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Abstract

The graphs having the maximum value of certain bond incident
degree indices (including the second Zagreb index, general sum-
connectivity index, and general zeroth-order Randić index) in the
class of all connected graphs with fixed order and number of pen-
dent vertices are characterized in this paper. The problem of finding
graphs having the minimum values of the second Zagreb index and
general zeroth-order Randić index from the aforementioned class of
connected graphs is also addressed. One of the obtained results
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about the first Zagreb index has already been proved in the pa-
pers [I. Gutman, M. Kamran Jamil, N. Akhter, Trans. Combin.
4 (2015) 43–48] and [M. Enteshari, B. Taeri, MATCH Commun.
Math. Comput. Chem. 86 (2021) 17–28]; however, it is proved
here by another method with a short proof. Moreover, one of the
obtained results concerning the second Zagreb index gives a par-
tial solution to a problem attacked in the aforementiond paper of
Enteshari and Taeri.

1 Introduction and statements of the main

results

Throughout this paper, we consider only simple connected graphs. The

edge set and vertex set of a graph G are denoted by E(G) and V (G),

respectively. Let dG(u) denote the degree of a vertex u of G. We write

d(u) instead of dG(u) whenever there is no confusion about the graph

under consideration. Those (chemical) graph theoretical terminology and

notation that are used in this paper, but not defined here, can be found

in some relevant books, like [5, 6, 24,26].

A graph invariant is a function Φ defined on the set of all graphs such

that the equation Φ(G) = Φ(G′) holds whenever the graphs G and G′ are

isomorphic. A graph invariant may be a numerical value (for example,

size of a graph), a polynomial (for example, the matching polynomial of

a graph), set of numbers (for example, the spectrum of a graph), etc. In

chemical graph theory, a graph invariant assuming a single number for a

graph is known as a topological index [26]. In the present paper, we are

concerned with the topological indices defined in the following way [9, 13]

for a graph G:

BIDφ(G) =
∑

uv∈E(G)

φ
(
d(u), d(v)

)
, (1)

where φ is a real-valued symmetric function. Following Vukičević and

D- urd-ević [25], we call the topological indices of the form (1) as bond

incident degree (BID) indices. These indices are sometimes referred

to as the connectivity functions [27] of G. If f is a real-valued function
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such that φ
(
d(u), d(v)

)
= f

(
d(u)

)
/d(u)+f

(
d(v)

)
/d(v), then Equation (1)

yields

BIDφ(G) =
∑

uv∈E(G)

[
f
(
d(u)

)
d(u)

+
f
(
d(v)

)
d(v)

]
=

∑
v∈V (G)

f
(
d(v)

)
. (2)

We remark here that the right equality of Equation (2) follows from a

more general result reported in [7]. Following Yao et al. [29], we denote

the rightmost expression of (2) by Hf (G) and refer to such indices as the

vertex-degree-function indices of G. It seems that these indices were

first considered by Linial and Rozenman [18]. The vertex-degree-function

indices Hf , being simple types of BID indices, have attracted considerable

attention from researchers recently; for example, see the recent papers

[1, 3, 14, 15, 22, 23, 29], recent review [16], and the related references listed

therein.

The first and second Zagreb indices of a graph G, usually denoted by

M1(G) and M2(G), respectively, are defined as

M1(G) =
∑

u∈V (G)

[
d(u)

]2
and M2(G) =

∑
uv∈E(G)

d(u)d(v).

The first Zagreb index was appeared almost fifty years ago in [12] while

the second Zagreb index was introduced in [11]. They were extended

to zeroth-order general Randić index R0
α(G) and general Randić

index Rα(G) of G, respectively, where

R0
α(G) =

∑
u∈V (G)

[
d(u)

]α
and Rα(G) =

∑
uv∈E(G)

(
d(u)d(v)

)α
,

where α is a real number. Denote by χα(G) and Plα(G) the general

sum-connectivity index and general Platt index of G, respectively,

where

χα(G) =
∑

uv∈E(G)

(
d(u)+ d(v)

)α
and Plα(G) =

∑
uv∈E(G)

(
d(u)+ d(v)− 2

)α
.

The concept of general Randić index was firstly proposed by Bollobás and
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Erdős [4], the zeroth-order general Randić index was firstly put forward

by Li and Zheng [17], the general sum-connectivity index was introduced

by Zhou and Trinajstić [31], and the general Platt index of G was firstly

studied by Ali and Dimitrov [2]. Actually, the topological indices Rα(G),

R0
α(G), χα(G), and Plα(G) are special cases of (2) and general cases of

many famous topological indices. For instance, M1(G) = R0
2(G) is the

first Zagreb index, M2(G) = R1(G) is the second Zagreb index, R0
−1(G)

is called the inverse degree ID(G) of G
(
see [28]

)
, R− 1

2
(G) is mostly

referred to as the Randić index of G [21], χ− 1
2
(G) is famous with the

name sum-connectivity index of G [30], and Pl2(G) is known as the

reformulated first Zagreb index of G [20].

As usual, the path, star, and complete graphs with n vertices are de-

noted by Pn, K1,n−1, and Kn, respectively. As in [8], let Dn;s,t be the tree

obtained from the path graph Pn−s−t by attaching s pendent vertices to

one of its end vertices and t pendent vertices to the other end vertex. Let

K
(p)
n−p be the graph obtained from the complete graph Kn−p by attaching

p pendent vertices to one vertex of Kn−p. Denote by C(p)
n the class of all

connected graphs with n vertices and p pendent vertices. Let

G0 =

 Dn;n−3,1 if p = n− 2,

K
(p)
n−p if 0 ≤ p ≤ n− 3.

(3)

Theorem 1. In the class C(p)
n with 0 ≤ p ≤ n − 2 and n ≥ 4, the graph

G0 uniquely attains the maximum values of χα, Plα and R0
α for α > 1

and maximum value of M2.

We note that each of the BID indices considered in Theorem 1 satisfies

the inequality BIDφ(G + uv) > BIDφ(G) for every pair of non-adjacent

vertices u and v of a graph G. This observation implies that a graph

attaining the minimum value of any of the aforementioned BID indices in

the class C(p)
n , with 2 ≤ p ≤ n − 2 and n ≥ 4, must be a tree. Denote

by T(p)
n the class of trees with n vertices and p pendent vertices, where

2 ≤ p ≤ n− 2.

Theorem 2. Let F0 be a tree having the minimum value of R0
α in the
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class T(p)
n . If α > 1 and s0 =

⌈
p−2
n−p

⌉
+ 2, then F0 has the degree sequence

π0 = ( s0, . . . , s0︸ ︷︷ ︸
t0

, s0 − 1, . . . , s0 − 1︸ ︷︷ ︸
n−p−t0

, 1, . . . , 1︸ ︷︷ ︸
p

), (4)

where t0 = p(s0 − 2)− n(s0 − 3)− 2.

The following result has been proved by Gutman and Kamran Jamil

(see Theorem 4.1 of [10]) and Enteshari and Taeri [8] gave another proof

using different method. Actually, it follows immediately from Theorem 2.

Corollary. [8, 10] If T ∗ is a tree with the minimum first Zagreb index in

the class T(p)
n , then T ∗ has the degree sequence π0, where π0 is as defined

in (4)

In [8], it has been shown that Dn;⌊ p
2 ⌋,⌈

p
2 ⌉ uniquely attains the minimum

second Zagreb index among all trees of T(p)
n for p ∈ {2, 3, 4, n− 3, n− 2}.

Here, we extend this result to the case when n ≥ 3p − 5 and p ≥ 4 (by

finding a lower bound on M2 for nontrivial trees in terms of n and p for

any n and p). By a branching vertex of a graph, we mean a vertex with

degree at least three. Let T0(n, p) be the class of all trees with n vertices,

maximum degree 3 and p pendent vertices such that every pendent vertex is

adjacent to a branching vertex and no two branching vertices are adjacent.

Theorem 3. If T is a tree with n vertices and p pendent vertices, then

M2(T ) ≥ 4n+ 3p− 16,

with equality if and only if T ∈ T0(n, p) ∪
{
K1,3,K1,4

}
.

For n ≥ 3p−5 and p ≥ 4, we can construct a tree T belonging to T0(n, p)
explained as follows: If p = 4 then n ≥ 7 and hence Dn;2,2 ∈ T0(n, 4). If

p ≥ 5 then we obtain T ∈ T0(n, p) by adding one edge between a pendent

vertex pertaining to a tree of T0(n − 3, p − 1) and the center of the star

K1,2. This observation leads to the next corollary of Theorem 3.

Corollary. If 4 ≤ p ≤ n+5
3 , then the member(s) of T0(n, p) is/are the only

tree(s) with the minimum second Zagreb index in the class of trees with n

vertices and p pendent vertices.
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2 Proofs of Theorems 1 and 2

We start this section with some definitions that are needed in the remaining

part of this paper. A k-vertex of G is a vertex with degree k. A vertex

adjacent to at least one pendent vertex is called a quasi-pendent vertex.

LetNG(u) denote the set of neighbors of a vertex u of a graphG. Hereafter,

let G be a connected graph, and let u and v be two vertices of G such that

{w1, w2, . . . , ws} ⊆ NG(v) \
(
NG(u) ∪ {u}

)
, where 1 ≤ s ≤ d(v). Denote

by

G∗ = G− vw1 − vw2 − · · · − vws + uw1 + uw2 + · · ·+ uws.

Lemma 1. [19] If f(x) is a strictly convex and strictly increasing function,

then Hf (G
∗) > Hf (G) when dG(u) ≥ dG(v) and Hf (G) > Hf (F ) when F

is a proper subgraph of G.

Proposition 4. Let G be a graph with the maximum Hf (G) in C(p)
n , where

0 ≤ p ≤ n−2 and n ≥ 4. If f(x) is a strictly convex and strictly increasing

function, then G = G0, where G0 is as defined in (3).

Proof. By Lemma 1, Hf (G) > Hf (F ) holds for any proper subgraph F

of G, which implies that G is obtained from Kn−p by adding p pendent

vertices to some vertices of Kn−p.

The cases p = 0, 1, are trivial. When 2 ≤ p ≤ n− 2, we only prove the

case of p = n − 2, as the remaining cases can be proved similarly. Since

p = n − 2, G = Dn;s,n−2−s, where n − s − 2 ≥ s ≥ 1. If s ≥ 2, then

G∗ = G − vw1 + uw1 is also a tree with n − 2 pendent vertices, where

dG(v) = s+ 1, dG(u) = n− s− 1, and w1 is a pendent neighbor of v. By

Lemma 1, we have Hf (G
∗) > Hf (G), a contradiction.

A symmetric bivariate non-negative function f(x, y) defined on positive

real numbers is called a special function if the inequalities ∂φ(x,y)
∂x > 0,

φ(x+1, z)+φ(y−1, z) ≥ φ(x, z)+φ(y, z) and φ(x+1, y−1)+φ(x+1, 1) ≥
φ(x, y) + φ(y, 1) hold for any x ≥ y > 1 and z ≥ 1. Note that if φ(x, y)

is a special function and if G is a connected graph with uv ̸∈ E(G), then

BIDφ(G+ uv) > BIDφ(G).
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Proposition 5. Let G be a graph with the maximum BIDφ(G) in C(p)
n ,

where 0 ≤ p ≤ n − 2 and n ≥ 4. If φ(x, y) is a special function, then

G = G0, where G0 is defined in (3).

Proof. Since φ(x, y) is a special function, G is obtained from Kn−p by

adding p pendent vertices to some vertices of Kn−p. If 0 ≤ p ≤ 1 then the

result trivially holds. In what follows, we assume that 2 ≤ p ≤ n− 2.

Case 1. p = n − 2.

Since p = n − 2, G = Dn;s,n−2−s, where n − s − 2 ≥ s ≥ 1. Contrarily,

assume that s ≥ 2. Note that G∗ = G − vw1 + uw1 is also a tree with

n − 2 pendent vertices, where dG(v) = s + 1, dG(u) = n − s − 1, and w1

is a pendent neighbor of v ∈ V (G). Since n ≥ 2s+ 2 and ∂φ(x,y)
∂x > 0, we

have

BIDφ(G
∗)−BIDφ(G)

=φ(n− s, s) + (s− 1)φ(s, 1) + (n− s− 1)φ(n− s, 1)

− φ(n− 1− s, s+ 1)− sφ(s+ 1, 1)− (n− s− 2)φ(n− s− 1, 1)

=s
(
φ(s, 1) + φ(n− s, 1)− φ(n− 1− s, 1)− φ(s+ 1, 1)

)
+ (n− 2s− 2)

(
φ(n− s, 1)− φ(n− 1− s, 1)

)
+ φ(n− s, s) + φ(n− s, 1)− φ(n− s− 1, s+ 1)− φ(s, 1)

≥φ(n− s, s) + φ(n− s, 1)− φ(n− 1− s, s+ 1)− φ(s, 1)

≥φ(s+ 1, 1)− φ(s, 1) > 0,

contrary with the choice of G.

Case 2. 2 ≤ p ≤ n − 3.

Recall that G is obtained from Kn−p by adding p pendent vertices to some

vertices of Kn−p. It suffices to show that all of these p pendent vertices

are adjacent to the same vertex of Kn−p. Suppose to the contrary that u

and v are two quasi-pendent vertices of Kn−p adjacent to t and s pendent

vertices, respectively, where t ≥ s ≥ 1. This implies that dG(u) = n− p−
1+t ≥ n−p−1+s = dG(v) ≥ 3. Let u1, u2, . . . , un−p−2 be the non-pendent

vertices of G different from u and v. Let G∗ = G−vw1+uw1, where w1 is
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a pendent vertex adjacent to v. From the definition of BIDφ(G), we have

BIDφ(G
∗)−BIDφ(G)

=φ(dG(u) + 1, dG(v)− 1) + (s− 1)φ(dG(v)− 1, 1)

+ (t+ 1)φ(dG(u) + 1, 1)− φ(dG(u), dG(v))− sφ(dG(v), 1)

− tφ(dG(u), 1) +

n−p−2∑
i=1

[
φ(dG(u) + 1, dG(ui)) + φ(dG(v)− 1, dG(ui))

− φ(dG(u), dG(ui))− φ(dG(v), dG(ui))
]

≥(s− 1)
[
φ(dG(v)− 1, 1) + φ(dG(u) + 1, 1)− φ(dG(u), 1)− φ(dG(v), 1)

]
+ (t+ 1− s)

[
φ(dG(u) + 1, 1)− φ(dG(u), 1)

]
+ φ(dG(u) + 1, dG(v)− 1)

+ φ(dG(u) + 1, 1)− φ(dG(u), dG(v))− φ(dG(v), 1)

≥(t+ 1− s)
[
φ(dG(u) + 1, 1)− φ(dG(u), 1)

]
> 0,

a contradiction.

Proof of Theorem 1. Let f(x) = xα, φ0(x, y) = (x+y−2)α, φ1(x, y) =

(x + y)α, and φ2(x, y) = xy, where α > 1. The function f is strictly

convex as well as strictly increasing because f ′′(x) = α(α−1)xα−2 > 0 and

f ′(x) = αxα−1 > 0. By Proposition 4, G0 uniquely attains the maximum

value of R0
α among all the members of C(p)

n for α > 1.

In what follows, we prove that each of the functions φ0, φ1, φ2, is a

special function and hence by using Proposition 5 we arrive at the desired

conclusion.

Since α > 1, we conclude that φ1(x + 1, z) + φ1(y − 1, z) = (x + 1 +

z)α + (y + z − 1)α ≥ (x+ z)α + (y + z)α = φ1(x, z) + φ1(y, z),
∂φ1(x,y)

∂x =

α(x+ y)α−1 > 0, φ1(x+ 1, y − 1) + φ1(x+ 1, 1) = (x+ y)α + (x+ 2)α >

(x + y)α + (y + 1)α = φ1(x, y) + φ1(y, 1) hold for x ≥ y > 1 and z ≥ 1.

Thus, φ1 is a special function. In a similar way, we can verify that φ0 is

also a special function.

Finally, we note that φ2(x+1, z)+φ2(y−1, z) = z(x+y) = φ2(x, z)+

φ2(y, z),
∂φ2(x,y)

∂x = y > 0, and φ2(x+1, y− 1)+φ2(x+1, 1) = φ2(x, y) +

φ2(y, 1) hold for x ≥ y > 1 and z ≥ 1. Thus, φ2 is also a special function.
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Let D = (d1, d2, . . . , dn) and D∗ = (d∗1, d
∗
2, . . . , d

∗
n) be two different

degree sequences of two graphs where di ≥ dj and d∗i ≥ d∗j whenever i ≤ j.

We write D◁D∗ if and only if
∑n

i=1 di =
∑n

i=1 d
∗
i , and

∑j
i=1 di ≤

∑j
i=1 d

∗
i

for all j = 1, 2, . . . , n, provided that the inequality
∑j

i=1 di <
∑j

i=1 d
∗
i

holds for at least one j ∈ {1, 2, . . . , n}. In [19], the next lemma has been

proven.

Lemma 2. [19] Let G and G∗ be two graphs with the degree sequences D

and D∗, respectively. If D◁D∗ and f(x) is a strictly convex function on

x ≥ 1, then Hf (G) < Hf (G
∗).

As shown in Theorem 4.2 of [29], if f(x) is a strictly convex function

defined on x ≥ 1, then the trees with the degree sequence

(p, 2, . . . , 2︸ ︷︷ ︸
n−p−1

, 1, . . . , 1︸ ︷︷ ︸
p

)

has the maximum value of Hf among all trees of T(p)
n ; the following theo-

rem can be considered as the minimal version of this result.

Theorem 6. Let T ∗ be a tree having the minimum value of Hf in T(p)
n .

If s0 =
⌈
p−2
n−p

⌉
+ 2 and f(x) is a strictly convex function on x ≥ 1, then

T ∗ is a tree with the degree sequence π0, where π0 is defined in (4).

Proof. Because of Lemma 2, it suffices to show that π0 is minimum

with respect to the relation ‘◁’. Let D∗ = (d∗1, d
∗
2, . . . , d

∗
n) be the degree

sequence of a tree belonging to the class T(p)
n such that D∗ ̸= π0. Denote

by t0 = p(s0 − 2) − n(s0 − 3) − 2 and π0 = (d1, d2, . . . , dn), that is,

d1 = d2 = · · · = dt0 = s0 and dt0+1 = dt0+2 = · · · = dn−p = s0 − 1.

To complete the proof, it suffices to show that

j∑
i=1

di ≤
j∑

i=1

d∗i (5)

for all 1 ≤ j ≤ n− p.
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If d∗1 ≤ s0 − 1, then

2(n− 1) = d∗1 + d∗2 + · · ·+ d∗n

≤ (n− p)(s0 − 1) + p = (n− p)

(⌈
p− 2

n− p

⌉
+ 1

)
+ p

< (n− p)

(
p− 2

n− p
+ 2

)
+ p = 2(n− 1),

a contradiction. Thus, d∗1 ≥ s0. If d∗n−p ≥ s0, then (5) holds and we are

done. In what follows, we suppose that there exists k with 1 ≤ k ≤ n−p−1

such that d∗1 ≥ · · · ≥ d∗k ≥ s0 and d∗k+1 ≤ s0 − 1.

Since (5) already holds for 1 ≤ j ≤ k, we take j satisfying k + 1 ≤
j ≤ n − p. Since d∗n−p ≤ d∗n−p−1 ≤ · · · ≤ d∗j+1 ≤ d∗j ≤ · · · ≤ d∗k+1 ≤
s0 − 1 = dn−p = dn−p−1 = · · · = dt0+1 < s0 = dt0 = dt0−1 = · · · = d1 and

k + 1 ≤ j ≤ n− p, we have

d∗1 + d∗2 + · · ·+ d∗j = 2(n− 1)− p− d∗n−p − · · · − d∗j+1

≥ 2(n− 1)− p− (n− p− j)(s0 − 1)

≥ 2(n− 1)− dj+1 − dj+2 − · · · − dn

= d1 + d2 + · · ·+ dj ,

which implies that (5) holds. This completes the proof.

One can easily checked that Theorem 2 follows from Theorem 6, as

f(x) = xα is a strictly convex function defined on x ≥ 1 for α > 1.

3 Proof of Theorem 3

This section is dedicated to the proof of Theorem 3. Recall that a branch-

ing vertex of G is a vertex with degree at least three. Let q(G) be the

branching number, that is, the number of branching vertices of G.

Lemma 3. [8] Let T be a tree of T(p)
n , where 2 ≤ p ≤ n−2. If 1 ≤ q(T ) ≤ 2

and T ̸= Dn;⌊ p
2 ⌋,⌈

p
2 ⌉, then M2(T ) > M2

(
Dn;⌊ p

2 ⌋,⌈
p
2 ⌉
)
.

A special vertex is a quasi-pendent vertex having at most one non-

pendent neighbor. For any two vertices x and y of a tree T , let Pxy be the
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unique path connecting the vertices x and y.

Lemma 4. Let x, y be two non-pendent vertices of a tree T such that x is

a quasi-pendent vertex of T . If y is not a special vertex and dT (y) > dT (x),

then there exists another tree T ′ such that M2(T
′) < M2(T ), where T and

T ′ have the same degree sequence.

Proof. Suppose that w1 is a pendent vertex adjacent to x. Since y is not

a special vertex, y is adjacent to some non-pendent vertex y1 such that

y1 ̸∈ Pxy. Let T
′ = T +xy1+yw1−xw1−yy1. Since dT (y1) > 1 = dT (w1)

and dT (x) < dT (y), we have M2(T
′)−M2(T ) =

(
dT (y)−dT (x)

)(
dT (w1)−

dT (y1)
)
< 0. Now, it is easily checked that T ′ is a tree containing the same

degree sequence as T .

Recall that T0(n, p) is the class of trees with n vertices, maximum

degree 3 and p pendent vertices such that every pendent vertex is adjacent

to a branching vertex and no two branching vertices are adjacent. If T ∈
T0(n, p), then let ni be the number of vertices of degree i of T and let

mi,j(T ) be the number of those edges of T whose one end-vertex is an

i-vertex and the other one is a j-vertex. By a fact reported in [8], it holds

that
p∑

i=3

(i− 2)ni = p− 2,

which gives n3 = p − 2. Since m1,3(T ) = p, we have m2,3(T ) = 3n3 −
m1,3(T ) = 2(p− 3). Combining this with |E(T )| = n− 1, we can conclude

that

m1,3(T ) = p, m2,2(T ) = n− 3p+ 5, and m2,3(T ) = 2(p− 3),

which implies that

M2(T ) = 4n+ 3p− 16.

Proof of Theorem 3. For n = 1, 2, 3, the result trivially holds, as T

must be a star. If p = n − 1 ≥ 3, then T = K1,n−1 and thus M2(T ) =

(n− 1)2 ≥ 4n+ 3(n− 1)− 16 = 4n+ 3p− 16, with equality if and only if

T ∈
{
K1,3,K1,4

}
. Next, we prove the theorem by induction on p, where

2 ≤ p ≤ n − 2. The result is trivial for p = 2, because n ≥ 4 and
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M2(Pn) = 4n− 8 > 4n− 10. Also, if p = 3 and n ≥ 5, then from Lemma

3 it follows that M2(T ) ≥ M2

(
Dn;⌊ p

2 ⌋,⌈
p
2 ⌉
)
= 4n − 6 > 4n − 7. Hence,

the induction starts. Assume that p ≥ 4. Then, n ≥ p + 2 ≥ 6. Take T

as a tree belonging to T(p)
n such that M2(T ) is as small as possible. To

complete the proof, it suffices to show that M2(T ) ≥ 4n + 3p − 16 with

equality if and only if T ∈ T0(n, p).
We first suppose that at least one quasi-pendent vertex, say

x0, of T is a 2-vertex. Since p ≥ 4, T contains at least one branching

vertex. By Lemma 4, we can conclude that each branching vertex of T

must be a special vertex. Now, let y0 be a branching vertex of T such

that the distance between x0 and y0 is as small as possible. Since each

branching vertex of T must be a special vertex, y0 is a special vertex

and it is the unique branching vertex of T . Now, we can conclude that

T = Dn;p−1,1. Combining this with p ≥ 4, it follows that M2(T ) =

p(p − 1) + 2p + 2 + 4(n − 2 − p) = p(p − 3) + 4n − 6 > 4n + 3p − 16, as

required.

Next, we suppose that each quasi-pendent vertex of T is a

branching vertex.

Case 1. T contains at least one quasi-pendent vertex with degree

greater than 3.

Let u0 ∈ V (T ) be a pendent vertex adjacent to an s-vertex u, where s ≥ 4.

Take NT (u) = {u0, u1, . . . , ur−1, ur, ur+1, . . . , us−1} where dT (ui) = 1 for

all i ∈ {0, 1, . . . , r − 1} and dT (uj) ≥ 2 for all j ∈ {r, r + 1, . . . , s − 1},
with r ≥ 1. Certainly, T − u0 is a tree with n− 1 vertices and p− 1 pen-

dent vertices. By using the inductive hypothesis, we have M2(T − u0) ≥
4(n− 1) + 3(p− 1)− 16. Combining this with s > r and s ≥ 4, we have

M2(T ) = M2(T − u0) + s+ r − 1 +

s−1∑
j=r

dT (uj)

≥ 4(n− 1) + 3(p− 1)− 16 + s+ r − 1 + 2(s− r)

= (4n+ 3p− 16) + (s− r) + (2s− 8)

> 4n+ 3p− 16,

as desired.
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Case 2. Every quasi-pendent vertex of T is a 3-vertex and T con-

tains at least one quasi-pendent vertex having only one pendent

neighbor.

Let u ∈ V (T ) such that NT (u) = {u0, u1, u2} where dT (u0) = 1 and

2 ≤ dT (u1) ≤ dT (u2). Certainly, T − u0 is also a tree with n − 1 vertices

and p− 1 pendent vertices. By using the inductive hypothesis, we have

M2(T ) = M2(T − u0) + dT (u1) + dT (u2) + 3

≥ (4n+ 3p− 16) + dT (u1) + dT (u2)− 4

≥ 4n+ 3p− 16,

where the equation M2(T − u0) = 4(n − 1) + 3(p − 1) − 16 holds if and

only if T − u0 ∈ T0(n− 1, p− 1) and dT (u1) = dT (u2) = 2; that is, if and

only if T ∈ T0(n, p).

Case 3. Every quasi-pendent vertex of T is a 3-vertex and T

contains at least one quasi-pendent vertex having two pendent

neighbors and a neighbor of degree greater than 2.

Let u ∈ V (T ) such that NT (u) = {u0, u1, u2} where dT (u0) = dT (u1) = 1

and dT (u2) ≥ 3. Let T1 be the tree formed from T by deleting the vertices

u0 and u1. Then, T1 is a tree with n−2 vertices and p−1 pendent vertices.

Since n− 2 ≥ 4, by using the inductive hypothesis, we have

M2(T ) = M2(T1) + 2dT (u2) + 6

≥ (4n+ 3p− 16) + 2dT (u2)− 5

> 4n+ 3p− 16,

as desired.

Case 4. Every quasi-pendent vertex of T is a 3-vertex, which has

two pendent neighbors and a neighbor of degree 2.

We first assume that the maximum degree of T is at least 4. By our

hypothesis, the vertex with maximum degree of T is not a quasi-pendent

vertex and thus it is not a special vertex, which is contrary with the choice

of T and Lemma 4. Next, we suppose that the maximum degree of T is
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equal to 3.

If the maximum degree of T is 3 and no two branching vertices of T

are adjacent, then T ∈ T0(n, p) and hence M2(T ) = 4n+ 3p− 16.

Next, we suppose that the maximum degree of T is 3 and it contains

at least one pair of adjacent branching vertices. Let u0v0 be an edge of T

with dT (u0) = dT (v0) = 3. Let w0 be a pendent vertex of T such that w0 is

connected with v0 in T−u0v0. Let T2 be the tree formed from T by deleting

the edge u0v0 and then adding the edge u0w0. Then, T2 is a tree with n

vertices and p − 1 pendent vertices. Suppose that NT (v0) = {u0, u1, u2}.
Since every quasi-pendent vertex of T is a 3-vertex, which has two pendent

neighbors and a neighbor of degree 2, dT (u1) ≥ dT (u2) ≥ 2. By using the

inductive hypothesis, we have

M2(T ) = M2(T2) + dT (u1) + dT (u2) ≥ 4n+ 3(p− 1)− 16 + 4

> 4n+ 3p− 16,

as desired.

4 Further discussion

As indicated in Corollary 1, the bound on M2 for trees of T(p)
n given in

Theorem 3 is best possible when 4 ≤ p ≤ n+5
3 . The following result gives

the best possible bound on M2 for members of T(p)
n when p ∈ {2, 3, 4, n−

3, n− 2}.

Lemma 5. [8] If p ∈ {2, 3, 4, n−3, n−2}, then Dn;⌊ p
2 ⌋,⌈

p
2 ⌉ uniquely attains

the minimum second Zagreb index among all trees in the class T(p)
n .

Thus, it seems to be an interesting problem to characterize the trees

having minimum value of M2 in the class T(p)
n when n+5

3 < p ≤ n− 4.

In what follows, we take T0 ∈ T(p)
n such that M2(T0) is as small as

possible. We may suppose that q(T0) ≥ 3 by Lemma 3. With the similar

argument as Lemma 4, we have

Lemma 6. Let x0, y0 be two non-pendent vertices of T0 such that x0 is a

quasi-pendent vertex. If y0 is not a special vertex, then dT0
(y0) ≤ dT0

(x0).
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In what follows, we give more properties of T0. Firstly, from Lemma

6, we conclude that the following claim holds.

Claim 1. Let x0 and y0 be two non-pendent vertices of T0.

(i) If they are quasi-pendent vertices and they are not special vertices, then

dT0(x0) = dT0(y0);

(ii) If x0 is a special vertex and y0 is not a special vertex, then dT0(x0) ≥
dT0(y0);

(iii) If x0 is a quasi-pendent vertex and y0 is not a quasi-pendent vertex,

then dT0(x0) ≥ dT0(y0);

(iv) T0 must contain a special vertex with maximum degree ∆.

Claim 2. Let x0 and y0 be two branching vertices of T0. If x0y0 ∈ E(T0),

then T0 contains no edge u0v0 with dT0(u0) = dT0(v0) = 2.

Proof. By contradiction, we assume that u0v0 ∈ E(T0) with dT0(u0) =

dT0(v0) = 2. We may suppose that v0, x0 ̸∈ Py0u0 . Let T2 = T0 + x0u0 +

y0v0 − x0y0 − u0v0. Then, T2 is also a tree with n vertices and p pendent

vertices such that M2(T2) − M2(T0) =
(
dT0(x0) − 2

)(
2 − dT0(y0)

)
< 0,

contrary with the choice of T0.

Claim 3. Let x0 and y0 be two special vertices of T0 and x, y be two

non-pendent vertices adjacent to x0 and y0, respectively. Then, dT0
(x0) ≥

dT0
(y). Furthermore, if dT0

(x0) < dT0
(y0) and yx0 ̸∈ E(T0), then dT0

(x) ≥
dT0

(y).

Proof. Let x1 be a pendent vertex adjacent to x0 and T3 = T0 + x0y0 +

yx1 − yy0 − x0x1. Then,

M2(T3)−M2(T0) =dT0(x0)dT0(y0) + dT0(y)− dT0(x0)− dT0(y)dT0(y0)

=
(
dT0

(y0)− 1
)(
dT0

(x0)− dT0
(y)

)
≥ 0

and thus dT0(x0) ≥ dT0(y).

Let T4 = T0 + x0y + y0x − yy0 − x0x. Then, M2(T4) − M2(T0) =(
dT0(y0)−dT0(x0)

)(
dT0(x)−dT0(y)

)
. By the choice of T0, we have dT0(x) ≥

dT0(y) when dT0(x0) < dT0(y0).
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Claim 4. Let x0 and y0 be two special vertices of T0 and x, y be two

non-pendent vertices adjacent to x0 and y0, respectively. If dT0(x) ≥
dT0(y), then dT0(y0) ≥ dT0(x0) − 1. Furthermore, if dT0(x) > dT0(y),

then dT0(y0) ≥ dT0(x0).

Proof. Since x0 and y0 are two special vertices of T0, x0 and y0 are adja-

cent to exactly dT0(x0)− 1 and dT0(y0)− 1 pendent vertices, respectively.

Assume that dT0(x0)−2 ≥ dT0(y0) ≥ 2. Denote by T5 = T0+y0x1−x0x1,

where x1 is a pendent vertex adjacent to x0. Then,

M2(T5)−M2(T0)

=
(
dT0(x0)− 1

)(
dT0(x) + dT0(x0)− 2

)
+
(
dT0(y0) + 1

)(
dT0(y0) + dT0(y)

)
− dT0

(x0)
(
dT0

(x) + dT0
(x0)− 1

)
− dT0

(y0)
(
dT0

(y) + dT0
(y0)− 1

)
= dT0

(y)− dT0
(x) + 2

(
dT0

(y0)− dT0
(x0)

)
+ 2 < 0, (6)

contrary with the choice of T0. By (6), with the similar reason, we can

show the Furthermore part.
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[7] T. Došlić, T. Réti, D. Vukičević, On the vertex degree indices of
connected graphs, Chem. Phys. Lett. 512 (2011) 283–286.

[8] M. Enteshari, B. Taeri, Extremal Zagreb indices of graphs of order
n with p pendent vertices, MATCH Commun. Math. Comput. Chem.
86 (2021) 17–28.

[9] I. Gutman, Degree-based topological indices, Croat. Chem. Acta 86
(2013) 351–361

[10] I. Gutman, M. K. Jamil, N. Akhter, Graphs with fixed number of pen-
dent vertices and minimal first Zagreb index, Trans. Comb. 4 (2015)
43–48.
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[20] A. Miličević, S. Nikolić, N. Trinajstić, On reformulated Zagreb indices,
Mol. Diversity 8 (2004) 393–399.
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