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Abstract

As a novel member of the class of vertex-degree-based topologi-
cal indices, the so-called Sombor index was recently introduced by
Gutman on the chemical graphs. In this paper, we present the min-
imum Sombor index for unicyclic graphs with the diameter D ≥ 2.

1 Introduction

Let G = (V,E) be a simple connected graph with the vertex set V (G) and

the edge set E(G) where |V (G)| is the number of vertices and |E(G)| is
the number of edges. The degree of a vertex v ∈ V (G), denoted by dv(G),

is the number of its neighbors and the set of all vertices adjacent to v is

denoted by Nv(G). A vertex of degree one is called a pendent vertex and

also the edge uv ∈ E(G) is a pendent edge of G, if du = 1 or dv = 1. The

graph G is the chemical graph if dv ≤ 4, for all v ∈ V (G).

We denote by dG(u, v) the distance between any two distinct ver-

tices u and v in G which is the number of edges in the shortest path

travels from one of them to another. The diameter of G is defined as
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D(G) = {max d(u, v) : u, v ∈ V (G)}. A diametral path is a shortest path

in G joining two vertices, say u, v ∈ V (G), with dG(u, v) = D(G). A

unicyclic graph is a connected graph G containing exactly one cycle, that

is |V (G)| = |E(G)|. From now on, we drop the subscript ”G” from the

notation dv(G), Nv(G) and D(G) when there is no confusion.

A structural invariant to a graph is reffered to a graphical invariant.

It is indicated by a numerical quantity that is invariant under graph iso-

morphisms. The topological index is often reserved for graphical invariant

in chemical graph theory. Several types of vertex-degree-based topological

indices regarded as graphical invariants have been newly introduced and

extensively studied by many authors.

The ordered pair (x, y), where x = du and y = dv, is called the degree-

coordinate (or d-coordinate ) of the edge uv ∈ E(G). In the coordinate

system of two dimensions, it corresponds to a point called the degree-

point (or d-point ) of the edge uv. Based on Euclidean metric, the distance

between the d-point (x, y) and the origin of the coordinate system is called

the degree-radius (or d-radius ) of the edge uv. This is denoted by r(x, y)

and defined as r(x, y) =
√

x2 + y2. From the above considation, Gutman

in [5] introduced the Sombor index of a graph G given by

SO(G) =
∑

uv∈E(G)

√
d2u + d2v,

and established some basic properties of the sombor index on some molec-

ular graphs. He determined simple lower and upper bounds for Sombor

indices in [6]. It is shown that any vertex-degree-based topological index

can be considered as a special case of a Sombor type index. Das et al. [3]

found some relations on the Somber index with the first and second Za-

greb indices. The authors presented several lower and upper bounds on

the Sombor index of graphs building on some useful graph parameters such

as deleting and adding edges to graph, maximum and minimum degree of

vertices, and etc.

Cruz et al. [1] obtained the Sombor index of (connected) chemical

graphs, chemical trees (with n vertices), and hexagonal systems (with h

hexagons) as natural representations of benzenoid hydrocarbons. Deng et
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al. [4] investigated the chemical importance of the Sombor index. There

is shown that this index is more effective in predicting physico-chemical

properties with high accuracy compared to often used indices. They also

obtained a sharp upper bound on the (reduced) Sombor index among all

molecular trees with fixed orders, and characterized those molecular trees

achieving the extremal value. Kulli and Gutman [8] proposed (reduced,

modified) Sombor index of a molecular graph and computed exact formu-

las for certain chemical important structures such as silicate, chain silicate,

oxide, and graphene networks. Redžepović [16] examined chemical appli-

cability of Sombor indices and more precisely analyzed their predictive and

discriminative potentials. He illustrated that Sombor type index showed

good predictive potential. Li et al. [10] characterized the extremal graphs

with respect to the Sombor index among all the n-order trees with di-

ameter 3 and solved the corresponding extremal problem to determine the

largest and the second largest Sombor indices of n-vertex trees with a given

diameter greater than 4.

Kulli in [9] studied the certain Sombor indices and their corresponding

polynomials of regular and complete bipartite graphs for line and subdivi-

sion graphs. Milovanović et al. [14] determined upper and lower bounds on

the Sombor indices and their relationship with other degree-based indices.

The authors also proved two inequalities of the Nordhaus-Gaddum type

for the Sombor index.

Unicyclic graphs as one of the great classes can exhibit various chemical

structures as well. Cruz et al. [2] attained minimal and maximal values of

the Sombor index over unicyclic and bicyclic graphs. Réti et al. [17] derived

some bounds on the Sombor index and proved that the cycle graphs Cn

have the minimum Sombor index among all connected unicyclic graphs

of a fixed order n ≥ 4, and showed that the maximum Sombor index is a

tool to characterize the classes of all connected unicyclic, bicyclic, tricyclic,

tetracyclic, and pentacyclic graphs of a fixed order. Liu in [12] determined

the maximum Sombor indices for unicyclic graphs with given diameter

which is inspired by the extremal problem of trees with some parameters

such as pendent vertices, diameter, matching number, segment number

and branching number.
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The topological indices as numerical molecular descriptors associated

with the structure formulas for measuring molecular similarity or dissim-

ilarity in structure-property and structure-activity relationship studies.

Mathematical properties of these descriptors have been studied extensively.

The Randić index of graphs is one of the most successful molecular descrip-

tors, proposed by the chemist Randić [15] in 1975. Li and Shi in [11] proved

two conjectures on the Randić index with relations to the diameter and the

average distance of connected (molecular) graphs. Song and Pan in [18]

obtained sharp lower bounds of Randić index of unicyclic graphs of a fixed

order and diameter. Liu [13] found some relations between the harmonic

index as a closely related variant of the Randić index and diameter of

graphs. Jerline and Michaelraj in [7] solved the conjecture of Liu [13] in

2013. They presented a better bounds of the ratio of the harmonic index

to the diameter on unicyclic graphs. Zhong [19] determined the minimum

harmonic index for unicyclic graphs with given diameter and characterized

the corresponding extremal graphs.

Now, in this paper we will attain the minimum Sombor index among

all unicyclic graphs with a fixed diameter D ≥ 2. We use the following

Lemma in the proof of Theorems 1 and 2. In this Lemma, we remove

one of the paths connected to a pendent vertex of G such that the desired

graph G′ is a subgraph of G, where its diameter is equal to diameter of G

and the number of its pendent vertices is one less than G.

Lemma 1. Let G be a unicyclic graph and suppose U be a diametral path.

If G has a pendent vertex such that v /∈ V (U), then there exists a unicyclic

graph G′ ⊂ G, where v /∈ V (G
′
), D(G) = D(G

′
) and SO(G) > SO(G

′
).

Proof. Let U be a diametral path of G and let v ∈ V (G) be a pendent

vertex such that v /∈ V (U). Assume that u is the nearest vertex to v with

du ̸= 2. Consider G
′ ⊂ G, the graph obtained from G by removing the

connecting path u to v. Let x be the neighbor of u over the connecting

path u to v (if the path has only one edge, then x = v). It is obvious that

G
′
is a unicyclic graph and D(G

′
) = D(G). Then we have

SO(G)−SO(G
′
) ≥

√
d2u + 1+

∑
y∈Nu\{x}

(
√
d2u + d2y−

√
(du − 1)2 + d2y) > 0,
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which implies that SO(G) > SO(G
′
).

Lemma 2. [17] Let G be a connected unicyclic graph with n ≥ 4 vertices,

then SO(G) ≥ SO(Cn) = n
√
8.

By Lemma 2, in this paper we will consider the unicyclic graphs with

at least one pendent vertex.

2 Main results

In this section, we will present a lower bound on the Sombor index of the

unicyclic graph with its diameter at least 3.

Theorem 1. Let G be a unicyclic graph with n vertices and the diameter

D such that D ≥ 3 and n ≥ D + 2. Then,

SO(G) ≥ SO(U1) = (n− 4)
√
8 + 3

√
13 +

√
5,

where U1 is the graph obtained from connected one path with 2D − n + 1

edges to one vertex of the graph C2n−2D−1.

Proof. Since G has at least one pendent vertex, therefore we consider the

following three cases.

Case1: G has exactly one pendent vertex.

The graph G contains the path P with m ≥ 1 edges and the cycle Cl with

l ≥ 3. Then Cl and P have a common vertex of degree 3 in G. Thus,

SO(G) = SO(Cl) + SO(P ). (1)

First let m ≥ 2 and l ≥ 4. The path P has one (1, 2)-edge, one (2, 3)-edge

and m− 2 edges of d-coordinate (2, 2), it follows that

SO(P ) = (m− 2)
√
8 +

√
13 +

√
5, (2)

on the other hand, the cycle Cl has l − 2 edges of d-coordinate (2, 2) and

two (2, 3)-edegs, hence

SO(Cl) = (l − 2)
√
8 + 2

√
13. (3)
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By substituting (2) and (3) in the formula (1) we deduce that

SO(G) = (m+ l − 4)
√
8 + 3

√
13 +

√
5.

Since n = l+m, here we have SO(G) ≥ (n−4)
√
8+3

√
13+

√
5 ≥ SO(U1).

If m = 1 and l ≥ 4, then n = l + 1 and SO(P ) =
√
10. Therefore,

SO(G) = (l− 2)
√
8 + 2

√
13 +

√
10 ≥ (n− 3)

√
8 + 2

√
13 +

√
10 ≥ SO(U1).

When l = 3 and m ≥ 2, then n = m + 1 and the Sombor index has the

minimum bound, SO(G) = (n− 4)
√
8 + 3

√
13 +

√
5 = SO(U1).

Case2: The graph G has exactly two pendent vertices.

In this case, G contains two paths P and P
′
such that they have m1 ≥ 1

and m2 ≥ 1 edges, respectively. Also there exists the cycle Cl with l ≥ 3.

We can suppose that Cl and P have a common vertex and P
′
is connected

either to one of the vertices of Cl or to an interior vertex of P .

Subcase 2-1: When P ∩ P
′
= ∅.

Then we have SO(G) = SO(Cl) + SO(P ) + SO(P
′
). First let l ≥ 4 and

m1,m2 ≥ 2. Thus, any path has mi−2 edges of d-coordinate (2, 2) for i =

1, 2, one (1, 2)-edge, and one (2, 3)-edge. It implies the following equalities

SO(P ) = (m1−2)
√
8+

√
13+

√
5, and SO(P

′
) = (m2−2)

√
8+

√
13+

√
5.

Consider P and P
′
are connected to non-adjacent vertices of Cl, therefore

the cycle Cl contains four (2, 3)-edges and l−4 edges of d-coordinate (2, 2).

We obtain

SO(Cl) = (l − 4)
√
8 + 4

√
13, (4)

and if P and P
′
are connected to adjacent vertices of Cl, then the cycle Cl

has two (2, 3)-edges, one (3, 3)-edge and l− 3 edges of d-coordinate (2, 2).

Hence the following is satisfied

SO(Cl) = (l − 3)
√
8 + 2

√
13 +

√
18. (5)

Since n = l+m1 +m2 and the relation (4) is greater than (5), we deduce
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the following inequalities

SO(G) ≥ (l +m1 +m2 − 7)
√
8 + 4

√
13 + 2

√
5 +

√
18

≥ (n− 7)
√
8 + 4

√
13 + 2

√
5 +

√
18 ≥ (n− 4)

√
8 + 3

√
13 +

√
5.

If l ≥ 4 and m1 = 1, m2 ≥ 2, then n = l +m2 + 1 and SO(P ) =
√
10 and

also SO(P
′
) = (m2 − 2)

√
8 +

√
13 +

√
5. We have

SO(G) ≥ (l +m2 − 5)
√
8 + 3

√
13 +

√
18 +

√
10 +

√
5

≥ (n− 6)
√
8 + 3

√
13 +

√
18 +

√
10 +

√
5

≥ (n− 4)
√
8 + 3

√
13 +

√
5,

and if l ≥ 4 andm1 = m2 = 1, then n = l+2 and SO(P )+SO(P
′
) = 2

√
10.

We conclude that

SO(G) ≥ (l − 3)
√
8 + 2

√
13 + 2

√
10 +

√
18

≥ (n− 5)
√
8 + 2

√
13 + 2

√
10 +

√
18 ≥ (n− 4)

√
8 + 3

√
13 +

√
5.

When l = 3 and m1,m2 ≥ 2, then n = m1 + m2 + 3 and SO(Cl) =

2
√
13 +

√
18. It obtains that

SO(G) = (m1 +m2 − 4)
√
8 + 4

√
13 +

√
18 + 2

√
5

= (n− 7)
√
8 + 4

√
13 +

√
18 + 2

√
5 ≥ (n− 4)

√
8 + 3

√
13 +

√
5.

If l = 3 and m1 = m2 = 1, then D = 3, n = 5. We have

SO(G) = 2
√
13+2

√
10+

√
18 >

√
8+3

√
13+

√
5 = (n−4)

√
8+3

√
13+

√
5.

Finally, when l = 3 and m1 = 1, m2 ≥ 2, then n = m2 + 4. Therefore it

is proved that

SO(G) ≥ (m2 − 2)
√
8 +

√
5 +

√
10 + 3

√
13 +

√
18

= (n− 6)
√
8 + 3

√
13 +

√
5 ≥ (n− 4)

√
8 + 3

√
13 +

√
5.

Subcase 2-2: Assume that P ∩ P
′ ̸= ∅ and there exists a diametral
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path U containing both pendent vertices of the graph G.

In this case, U is a subset of P ∪ P
′
. If both paths are connected to

a vertex of Cl, then one of the interior vertices of U , say u, is of degree 4

in G and whenever path P
′
attached to one of the interior vertices of P ,

then one of the interior vertices of U , say u, is of degree 3 in G.

If u is not connected to a pendent vertex of U , then following in-

equalities hold SO(U) ≥ (D − 4)
√
8 + 2

√
5 + 2

√
13 or SO(U) ≥

(D − 4)
√
8 + 2

√
5 + 2

√
20.

Therefore we can consider the smaller value for the lower bound on the

Sombor index of G such that

SO(U) ≥ (D − 4)
√
8 + 2

√
5 + 2

√
13. (6)

Let u be the neighbor of a pendent vertex of U , thus it obtains

SO(U) ≥ (D − 3)
√
8 +

√
5 +

√
17 +

√
20. (7)

Note that in this case, we have D ≥ 4. Thus the relation (6) is smaller

than (7) and we deduce that SO(U) ≥ (D − 4)
√
8 + 2

√
5 + 2

√
13. Also

the graph G contains the cycle Cl which has a vertex of degree 3 or 4.

Therefore, we have the following inequalities SO(Cl) ≥ (l − 2)
√
8 + 2

√
13

or SO(Cl) ≥ (l − 2)
√
8 + 2

√
20 > (l − 2)

√
8 + 2

√
13. As a result, since

n = l +D, we have

SO(G) ≥ SO(Cl) + SO(U) ≥ (D + l − 6)
√
8 + 4

√
13 + 2

√
5

= (n− 6)
√
8 + 4

√
13 + 2

√
5 ≥ SO(U1).

Subcase 2-3: When P ∩ P
′ ̸= ∅ and there exists a diametral path U

containing exactly one pendent vertex of the graph G.

Because one pendent vertex of G is not in U , by Lemma 1, there is a

unicyclic graph G
′ ⊂ G containing exactly one pendent vertex of U such

that D(G) = D(G
′
) and SO(G) > SO(G

′
). According to the Case 1, it

implies that SO(G
′
) ≥ SO(U1).

Case3: The graph G has at least three pendent vertices.

Suppose that U be a diametral path of G. Obviously, this path contains
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at most two pendent vertices of G. Since G has m ≥ 3 pendent vertices,

thus at least m − 2 pendent vertices are not in U . By Lemma 1, there is

a unicyclic graph G
′ ⊂ G containing only the pendent vertices of U such

that D(G) = D(G
′
) and SO(G) > SO(G

′
). With the same argument of

the Case1, we obtain again that SO(G
′
) ≥ SO(U1).

Theorem 2. Let G be a unicyclic graph with the diameter D ≥ 3 and

n ≥ 2D. Then, SO(G) ≥ SO(U2) = (n − 3)
√
8 + 2

√
13 +

√
10, where U2

is the graph obtained from connected one pendent vertex to one vertex of

C2D−1.

Proof. If G has exactly one pendent vertex, then n = 2D, thus G ∼= U2

and the claim is proven. Consider G has exactly two pendent vertices, so

n = 2D or n = 2D + 1. If n = 2D, then there is a diametral path U such

that this path contains only one pendent vertex of G. By Lemma 1, there

is a unicyclic graph G
′ ⊂ G containing only the pendent vertex of U such

that D(G) = D(G
′
) and SO(G) > SO(G

′
). Therefore we have

SO(G) > SO(G
′
) ≥ SO(U2) = (n− 3)

√
8 + 2

√
13 +

√
10.

If n = 2D + 1, then G is the graph obtained from connected two pendent

vertices to C2D−1, hence if both pendent vertices are connected to one

vertex of G, then

SO(G) = (2D − 3)
√
8 + 2

√
20 + 2

√
17 = (n− 4)

√
8 + 2

√
20 + 2

√
17

≥ (n− 3)
√
8 + 2

√
13 +

√
10 = SO(U2),

and if pendent vertices are connected to two vertices of G, we deduce the

following SO(G) = (2D − 4)
√
8 + 2

√
13 + 2

√
10 +

√
18 or SO(G) =

(2D − 5)
√
8 + 4

√
13 + 2

√
10.

Therefore,

SO(G) ≥ (2D − 4)
√
8 + 2

√
13 + 2

√
10 +

√
18

= (n− 5)
√
8 + 2

√
13 + 2

√
10 +

√
18

≥ (n− 3)
√
8 + 2

√
13 +

√
10 = SO(U2).
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Otherwise, G has at least three pendent vertices and at most two pendent

vertices are in the diametral path U . By Lemma 1, there exists a unicyclic

graph G
′ ⊂ G containing only the pendent vertices of U such that D(G) =

D(G
′
) and SO(G) > SO(G

′
). It obtains again that SO(G) > SO(G

′
) ≥

SO(U2).

Theorem 3. Let G be a unicyclic graph with the diameter D = 2, then

SO(G) ≥ 2D
√
8.

Proof. The unicyclic graphs G with the diameter D = 2, are either the

cycle C4 with the Sombor index SO(G) = 4
√
8, or the cycle C5 with the

Sombor index SO(G) = 5
√
8, and or a graph obtained from the cycle C3

by connecting at least one pendent vertex to one vertex of C3.

Let V (C3) = {x1, x2, x3}, and y1, y2, . . . , yk are pendent vertices con-

nected to x1, then x2x1y1 is a diametral path in G. By Lemma 1, there is

a unicyclic graph G
′ ⊂ G containing only the pendent vertex y1 such that

D(G) = D(G
′
) and SO(G) > SO(G

′
). It holds SO(G

′
) =

√
8+2

√
13+

√
5.

Hence we prove that SO(G) ≥ 4
√
8.

In [5], Gutman defined the reduced Sombor index of a graph G, replac-

ing dv by dv − 1 for all v ∈ V (G). Infact, the reduced Sombor index is

the distances of isolated edegs with d-coordinate (1, 1) and d-points of the

graph G which given as SOred(G) =
∑

uv∈E(G)

√
(du − 1)2 + (dv − 1)2.

We have the similar result for the reduced Sombor index.

Theorem 4. Let G be a unicyclic graph with n vertices and the diameter

D such that D ≥ 3 and n ≥ D + 2. Then,

SOred(G) ≥ SOred(U1) = (n− 4)
√
2 + 3

√
5 + 1.

Moreover, if D = 2, then SOred(G) ≥ 2D
√
2. Furthermore, if D ≥ 3 and

n ≥ 2D, we have SOred(G) ≥ SOred(U2) = (n− 3)
√
2 + 2

√
5 + 2.

Proof. The proof is done with the same argument of the perivous theorems.
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3 An application

One of the applications of topological indices is devoted to the study of

some properties of chemical structures such as physical properties, chem-

ical reactivity, or biological activity. Some samples of chemical unicyclic

graphs are corresponding graphs of cyclic hydrocarbons such as the graph

of 1-etyle-3-metylecyclopentane with the Sombor index SO(G) = 5
√
13 +√

10 +
√
5 +

√
8, the graph of methylcyclopentane with the Sombor index

SO(G) = 3
√
8+2

√
13+

√
10, the graph of Benzene with the Sombor index

SO(G) = 6
√
8 and so on.

In this paper, we present minimum bounds on Sombor index of the

unicyclic graphs with fixed diameter. These results could provide further

information to show the advantages and limitations of topological type in-

dices and related descriptors in Quantitative Structure-Activity Relation-

ship (QSAR) or Quantitative Structure-Property Relationship (QSPR)

studies for chemical (unicyclic) graphs and molecular structures.
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[14] I. Milovanović, E. Milovanović and M. Matejić, On some mathemat-
ical properties of Sombor indices, Bull. Int. Math. Virtual Inst. 11
(2021) 341–353.
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