∈ V (T ). Suppose to the contrary that w has at least two

non-pendent neighbors. Then, there exists at least one non-pendent vertex

u ∈ NT (w) such that u does not lie on the w-v path. Take NT (u)\{w} :=

{u1, · · · , us}, where s ≥ 1. Since T contains at least ∆ pendent vertices

and ∆ ≥
⌈
n
2

⌉
, it holds that dT (v) ≤ n−∆−1 ≤

⌊
n
2

⌋
−1 ≤ ∆−1 < dT (w).

Set T ′ = T −uu1−· · ·−uus+v0u1+ · · ·+v0us. Observe that T ′ has order

n and ∆. But, by Lemma 7, we have χα(T
′) < χα(T ), a contradiction

with the choice of T .

By Fact 1, T −w contains only one non-trivial component; denote this

unique non-trivial component of T − w by C.

Fact 2. The component C of T − w is a star.

Proof of Fact 2. Contrarily, assume that C is not a star. Then there exists

at least one pair of non-pendent adjacent vertices v′, v ∈ V (T )\{w}. Take
dT (v) = t ≥ 2 and dT (v

′) = s ≥ 2. We choose v′v in such a way that

the distance dT (w, v) is as large as possible. Then v has only one non-

pendent neighbor. Let v1, v2, · · · , vt−1 be the all pendent neighbors of v.

If T ′ = T − vv1 − vv2 − · · · − vvt−1 + v′v1 + v′v2 + · · · + v′vt−1, then we
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have

χα(T )− χα(T
′) = (t− 1)[(t+ 1)α − (s+ t)α]

+
∑

x∈NT (v′)\{v}

[(dT (x) + s)α − (dT (x) + s+ t− 1)α]

> (t− 1)[(t+ 1)α − (s+ t)α] > 0 ,

a contradiction to the choice of T .

By Facts 1 and 2, the proof of the theorem is complete.

Denote by S∗
n,∆ the tree of order n formed from the path Pn−∆+1 by

attaching ∆ − 1 pendent vertices to only one of the pendent vertices of

Pn−∆+1. Recall that a vertex (in a tree) of degree at least 3 is known as

a branching vertex.

Theorem 5. If T is a tree of order n and maximum degree ∆ such that

3 ≤
⌈
n
2

⌉
≤ ∆ ≤ n− 2, then

χα(T ) ≥ (∆− 1)(∆ + 1)α + (∆+ 2)α + (n−∆− 2)4α + 3α (5)

for α > 1 and equality holds if and only if T ∼= S∗
n,∆.

Proof. Simple calculations yield

χα(S
∗
n,∆) = (∆− 1)(∆ + 1)α + (∆+ 2)α + (n−∆− 2)4α + 3α

Next, let T be a tree of order n and maximum degree ∆ such that 3 ≤⌈
n
2

⌉
≤ ∆ ≤ n− 2 and that χα(T ) is as small as possible. Take w ∈ V (T )

with dT (w) = ∆ ≥ 3. By an argument similar to the proof of Theorem 4,

we conclude that the vertex w has ∆− 1 pendent neighbors.

We claim that the unique non-trivial component of T − w is a path.

In what follows, we prove this claim. Suppose to the contrary that the

mentioned claim is not true. Then, there exists at least one branching

vertex of T different from w. Let u be the unique non-pendent neighbor

of w. Let v ∈ V (T ) be a branching vertex such that the distance dT (u, v)

is as large as possible. Let v0v1 · · · vl−1v be a pendent path of T . Take



655

NT (v) = {x1, · · · , xs−2, v
′, vl−1}, where each of the vertices x1, · · · , xs−2

does not lie on the w-vl−1 path and v′ lies on the w-vl−1 path. Take

dT (xi) = ai for i = 1, 2, · · · , s − 2, and dT (v
′) = b. Certainly, b ≥ 2 and

s ≥ 3. The vertices u and v may or may not be the same (if u = v then

v′ = w). Set T ′ = T − vx1 − · · · − vxs−2 + v0x1 + · · · + v0xs−2. Observe

that T has order n and maximum degree ∆.

If l = 1, then

χα(T )− χα(T
′) =

s−2∑
i=1

[(ai + s)
α − (ai + (s− 1))

α
] + (s+ b)α − (b+ 2)α

≥ (s− 2)[(1 + s)α − sα] + (s+ 2)α − 4α > 0 .

If l ≥ 2, then

χα(T )− χα(T
′) =

s−2∑
i=1

[(ai + s)
α − (ai + (s− 1))

α
] + (s+ b)α − (b+ 2)α

+ [(s+ 2)α − (s+ 1)α]− [4α − 3α]

> [(s+ 2)α − (s+ 1)α]− [4α − 3α]

≥ 5α − 3α > 0 .

Therefore, for α ≥ 1, we have χα(T ) > χα(T
′), a contradiction to the

choice of T . Thus, we conclude that the unique non-trivial component of

T − w is a path and hence T = S∗
n,∆. By the choice of T , we deduce that

χα(T
⋆) ≥ χα(T ) = χα(S

∗
n,∆) for any tree T ⋆ of order n and maximum

degree ∆, where 3 ≤
⌈
n
2

⌉
≤ ∆ ≤ n − 2 and the equation χα(T

⋆) =

χα(S
∗
n,∆) holds if and only if T ⋆ = S∗

n,∆.
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with a given maximum degree, MATCH Commun. Math. Comput.
Chem. 58 (2007) 155–166.
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