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Abstract

Based on elementary geometry, Gutman proposed the novel graph invariant
called the Sombor index, which was defined as SO(G) =

∑
uv∈E(G)

√
d2u + d2v, where

du denotes the degree of vertex u. It has been proved that the Sombor index could
predict some physicochemical properties. In this paper, we first give the classifica-
tion of non-pendent tetracyclic (chemical) graphs with respect to the Sombor index,
and we determine the minimum Sombor indices of tetracyclic (chemical) graphs.

1 Introduction

In this paper, all graphs are simple, with vertex set V (G) = {v1, v2, · · · , vn} and edge

set E(G). Let |V (G)| = n and |E(G)| = m. Let NG(u) be the set of vertices which are

neighbors of vertex u. Let du = |NG(u)| be the degree of vertex u. If du = 1, then u is

called a pendent vertex. Denote by ∆(G) and δ(G) the maximum degree and minimum

degree of G. We denote ni the number of vertices with degree i, and mi,j the number of

edges joining a vertex of degree i and a vertex of degree j.
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Chemical graphs are the graphs with du ≤ 4 for all u ∈ V (G). Tetracyclic graphs are

the graphs with cyclomatic c = 4 (i.e., m = n + 3). For all notations and terminology

used, but not defined here, we refer to the textbook [4].

Inspired by Euclidean metric, Gutman proposed the Sombor index and the reduced

Sombor index [13], which are defined as,

SO(G) =
∑

uv∈E(G)

√
d2u + d2v,

SOred(G) =
∑

uv∈E(G)

√
(du − 1)2 + (dv − 1)2.

Recently, many research devote to the study of Sombor index. Redžepović [24] consid-

ered the chemical applicability of Sombor index. Deng et al. [11] determined the maximum

Sombor indices of chemical trees. Cruz et al. [6] considered the extremal Sombor indices

of some chemical graphs. Chen et al. [5] considered the extremal values of the Sombor

indices of trees with some given parameters, including matching number, pendent ver-

tices, diameter, segment number, branching number. Liu et al. [19] determined maximum

and minimum (reduced) Sombor indices of chemical trees with given pendent vertices,

and characterized their extremal graphs. Liu et al. [20] also ordered the minimal Sombor

indices of chemical trees, chemical unicyclic graphs, chemical bicyclic graphs and chemical

tricyclic graphs, respectively. Das et al. [9] determined the maximum Sombor indices of

c-cycle graphs. One can refer to [1, 2, 7, 10, 12, 14, 16–18, 21–23, 25–28] for more details

about Sombor indices.

Inspired by the results of [9] and [20], it is natural to consider the minimum Sombor

indices of tetracyclic (chemical) graphs. In this paper, we first give the classification of

tetracyclic (chemical) graphs with n1(G) = 0. Then we determine the minimum Sombor

indices of tetracyclic (chemical) graphs.

2 Main results

For convenience, the set of graphs with |V (G)| = n and |E(G)| = m are called (n,m)

graphs. Denote by T Gn (resp. CT Gn) the set of tetracyclic graphs (resp. tetracyclic

chemical graphs) with n vertices.

Lemma 2.1 [1] Let G be a connected (n,m) graph. If G has the minimum Sombor index,

then ∆(G)− δ(G) ≤ 1.
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Lemma 2.2 [15] There exists a connected tetracyclic graph G of order n with n1(G) = 0

if and only if G belongs to one of the equivalence classes given in Table 1.

Table 1. Vertex degree distributions (DD) of T Gn with n1 = 0.

DD n8 n7 n6 n5 n4 n3 n2 n1 ni (i ≥ 9)
H1 1 0 0 0 0 0 n− 1 0 0
H2 0 1 0 0 0 1 n− 2 0 0
H3 0 0 1 0 1 0 n− 2 0 0
H4 0 0 1 0 0 2 n− 3 0 0
H5 0 0 0 2 0 0 n− 2 0 0
H6 0 0 0 1 1 1 n− 3 0 0
H7 0 0 0 1 0 3 n− 4 0 0
H8 0 0 0 0 3 0 n− 3 0 0
H9 0 0 0 0 2 2 n− 4 0 0
H10 0 0 0 0 1 4 n− 5 0 0
H11 0 0 0 0 0 6 n− 6 0 0

We give the edge degree distributions of all connected tetracyclic graphs with n1(G) =

0 in Hk, 1 ≤ k ≤ 11, and their Sombor indices which are shown in Tables 2-6. Note that

the relevant data of Tables 2-6 except the values of Sombor indices are from [3]. There

are some writing errors in these tables of [3], we correct it.

Let ξ = ξ∗ ∪ ξ∗∗, where ξ∗ = {G|G ∈ T Gn, n1 = 0}, ξ∗∗ = {G|G ∈ T Gn, n1 ≥ 1}.
Then ξ∗ = ∪11

i=1Hi = ∪95
i=1ξi (see Tables 1-6). Note that ξ7 = {G|G ∈ ξ∗,m3,3 = 8,m3,2 =

2,m2,2 = n− 7}. It is easy to verify that ξ7 = {G1, G2, G3, G4, G5}, see Figure 1. In the

following, we will determine ξ7 is the set of graphs with the minimum (reduced) Sombor

index among T Gn.

Figure 1. The minimum graphs Gi (1 ≤ i ≤ 5).

Lemma 2.3 Let G ∈ ξ7. Then SO(G) = 2
√
2n+ 2

√
13 + 10

√
2 ≈ 2

√
2n+ 21.35323.

By Lemmas 2.1, 2.2 and 2.3, we have the following results.
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Theorem 2.4 Let G ∈ T Gn (n ≥ 9). Then

SO(G) ≥ 2
√
2n+ 2

√
13 + 10

√
2,

with equality if and only if G ∈ ξ7, i.e., G ∼= Gi, 1 ≤ i ≤ 5, see Figure 1.

Proof. Suppose that G∗ ∈ T Gn (n ≥ 9) and G∗ has the minimum Sombor index. If

n1(G
∗) ≥ 1, then ∆(G∗) − δ(G∗) ≥ 2, which is a contradiction with the conclusion of

Lemma 2.1. Thus n1(G
∗) = 0. All connected tetracyclic graphs with n1(G) = 0 in Hk,

1 ≤ k ≤ 11 and their Sombor indices are shown in Tables 2-6. By comparing these values

of Sombor indices in Tables 2-6, we obtain the desired results.

We can easily verify the conclusion of Lemma 2.1 also holds for the reduced Sombor

index. Similarly, we also have

Theorem 2.5 Let G ∈ T Gn (n ≥ 9). Then

SOred(G) ≥
√
2n+ 2

√
5 + 9

√
2,

with equality if and only if G ∈ ξ7, i.e., G ∼= Gi, 1 ≤ i ≤ 5, see Figure 1.

Since these minimum tetracyclic graphs (i.e., G ∼= Gi, 1 ≤ i ≤ 5) are all chemical

graphs, thus we have

Corollary 2.6 Let G ∈ CT Gn (n ≥ 9). Then

SO(G) ≥ 2
√
2n+ 2

√
13 + 10

√
2,

SOred(G) ≥
√
2n+ 2

√
5 + 9

√
2.

with equality if and only if G ∈ ξ7, i.e., G ∼= Gi, 1 ≤ i ≤ 5, see Figure 1.

Table 2. Edge degree distributions (DD) of T Gn with n1 = 0 and ∆ = 3.

No. DD m3,3 m3,2 m2,2 SO

ξ1 H11 2 14 n− 13 2
√
2n+ 22.19344

ξ2 H11 3 12 n− 12 2
√
2n+ 22.05341

ξ3 H11 4 10 n− 11 2
√
2n+ 21.91337

ξ4 H11 5 8 n− 10 2
√
2n+ 21.77334

ξ5 H11 6 6 n− 9 2
√
2n+ 21.63330

ξ6 H11 7 4 n− 8 2
√
2n+ 21.49327

ξ7 H11 8 2 n− 7 2
√
2n+ 21.35323
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Table 3. Edge degree distributions (DD) of T Gn with n1 = 0 and ∆ = 4.

No. DD m4,4 m4,3 m4,2 m3,3 m3,2 m2,2 SO

ξ8 H8 0 0 12 0 0 n− 9 2
√
2n+ 28.20978

ξ9 H8 1 0 10 0 0 n− 8 2
√
2n+ 27.75079

ξ10 H8 2 0 8 0 0 n− 7 2
√
2n+ 27.29180

ξ11 H8 3 0 6 0 0 n− 6 2
√
2n+ 26.83281

ξ12 H9 0 0 8 0 6 n− 11 2
√
2n+ 26.29769

ξ13 H9 0 0 8 1 4 n− 10 2
√
2n+ 26.15766

ξ14 H9 0 1 7 0 5 n− 10 2
√
2n+ 26.04843

ξ15 H9 0 1 7 1 3 n− 9 2
√
2n+ 24.49418

ξ16 H9 1 0 6 0 6 n− 10 2
√
2n+ 25.83870

ξ17 H9 0 2 6 0 4 n− 9 2
√
2n+ 25.79917

ξ18 H9 1 0 6 1 4 n− 9 2
√
2n+ 25.69867

ξ19 H9 0 2 6 1 2 n− 8 2
√
2n+ 25.65914

ξ20 H9 1 1 5 0 5 n− 9 2
√
2n+ 25.58944

ξ21 H9 0 3 5 0 3 n− 8 2
√
2n+ 25.54991

ξ22 H9 1 1 5 1 3 n− 8 2
√
2n+ 25.44941

ξ23 H9 0 3 5 1 1 n− 7 2
√
2n+ 25.40988

ξ24 H9 1 2 4 0 4 n− 8 2
√
2n+ 25.34018

ξ25 H9 0 4 4 0 2 n− 7 2
√
2n+ 25.30065

ξ26 H9 1 2 4 1 2 n− 7 2
√
2n+ 25.20015

ξ27 H9 0 4 4 1 0 n− 6 2
√
2n+ 25.16062

ξ28 H9 1 3 3 0 3 n− 7 2
√
2n+ 25.09092

ξ29 H9 1 3 3 1 1 n− 6 2
√
2n+ 24.95089

ξ30 H9 1 4 2 0 2 n− 6 2
√
2n+ 24.84166

ξ31 H9 1 4 2 1 0 n− 5 2
√
2n+ 24.70163

ξ32 H10 0 0 4 0 12 n− 13 2
√
2n+ 24.38560

ξ33 H10 0 0 4 1 10 n− 12 2
√
2n+ 24.24557

ξ34 H10 0 1 3 0 11 n− 12 2
√
2n+ 24.13634

ξ35 H10 0 0 4 2 8 n− 11 2
√
2n+ 24.10553

ξ36 H10 0 1 3 1 9 n− 11 2
√
2n+ 23.99631

ξ37 H10 0 0 4 3 6 n− 10 2
√
2n+ 23.96550

ξ38 H10 0 2 2 0 10 n− 11 2
√
2n+ 23.88708

ξ39 H10 0 1 3 2 7 n− 10 2
√
2n+ 23.85627

ξ40 H10 0 0 4 4 4 n− 9 2
√
2n+ 23.82546

ξ41 H10 0 2 2 1 8 n− 10 2
√
2n+ 23.74705

ξ42 H10 0 1 3 3 5 n− 9 2
√
2n+ 23.71624

ξ43 H10 0 3 1 0 9 n− 10 2
√
2n+ 23.63782

ξ44 H10 0 0 4 5 2 n− 8 2
√
2n+ 23.68543

ξ45 H10 0 2 2 2 6 n− 9 2
√
2n+ 23.60701
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Table 4. Continued of Table 3.

No. DD m4,4 m4,3 m4,2 m3,3 m3,2 m2,2 SO

ξ46 H10 0 1 3 4 3 n− 8 2
√
2n+ 23.57620

ξ47 H10 0 3 1 1 7 n− 9 2
√
2n+ 23.49779

ξ48 H10 0 2 2 3 4 n− 8 2
√
2n+ 23.46698

ξ49 H10 0 4 0 0 8 n− 9 2
√
2n+ 23.38856

ξ50 H10 0 1 3 5 1 n− 7 2
√
2n+ 23.43617

ξ51 H10 0 3 1 2 5 n− 8 2
√
2n+ 23.35775

ξ52 H10 0 2 2 4 2 n− 7 2
√
2n+ 23.32694

ξ53 H10 0 4 0 1 6 n− 8 2
√
2n+ 23.24853

ξ54 H10 0 3 1 3 3 n− 7 2
√
2n+ 23.21772

ξ55 H10 0 2 2 5 0 n− 6 2
√
2n+ 23.18691

ξ56 H10 0 4 0 2 4 n− 7 2
√
2n+ 23.10849

ξ57 H10 0 3 1 4 1 n− 6 2
√
2n+ 23.07768

ξ58 H10 0 4 0 3 2 n− 6 2
√
2n+ 22.96846

Table 5. Edge degree distributions (DD) of T Gn with n1 = 0 and ∆ = 5.

No. DD m5,5 m5,4 m5,3 m5,2 m4,3 m4,2 m3,3 m3,2 m2,2 SO

ξ59 H5 0 0 0 10 0 0 0 0 n− 7 2
√
2n+ 34.05265

ξ60 H5 1 0 0 8 0 0 0 0 n− 6 2
√
2n+ 33.18182

ξ61 H6 0 0 0 5 0 4 0 3 n− 9 2
√
2n+ 30.17517

ξ62 H6 0 0 0 5 1 3 0 2 n− 8 2
√
2n+ 29.92591

ξ63 H6 0 0 1 4 0 4 0 2 n− 8 2
√
2n+ 29.84384

ξ64 H6 0 1 0 4 0 3 0 3 n− 8 2
√
2n+ 29.54942

ξ65 H6 0 0 1 4 1 3 0 1 n− 7 2
√
2n+ 29.59458

ξ66 H6 0 1 0 4 1 2 0 2 n− 7 2
√
2n+ 29.30016

ξ67 H6 0 1 1 3 0 3 0 2 n− 7 2
√
2n+ 29.21809

ξ68 H6 0 1 1 3 1 2 0 1 n− 6 2
√
2n+ 28.96883

ξ69 H7 0 0 0 5 0 0 0 9 n− 11 2
√
2n+ 28.26308

ξ70 H7 0 0 0 5 0 0 1 7 n− 10 2
√
2n+ 28.12305

ξ71 H7 0 0 0 5 0 0 2 5 n− 9 2
√
2n+ 27.98301

ξ72 H7 0 0 1 4 0 0 0 8 n− 10 2
√
2n+ 27.93175

ξ73 H7 0 0 0 5 0 0 3 3 n− 8 2
√
2n+ 27.84298

ξ74 H7 0 0 1 4 0 0 1 6 n− 9 2
√
2n+ 27.79171

ξ75 H7 0 0 1 4 0 0 2 4 n− 8 2
√
2n+ 27.65168

ξ76 H7 0 0 2 3 0 0 0 7 n− 9 2
√
2n+ 27.60041

ξ77 H7 0 0 1 4 0 0 3 2 n− 7 2
√
2n+ 27.51164

ξ78 H7 0 0 2 3 0 0 1 5 n− 8 2
√
2n+ 27.46037

ξ79 H7 0 0 2 3 0 0 2 3 n− 7 2
√
2n+ 27.32034

ξ80 H7 0 0 3 2 0 0 0 6 n− 8 2
√
2n+ 27.26907

ξ81 H7 0 0 2 3 0 0 3 1 n− 6 2
√
2n+ 27.18030

ξ82 H7 0 0 3 2 0 0 1 4 n− 7 2
√
2n+ 27.12904

ξ83 H7 0 0 3 2 0 0 2 2 n− 6 2
√
2n+ 26.98900

ξ84 H7 0 0 3 2 0 0 3 0 n− 5 2
√
2n+ 26.84897
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Table 6. Edge degree distributions (DD) of T Gn with n1 = 0 and ∆ = 6, 7, 8.

No. DD m8,2 m7,3 m7,2 m6,4 m6,3 m6,2 m4,2 m3,3 m3,2 m2,2 SO

ξ85 H4 0 0 0 0 0 6 0 0 6 n− 9 2
√
2n+ 34.12479

ξ86 H4 0 0 0 0 0 6 0 1 4 n− 8 2
√
2n+ 33.98476

ξ87 H4 0 0 0 0 1 5 0 0 5 n− 8 2
√
2n+ 33.73131

ξ88 H4 0 0 0 0 1 5 0 1 3 n− 7 2
√
2n+ 33.59128

ξ89 H4 0 0 0 0 2 4 0 0 4 n− 7 2
√
2n+ 33.33784

ξ90 H4 0 0 0 0 2 4 0 1 2 n− 6 2
√
2n+ 33.19780

ξ91 H3 0 0 0 0 0 6 4 0 0 n− 7 2
√
2n+ 36.03688

ξ92 H3 0 0 0 1 0 5 3 0 0 n− 6 2
√
2n+ 35.27972

ξ93 H2 0 0 7 0 0 0 0 0 3 n− 7 2
√
2n+ 41.97843

ξ94 H2 0 1 6 0 0 0 0 0 2 n− 6 2
√
2n+ 41.53697

ξ95 H1 8 0 0 0 0 0 0 0 0 n− 5 2
√
2n+ 51.82755

3 Concluding Remarks

The minimum Sombor indices had been studied on trees [13], unicyclic and bicyclic graphs

[7], chemical tricyclic graphs [20]. In this paper, we give the classification of non-pendent

tetracyclic (chemical) graphs with respect to the Sombor index, and we determine the

minimum Sombor indices of tetracyclic (chemical) graphs. By calculating the (reduced)

Sombor indices of connected tricyclic graphs in Table 2 of [8], we can easily determine the

minimum tricyclic graphs is the tricyclic graph with m2,3 = 2, m3,3 = 5, m2,2 = n−5. The

minimum tricyclic graphs with respect to (reduced) Sombor indices depicted in Figure 2.

Figure 2. The minimum tricyclic graph.

It is natural to consider the second (resp. third) minimum tricyclic and tetracyclic

(chemical) graphs with respect to Sombor index. Thus we propose the following questions.

Problem 3.1 Determine the second (resp. third) minimum tricyclic and tetracyclic

(chemical) graphs.



580

Acknowledgements : We would like to gratefully thank Prof. I. Gutman for careful reading

and give some suggestions of our manuscript which help to improve the readability and

quality of the paper. We also would like to thank the anonymous referees for invaluable

comments and suggestions. This work is supported by the National Natural Science

Foundation of China (Grant Nos.11971180, 11501139), the Guangdong Provincial Natural

Science Foundation (Grant No. 2019A1515012052), the Hunan Provincial Natural Science

Foundation of China (Grant No. 2020JJ4423), the Department of Education of Hunan

Province (Grant No. 19A318) and the Guangzhou Science and Technology Bureau Project

(Grant No. 201904010339).

References

[1] A. Aashtab, S. Akbari, S. Madadinia, M. Noei, F. Salehi, On the graphs with min-
imum Sombor index, MATCH Commun. Math. Comput. Chem. (2022) 88 (2022)
553–559.

[2] S. Alikhani, N. Ghanbari, Sombor index of polymers, MATCH Commun. Math. Com-
put. Chem. 86 (2021) 715–728.

[3] S. Balachandran, H. Deng, S. Elumalai, T. Mansour, Extremal graphs on geometric-
arithmetic index of tetracyclic chemical graphs, Int. J. Quantum Chem. 121 (2021)
#e26516.

[4] J. A. Bondy, U. S. R. Murty, Graph Theory , Springer, New York, 2008.

[5] H. Chen, W. Li, J. Wang, Extremal values on the Sombor index of trees, MATCH
Commun. Math. Comput. Chem. 87 (2022) 23–49.

[6] R. Cruz, I. Gutman, J. Rada, Sombor index of chemical graphs, Appl. Math. Comput.
399 (2021) #126018.

[7] R. Cruz, J. Rada, Extremal values of the Sombor index in unicyclic and bicyclic
graphs, J. Math. Chem. 59 (2021) 1098–1116.

[8] H. Deng, S. Elumalai, S. Balachandran, Maximum and second maximum of
geometric-arithmetic index of tricyclic graphs, MATCH Commun. Math. Comput.
Chem. 79 (2018) 467–475.

[9] K. C. Das, A. Ghalavand, A. R. Ashraf, On a conjecture about the Sombor index of
graphs, Symmetry 13 (2021) #1830.

[10] K. C. Das, I. Gutman, On Sombor index of trees, Appl. Math. Comput. 412 (2022)
#126575.

[11] H. Deng, Z. Tang, R. Wu, Molecular trees with extremal values of Sombor indices,
Int. J. Quantum Chem. 121 (2021) #e26622.

[12] X. Fang, L. You, H. Liu, The expected values of Sombor indices in random hexag-
onal chains, phenylene chains and Sombor indices of some chemical graphs, Int. J.
Quantum Chem. 121 (2021) #e26740.



581

[13] I. Gutman, Geometric approach to degree-based topological indices: Sombor indices,
MATCH Commun. Math. Comput. Chem. 86 (2021) 11–16.

[14] I. Gutman, Some basic properties of Sombor indices, Open J. Discr. Appl. Math. 4
(2021) 1–3.

[15] I. Gutman, A. Ghalavand, T. Dehghan-Zadeh, A. R. Ashraf, Graphs with smallest
forgotten index, Iranian J. Math. Chem. 8 (2017) 259–273.

[16] B. Horoldagva, C. Xu, On Sombor index of graphs, MATCH Commun. Math. Com-
put. Chem. 86 (2021) 703–713.

[17] S. Li, Z. Wang, M. Zhang, On the extremal Sombor index of trees with a given
diameter, Appl. Math. Comput. 416 (2022) #126731.

[18] H. Liu, Extremal cacti with respect to Sombor index, Iranian J. Math. Chem. 12
(2021) 197–208.

[19] H. Liu, H. Chen, Q. Xiao, X. Fang, Z. Tang, More on Sombor indices of chemical
graphs and their applications to the boiling point of benzenoid hydrocarbons, Int. J.
Quantum Chem. 121 (2021) #e26689.

[20] H. Liu, L. You, Y. Huang, Ordering chemical graphs by Sombor indices and its
applications, MATCH Commun. Math. Comput. Chem. 87 (2022) 5–22.

[21] H. Liu, L. You, Y. Huang, X. Fang, Spectral properties of p-Sombor matrices and
beyond, MATCH Commun. Math. Comput. Chem. 87 (2022) 59–87.

[22] H. Liu, L. You, Z. Tang, J. B. Liu, On the reduced Sombor index and its applications,
MATCH Commun. Math. Comput. Chem. 86 (2021) 729–753.

[23] J. Rada, J. M. Rodriguez, J. M. Sigarreta, General properties on Sombor indices,
Discr. Appl. Math. 299 (2021) 87–97.
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[26] A. Ülker, A. Gürsoy, N. K. Gürsoy, The energy and Sombor index of graphs, MATCH
Commun. Math. Comput. Chem. 87 (2022) 51–58.

[27] Z. Wang, Y. Mao, Y. Li, B. Furtula, On relations between Sombor and other degree-
based indices, J. Appl. Math. Comput. 68 (2022) 1–17.

[28] W. Zhang, L. You, H. Liu, Y. Huang, The expected values and variances for Sombor
indices in a general random chain, Appl. Math. Comput. 411 (2021) #126521.


