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Abstract

Let G be a finite and simple graph with vertex set V (G). The
Lanzhou index G is defined as

Lz(G) =
∑

u∈V (G)

dG(u)dG(u)
2;

where dG(u) denotes the degree of vertex u in G. Dehgardi and
Liu [MATCH Commun. Math. Comput. Chem. 86 (2021) 3–10]
proved that for any tree T of order n ≥ 11 with maximum degree
∆, Lz(T ) ≥ (n −∆ − 1)(4n +∆2 − 12) + ∆(n − 2). In this paper,
we generalize the foregoing bound and show that for non-spider tree
T of order n ≥ 11 Lz(T ) ≥ (n − 1)(∆2 + ∆′2) − (∆3 + ∆′3) −
(3n − 10)(∆ + ∆′) + (4n2 − 14n + 4), where ∆ and ∆′ represents
the maximum and second maximum degree of T . This result is an
improvement of existing lower bounds. We also characterize the
corresponding extremal trees.

1 Introduction

Let G = (V (G), E(G)) be a simple connected graph with vertex set V (G)

and edge set E(G). The neighbourhood of a vertex v, denoted by NG(v),

is the set of all vertices which are adjacent to v. The degree dG(u) of u
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in G is the cardinality of NG(v). We use ∆ = ∆(G) for the maximum

degree of the graph G. Let v be a vertex of maximum degree in G. We

define ∆′ = max{dG(u) : u ∈ V (G)\{v}} and call it the second maximum

degree of G. The complement of graph G, denoted by G, is the graph

whose vertex set is same as of G and two vertices are adjacent in G if they

are not adjacent in G. The distance between two vertices is the length of

a shortest path between them. We use d(u, v) for the distance between

two vertices u and v. Given a tree, a vertex of degree at least 3 is called

a core vertex or a core. A vertex of degree 2 is called a path vertex, and

a vertex of degree 1 is called a leaf. For a core v, we often consider the

subtrees created by removing v from the tree, and call them the subtrees

of its neighbors (one subtree for each neighbor). We sometimes consider

the BFS tree that is created by rooting the tree at v. If u is a vertex in T

other than the root, then the parent of u is the vertex connected to u on

the path to the root. A subtree of a neighbor of a core v that is a path

(without any cores) is called a leg (or a standard leg) of v. If a leg consists

of a single vertex (that is, v is connected to a leaf), we call it a short

leg, and otherwise it is called a long leg. A double spider is a tree having

exactly two core vertices where as a spider is a tree with exactly one core

vertex. We denote the set of all n-vertex double spider by S(n, p, q), where
p and q represents the degrees of cores. A double star is a double spider

that have adjacent cores and both the cores have short legs only. We use

T (n,∆,∆′) for the set of all n-vertex tree having maximum and second

maximum degree ∆ and ∆′, respectively.

A graph invariant (also known as topological index) is a numerical

value associated to a graph which is structurally invariant. A large variety

of degree based topological indices has been defined in the mathematical

and mathematico-chemical. Here, we consider a variant of the topological

index, named the Lanzhou index. The Lanzhou index ofG, denoted Lz(G),

is defined in [2] as the sum of weights dG(u)dG(u)
2 of all vertices u of V (G),

that is,

Lz(G) =
∑

u∈V (G)

dG(u)dG(u)
2.



595

Vukiĉević, Li, Sedlar and Doslic, in [2], proved the following lower bounds

on the Lanzhou index of trees.

Theorem 1.1 [2] For any tree T of order n ≥ 15,

Lz(T ) ≥ (n− 1)(n− 2)

with equality if and only if T = Sn.

Theorem 1.2 [2] For any tree T of order n with maximum degree at

most 4,

Lz(T ) ≥ 4n2 − 18n+ 20.

with equality if and only if T = Pn.

Recently, Dehgardi and Liu, in [1], proved the following lower bound

on the Lanzhou index of trees.

Theorem 1.3 For any tree T of order n ≥ 11 with maximum degree ∆,

Lz(T ) ≥ (n−∆− 1)(4n+∆2 − 12) + ∆(n− 2),

with equality if and only if T is a spider with the center of degree ∆.

The tree with only one core is a spider. Thus through out the article we

consider all trees having at least two cores. In this paper, we establish a

best possible lower bound for the Lanzhou index of trees in terms of their

order, maximum and second maximum degree. Also we characterize all

extremal trees, as a generalization of foregoing result.

2 Main Results

In this section, we present a sharp lower bound for the Lanzhou index

of trees in terms of their order, maximum degree and second maximum

degree. We also characterize all trees whose Lanzhou index achieves the

lower bound. In the lemma below, we determine Lanzhou index for double

spider S(n,∆,∆′).
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Lemma 2.1 For a double spider S(n,∆,∆′) with ∆ ≥ ∆′ ≥ 3,

Lz(S(n,∆,∆′)) = (n− 1)(∆2 +∆′2)− (∆3 +∆′3)

− (3n− 10)(∆ +∆′) + (4n2 − 14n+ 4) .

Proof : Recall that the spider S(n,∆,∆′) has exactly two core vertices

with degree ∆ and ∆′. Let u and v be these two cores with degrees ∆ and

∆′, respectively. Let T = S(n,∆,∆′). Since S(n,∆,∆′) does not contains

any other core vertices (the vertices whose degree is at least three) except

u and v, each component of T \ {u} (or T \ {v}) except one must be a

leg. Hence there are ∆ +∆′ − 2 leafs of S(n,∆,∆′) which are came from

∆ − 1 legs of v and ∆′ − 1 legs of u. The remaining vertices (except u,

v and leafs) are two degree vertices and hence they have n− (∆ + ∆′) in

numbers. Thus the topological index Lz(T ) is given by

Lz(T ) = (n− 1−∆)∆2 + (n− 1−∆′)∆′2 + 4(n− 3) (n− (∆ +∆′))

+(n− 2)(∆ +∆′ − 2)

= (n− 1−∆)∆2 + (n− 1−∆′)∆′2 − (3n− 10)(∆ +∆′)

+(4n2 − 14n+ 4).

Hence we obtain our result. ■

Definition 2.1 (EDI operation) Let T be a tree with at least one core.

Choose a vertex x adjacent to a core v and a leaf w such that they are

not in same component of T − v. By an edge-deletion-inclusion operation

(simply, EDI operation) on two vertices x and w we mean the deletion of

the edge {v x} and creation a new edge {xw}. Note that if w and x are

in same component of T − v, then an EDI operation on these two vertices

makes the tree as forest. So we avoid such type choices of w and x. In

Figure 1 we shows EDI operations for two trees T1 and T2.

Lemma 2.2 Let T be a tree of order n ≥ 11 with at least two cores. Let v

be a core such that dG(v) ≤ n
2 . If Twx be a tree obtained from T under EDI

operation on a leaf w and a vertex x adjacent to v, then Lz(T ) > Lz(Twx).
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Figure 1. The tree T1 has only one core v where as the T2 has three

cores. The trees T
′
1 and T

′
2 represent the resulting tree under

an EDI operation on the vertices x and w. Note that the
vertex x is hanged on the core v.

Proof: Here the vertex x is adjacent to the core v and w be a leaf which is

not in Tx (the component of T −{v} that contains x). Let the parent of w

be u and the degree of v be m ≥ 3 (as v is a core). Let S = {v, w}. Under

an EDI operation on the two vertices x and w, the following changes

occur in the degrees of vertices : dTwx
(w) = 2, dTwx

(v) = m − 1 and

dT (y) = dTwx
(y) for all y ∈ V (T ) \ S. The Lanzhou indices for T and Twx

are given by

Lz(T ) =
∑

y∈V (T )

dT (y)d
2
T (y)

=
∑

y∈V (T )\S

dT (y)d
2
T (y) + (n− 1−m)m2 + (n− 2) (1)

Lz(Twx) =
∑

y∈V (Twx)

dT̄wx
(y)d2Twx

(y)

=
∑

y∈V (T )\S

dT (y)d
2
T (y) + (n−m)(m− 1)2 + 4(n− 3) (2)
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Thus from (1) and (2), we get

Lz(T )− Lz(Twx) = (n− 1−m)m2 + (n− 2)− (n−m)(m− 1)2

− 4(n− 3) = 2mn− 3m2 − 4n+m+ 10

= 2n(m− 2)− 3m2 +m+ 10. (3)

Since n ≥ 2m, so we may take n = 2m + ℓ for some non-negative integer

ℓ. Then (3) reduces to

Lz(T )− Lz(Twx) = m2 + (2ℓ− 7)m− 4ℓ+ 10

= (m+ 2ℓ− 5)(m− 2). (4)

Since m ≥ 3, so m + 2ℓ ≥ 7 when ℓ ≥ 2 and hence from (4), we have

Lz(T ) − Lz(Twx) > 0 when ℓ ≥ 2. Again since n ≥ 11 and n = 2m + ℓ,

so m ≥ 6 and m ≥ 5 according to ℓ = 0 and ℓ = 1. Thus in this case, we

have m + 2ℓ ≥ 6 and hence we obtain Lz(T ) − Lz(Twx) > 0 in the case

when ℓ = 0, 1. This completes the proof. ■

Corollary 2.1 Let T be a tree having at least two cores. Let u be a vertex

of maximum degree and v ̸= u be an another core. If T ′ be a tree obtained

by an EDI operation on a leaf w and an adjacent vertex of v, then Lz(T ) >

Lz(T
′). In particular, the spider S(∆) has lower Lanzhou index than the

same for double spider S(n,∆,∆′).

Proof: Here dT (v) ≤ dT (u) and hence dT (v) ≤ n
2 . Thus from applying

Lemma 2.2, we obtained the result. ■

Lemma 2.3 Let T be a tree with at least two cores and x be a vertex of

maximum degree. Then each component of T − x can be be transform to

a path by successive EDI operations. Moreover, an n-vertex tree with at

least one core can be transform to a n-vertex spider.

Proof : If x be a vertex of maximum degree, then the degree of each core

u in each component of T − x must be at most
⌊
n
2

⌋
. So we can apply EDI

operation for each cores in the components of T − x. An EDI operation

reduces the degree of a core vertex by 1, so every core vertex can be made a
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non-core vertex (a vertex with degree 1 or 2) by repeated implementation

of EDI operation. Therefore, every component of T − x can be transform

to a path by applying successive EDI operations on it. Again since each

component of T − x is a path, so T transform to a spider with center at

x. In Figure 2, we have taken a component of a mother tree with a vertex

x of degree at least 4 and perform EDI operations to transform it into a

path. ■

Figure 2. In this figure T has taken as some component of a tree with
respect to the maximum degree. The transformation of a
component to a path on same vertices by successive EDI
operations. The cores (the vertices of degree at least three)
of T are u1, v1, v and v2.

We are now in position to prove the main theorem of this section.

Theorem 2.1 For every tree T ∈ T (n,∆,∆′) with n ≥ 11,

Lz(T ) ≥ (n−1)(∆2+∆′2)−(∆3+∆′3)−(3n−10)(∆+∆′)+(4n2−14n+4).

The equality holds if and only if T is a double spider with the degrees of

cores ∆ and ∆′.

Proof : The main idea behind the proof of this theorem is to transform

the tree T to S(n,∆,∆′) under successive EDI operations. Let u and v be

two vertices in T with degrees ∆ and ∆′, respectively, where ∆ ≥ ∆′ ≥ 3.
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If we apply EDI operations successively for every core vertex except u and

v, then the degree of each vertex except u and v will be either 2 or 1.

Algorithm 1 gives in details how the EDI operations has been performed

to convert all cores vertices (except u and v) to non-cores. After the exe-

cution of Algorithm 1, T transform to a double spider S(n,∆,∆′) and con-

sequently, by applying Lemma 2.2, we obtained Lz(T ) > Lz(S(n,∆,∆′)).

Hence we obtained our result by Lemma 2.1.

Algorithm 1 An algorithm for the transformation of a tree with at least

two cores to a double spider under successive EDI operations.

Input: A tree T with maximum degree ∆ ≥ 3 and second maximum

degree ∆′ ≥ 3.

Output : The double spider S(n,∆,∆′).

Initialization : Let N(v) = {v1, v2, . . . , v∆} and N(u) = {u1, u2, . . . ,

u∆′}. Let T be rooted at v. With no loss of generality, we assume u1

is a parent of u and u lies in the component of T − v that contains v1.

Let Pvu : v1x1 . . . xmu1u be the vu-path. A vertex x is called a hanging

vertex in a path P if it is adjacent to some intermediate vertex of P .

Let Hvu be the set of all hanging vertices of the path Pvu. If Hvu is

empty, then go to Step-IV with T ′′ = T , otherwise go to Step-I.

Step-I : Do the EDI operation on a vertex x ∈ Hvu and a leaf of a

component of T \{u}. Call the resulting tree be Tx. SetHvu = Hvu\{x}.
Step-II : Do the Step-I with T = Tx and repeat these processes until

Hvu is empty set.

Step-III : Give the name of the resulting tree as T ′′ after doing all

operations as mentioned in Step-II and Step-III. Note that in T ′′, all

the intermediate vertices of Pvu have degree 2 and all other vertices of

the component T ′′
v1 of T

′′−v are at deeper levels than u. Also the degrees

of u and v in T ′′ remains unchanged.

Step-IV : Let T ′′
ui

be the component of T ′′ − u that contains ui. For

each i do Step-V and Step-VI.

Step-V : Visit a core w of a largest distance to v (that is, a core of

largest depth in the rooted tree) in the component T ′′
ui
. Let N(w) =

{w1, w2, . . . , wm}. Each component of T ′′ − w are legs except the com-

ponent containing the parent of w (since otherwise w is not a core of
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maximum depth). Do EDI operations among the vertices of legs of w

such that these legs transformed into a single leg at w (Lemma 2.3 gives

the guarantees of such type of transformation). Let the resultant tree

be Tw.

Step-VI: Repeat the Step-V until T ′′
ui

reduces to a path.

Step-VII: Do similar computations as of Step-V and Step-VI for the

components Tv2 , Tv3 , . . . , Tv∆ of T − v. ■

Example 2.1 In this example, we explain the intermediate steps of Al-

gorithm 1 for the tree T as show in Figure 3. Applying EDI operations

as described in our presented algorithm, we make the tree T into a double

spider S(21, 4, 4) with centers v and u (green colored vertices). As x is

the only hanging vertices of Pvu : v v1 u, so under Step-I and Step-II, T

transform to T ′′ by only one EDI operation on x and the leaf w1. Now we

transform the each component of T ′′ − u1 to a leg at u1. For this we visit

a deepest core (the vertex x) in a component of T ′′ − u. For more details

see operations described in Figure 4.

Figure 3. The path Pvu = v v1 u has only one hanging vertices, namely
x. The tree T ′′ is obtained from T by EDI on x and w1.

In Figure 5, we transform each component of T1 − u into a path, i.e, a

leg hooked at u.
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and ; and 

then on 

Figure 4. The transformation of T ′′
u1

(the component of T ′′ − u con-
taining u1) to a path.

and 

Figure 5. The transformations of each component for T1 − u into a
path. The resulting tree is T2.

Each component of T2 − u (except one) are legs of u. So we visit the

components of T2−v except the component that contains u to make them

as legs at v. In Figure 6 the steps have been shown.
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and ; and 

then on 

Figure 6. The transformations of each component of T2−v except the
component that contains v1. The resulting tree is a double
spider S(21, 4, 4) with centres u and v.
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