Trees with Maximum Vertex–Degree–Based Topological Indices

Wei Gao

Department of Mathematics, Pennsylvania State University at Abington, Abington, PA, 19001, USA

wvg5121@psu.edu

(Received November 26, 2021)

Abstract

Let G be a graph with vertex set $V(G) = \{v_1, v_2, \ldots, v_n\}$ and edge set E(G), and $d(v_i)$ be the degree of the vertex v_i . The definition of a vertex-degree-based topological index of G is as follows

 $\mathcal{T}_f = \mathcal{T}_f(G) = \sum_{v_i v_j \in E(G)} f(d(v_i), d(v_j)),$

where f(x, y) > 0 is a symmetric real function with x > 0 and y > 0.

In this paper, we find the extremal trees with the maximum vertex-degree-based topological index \mathcal{T}_f among all trees of order n when f(x, y) is increasing and concave up in respect to variable x (to variable y too, of course).

1 Introduction

All graphs considered in this paper are finite, undirected and simple. Let G be a graph with vertex set $V(G) = \{v_1, v_2, \ldots, v_n\}$ and edge set E(G). For $i = 1, 2, \ldots, n$, denote by $d_G(v_i)$ (or $d(v_i)$ for short) the degree of the vertex v_i in G, and $N(v_i)$ the set of neighbors of vertex v_i in G. We use S_n and P_n to denote the star and the path of order n, respectively, and $S_{d,n-d}$ to denote the double star of order n with the degrees of two centers being dand n - d, where $2 \le d \le \lfloor \frac{n}{2} \rfloor$. In the mathematical and chemical literature, several dozens of vertex-degree-based graph invariants (usually referred to as vertex-degree-based (VDB for short) topological indices) have been introduced and extensively studied [1,2].

The definition of a VDB topological index of G is as follows

$$\mathcal{T}_f = \mathcal{T}_f(G) = \sum_{v_i v_j \in E(G)} f(d(v_i), d(v_j)), \tag{1}$$

where f(x, y) > 0 is a symmetric real function with x > 0 and y > 0. Gutman [4] collected some important and well-studied VDB topological indices (see Table 1).

f(x, y)	Name
x + y	First Zagreb index
xy	Second Zagreb index
$(x+y)^2$	First hyper-Zagreb index
$(xy)^2$	Second hyper-Zagreb index
$x^{-3} + y^{-3}$	Modified first Zagreb index
x-y	Albertson index
$\frac{1}{2}\left(\frac{x}{y}+\frac{y}{x}\right)$	Extended index
$(x - y)^2$	Sigma index
$\frac{1}{\sqrt{xy}}$	Randić index
\sqrt{xy}	Reciprocal Randić index
$\frac{1}{\sqrt{x+y}}$	Sum-connectivity index
$\sqrt{x+y}$	Reciprocal sum-connectivity index
$\frac{2}{x+y}$	Harmonic index
$\sqrt{\frac{x+y-2}{xy}}$	ABC index
$\left(\frac{xy}{x+y-2}\right)^3$	Augmented Zagreb index
$x^{2} + y^{2'}$	Forgotten index
$x^{-2} + y^{-2}$	Inverse degree
$\frac{2\sqrt{xy}}{x+y}$	Geometric-arithmetic index
$\frac{x+y}{2\sqrt{xy}}$	Arithmetic-geometric index
$\frac{xy}{x+y}$	Inverse sum index
x+y = x + y + xy	First Gourava index
(x+y)xy	Second Gourava index
$(x+y+xy)^2$	First hyper-Gourava index
$((x+y)xy)^2$	Second hyper-Gourava index
$\frac{1}{\sqrt{x+y+xy}}$	Sum-connectivity Gourava index
$\sqrt{(x+y)xy}$	Product-connectivity Gourava index
$\sqrt{x^2 + y^2}$	Sombor index

Table 1. The main VDB topological indices of the form (1)

In 2019, Rada introduced the following exponential VDB topological index of a graph [3]. Given a VDB topological index \mathcal{T}_f defined as in (1), the exponential VDB topological index, denoted by $e^{\mathcal{T}_f}$, is defined as

$$e^{\mathcal{T}_f} = e^{\mathcal{T}_f}(G) = \sum_{v_i v_j \in E(G)} e^{f(d(v_i), d(v_j))}.$$
 (2)

A very interesting question is to find the extremal values of a VDB topological index \mathcal{T}_f or exponential VDB topological index $e^{\mathcal{T}_f}$ for some special graph classes. There are many papers to study the above problem among all trees of order n ([4]-[19]). Some of the known results are shown in Tables 2 and 3 below.

f(x,y)	Name	Notation	Min	Max	Ref.
x + y	First Zagreb index	\mathcal{M}_1	P_n	S_n	[6]
xy	Second Zagreb index	\mathcal{M}_2	P_n	S_n	[7]
$\frac{1}{\sqrt{xy}}$	Randić index	χ	S_n	P_n	[8]
$\frac{2}{x+y}$	Harmonic index	\mathcal{H}	S_n	P_n	[9]
$\frac{2\sqrt{xy}}{x+y}$	Geometric-arithmetic index	\mathcal{GA}	S_n	P_n	[10]
$\frac{x+y}{2\sqrt{xy}}$	Arithmetic-geometric index	\mathcal{AG}	P_n	S_n	[11]
$\frac{1}{\sqrt{x+y}}$	Sum-connectivity index	SC	S_n	P_n	[12]
$\sqrt{\frac{x+y-2}{xy}}$	Atom-bond-connectivity index	ABC		S_n	[13]
$(\tfrac{xy}{x+y-2})^3$	Augmented Zagreb index	\mathcal{AZ}	S_n	$S_{\lfloor \frac{n-2}{2} \rfloor, \lceil \frac{n-2}{2} \rceil}$	[14, 15]
$(x+y)^2$	First hyper-Zagreb index	\mathcal{HM}	P_n	S_n	[16]
$\frac{xy}{x+y}$	Inverse sum index	ISI	S_n		[17]
$\sqrt{x^2 + y^2}$	Sombor index	<i>SO</i>	P_n	S_n	[4]

Table 2. Extremal trees for some indices \mathcal{T}_f .

In this paper, we find the extremal trees with the maximum VDB topological index \mathcal{T}_f among all trees of order n when f(x, y) is increasing and concave up in respect to variable x (to variable y too, of course). Here, we say that f(x, y) is increasing and concave up (decreasing and concave down) in respect to variable x if $\frac{\partial f(x,y)}{\partial x} > 0$ and $\frac{\partial^2 f(x,y)}{\partial x^2} \ge 0$ $(\frac{\partial f(x,y)}{\partial x} < 0 \text{ and } \frac{\partial^2 f(x,y)}{\partial x^2} \le 0).$

$e^{f(x,y)}$	Name	Notation	Min	Max	Ref.
e^{x+y}	Exponential first Zagreb index	$e^{\mathcal{M}_1}$	P_n	S_n	[5]
e^{xy}	Exponential second Zagreb index	$e^{\mathcal{M}_2}$	P_n	$S_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}$	[5, 18]
$e^{\frac{1}{\sqrt{xy}}}$	Exponential Randić index	e^{χ}	S_n	P_n	[5, 19]
$e^{\frac{2}{x+y}}$	Exponential Harmonic index	$e^{\mathcal{H}}$	S_n	P_n	[5]
$e^{\frac{2\sqrt{xy}}{x+y}}$	Exponential Geometric-arithmetic index	$e^{\mathcal{GA}}$	S_n	P_n	[5]
$e^{\frac{1}{\sqrt{x+y}}}$	Exponential Sum-connectivity index	$e^{\mathcal{SC}}$	S_n	P_n	[5]
$e^{\sqrt{\frac{x+y-2}{xy}}}$	Exponential Atom-bond-connectivity index	$e^{\mathcal{ABC}}$		S_n	[5]
$e^{\left(\frac{xy}{x+y-2}\right)^3}$	Exponential Augmented Zagreb index	$e^{\mathcal{A}\mathcal{Z}}$	S_n		[5]

Table 3. Extremal trees for some indices $e^{\mathcal{T}_f}$.

2 Main results

Firstly, we introduce a transformation which is very useful to prove our results.

Let T be a tree of order n, $\{uw, wv\} \subseteq E(T)$, and $d_T(v) \ge d_T(u) \ge 2$. Denote $N_1 = N(u) \setminus \{w\}$, $N_2 = N(w) \setminus \{u, v\}$, and $N_3 = N(v) \setminus \{w\}$. Let T' be a tree obtained from T by replacing the edge ux by a new edge vx for each vertex $x \in N_1$. We call that T' is obtained from T by **the edge-moving transformation on vertices** u and v (as depicted in Fig. 1).

Figure 1. The edge-moving transformation on vertices u and v.

Lemma 1 Let T' be obtained from T by the edge-moving transformation on vertices u and v (as depicted in Fig. 1). Let f(x, y) > 0 be a symmetric real function with x > 0and y > 0.

(1) If f(x,y) is increasing and concave up in respect to x, then $\mathcal{T}_f(T) < \mathcal{T}_f(T')$.

(2) If f(x,y) is decreasing and concave down in respect to x, then $\mathcal{T}_f(T) > \mathcal{T}_f(T')$.

Proof. Let T' be obtained from T by the edge-moving transformation on vertices u and v as depicted in Fig. 1. Denote $N_1 = \{u_1, \ldots, u_s\}$ and $N_3 = \{v_1, \ldots, v_t\}$. Then $d_T(u) = s + 1$, $d_T(v) = t + 1$, and

$$\begin{split} \mathcal{T}_{f}(T) &- \mathcal{T}_{f}(T') \\ &= \sum_{i=1}^{s} f(d_{T}(u), d_{T}(u_{i})) + \sum_{j=1}^{t} f(d_{T}(v), d_{T}(v_{j})) + f(d_{T}(u), d_{T}(w)) + f(d_{T}(v), d_{T}(w)) \\ &- \sum_{i=1}^{s} f(d_{T}(v) + s, d_{T}(u_{i})) - \sum_{j=1}^{t} f(d_{T}(v) + s, d_{T}(v_{j})) - f(1, d_{T}(w)) \\ &- f(d_{T}(v) + s, d_{T}(w)) \\ &= \sum_{i=1}^{s} f(s + 1, d_{T}(u_{i})) + \sum_{j=1}^{t} f(t + 1, d_{T}(v_{j})) + f(s + 1, d_{T}(w)) + f(t + 1, d_{T}(w)) \\ &- \sum_{i=1}^{s} f(s + t + 1, d_{T}(u_{i})) - \sum_{j=1}^{t} f(s + t + 1, d_{T}(v_{j})) - f(1, d_{T}(w)) \\ &- f(s + t + 1, d_{T}(w)) \\ &= \sum_{i=1}^{s} (f(s + 1, d_{T}(u_{i})) - f(s + t + 1, d_{T}(u_{i}))) \\ &+ \sum_{j=1}^{t} (f(t + 1, d_{T}(v_{j})) - f(s + t + 1, d_{T}(v_{j}))) \\ &+ f(s + 1, d_{T}(w)) + f(t + 1, d_{T}(w)) - f(1, d_{T}(w)) - f(s + t + 1, d_{T}(w)). \end{split}$$

Note that $t \ge s \ge 1$. Then for $i = 1, \ldots, s$,

$$f(s+1, d_T(u_i)) - f(s+t+1, d_T(u_i)) \begin{cases} < 0, & \text{if } f(x, y) \text{ is increasing in respect to } x, \\ > 0, & \text{if } f(x, y) \text{ is decreasing in respect to } x, \end{cases}$$

for j = 1, ..., t,

 $f(t+1, d_T(v_j)) - f(s+t+1, d_T(v_j)) \begin{cases} < 0, & \text{if } f(x, y) \text{ is increasing in respect to } x, \\ > 0, & \text{if } f(x, y) \text{ is decreasing in respect to } x, \end{cases}$

and

$$\begin{aligned} f(s+1, d_T(w)) + f(t+1, d_T(w)) - f(1, d_T(w)) - f(s+t+1, d_T(w)) \\ \begin{cases} \leq 0, & \text{if } f(x, y) \text{ is concave up in respect to } x, \\ \geq 0, & \text{if } f(x, y) \text{ is concave down in respect to } x. \end{cases} \end{aligned}$$

Then the lemma follows.

Theorem 2 Assume that f(x, y) > 0 is a symmetric real function with x > 0 and y > 0. If f(x, y) is increasing and concave up in respect to x (to variable y too, of course), then among all trees of order n, the extremal tree with the maximum index \mathcal{T}_f is the star S_n or a double star $S_{d,n-d}$ with $2 \le d \le \lfloor \frac{n}{2} \rfloor$.

Proof. Let T be a tree of order n, and p(T) be the number of pendant vertices of T. Then $2 \le p(T) \le n - 1$. If p(T) = n - 1 or n - 2, then T is the star S_n or a double star $S_{d,n-d}$. So we now may assume $p(T) \le n - 3$.

Let T_0 be the graph obtained from T by deleting all pendant vertices of T. Then T_0 is a subtree of T with n - p(T) vertices, where $n - p(T) \ge 3$, and $d_T(v) \ge 2$ for all $v \in V(T_0)$. Take two adjacent edges in T_0 , such as uw and wv. In this case, $\{uw, wv\} \subseteq E(T)$, $d_T(v) \ge 2$ and $d_T(u) \ge 2$. Without losing its generality, assume that $d_T(v) \ge d_T(u)$. By the edge-moving transformation on vertices u and v for T (see Fig. 1), we obtain a new tree of order n, denoted by T', with p(T') = p(T) + 1. By Lemma 1, $\mathcal{T}_f(T) < \mathcal{T}_f(T')$.

If $p(T') \neq n-2$ (that is, $T' \neq S_{d,n-d}$), then performs above process for T' again. Finally, the process will end up with a double star $S_{d,n-d}$. By Lemma 1, the theorem holds.

Remark 3 The following indices satisfy the conditions of Theorem 2. Then for each of those VDB topological indices, the extremal tree with the maximum index \mathcal{T}_f is the star S_n or a double star $S_{d,n-d}$ with $2 \leq d \leq \lfloor \frac{n}{2} \rfloor$ among all trees of order n (the VDB topological indices considered here are shown in Table 1.

- First Zagreb index: f(x, y) = x + y;
- Second Zagreb index: f(x, y) = xy;
- First hyper-Zagreb index: $f(x, y) = (x + y)^2$;
- Second hyper-Zagreb index: $f(x, y) = (xy)^2$;
- Forgotten index: $f(x, y) = x^2 + y^2$;
- First Gourava index: f(x, y) = x + y + xy;
- Second Gourava index: f(x, y) = (x + y)xy;
- First hyper-Gourava index: $f(x, y) = (x + y + xy)^2$;

- Second hyper-Gourava index: $f(x, y) = ((x + y)xy)^2$;
- Sombor index: $f(x, y) = \sqrt{x^2 + y^2}$.

Thus for each of these indices, in order to determine the extremal tree with the maximum index, we only need to compare the values of $\mathcal{T}_f(S_n)$ and $\mathcal{T}_f(S_{d,n-d})$ with $2 \leq d \leq \lfloor \frac{n}{2} \rfloor$. In the next section, we will do it.

Corollary 4 If f(x, y) satisfies the conditions of Theorem 2, then among all trees of order n, the extremal tree with the maximum index $e^{\mathcal{T}_f}$ is S_n or a double star $S_{d,n-d}$ with $2 \leq d \leq \lfloor \frac{n}{2} \rfloor$.

Proof. Note that if f(x, y) satisfies the conditions of Theorem 2, then $e^{f(x,y)}$ satisfies the conditions of Theorem 2, too. So the result holds.

Theorem 5 Let f(x,y) > 0 be a symmetric polynomial with nonnegative coefficients. Then among all trees of order n, the extremal tree with the maximum index \mathcal{T}_f is S_n or a double star $S_{d,n-d}$ with $2 \leq d \leq \lfloor \frac{n}{2} \rfloor$, and the extremal tree with the maximum index $e^{\mathcal{T}_f}$ is also S_n or a double star $S_{d,n-d}$ with $2 \leq d \leq \lfloor \frac{n}{2} \rfloor$.

Proof. It is easy to see that f(x, y) satisfies the conditions of Theorem 2. By Theorem 2 and Corollary 4, the theorem is clear.

Theorem 6 Assume that f(x, y) > 0 is a symmetric real function with x > 0 and y > 0. If $\frac{\partial f}{\partial x} > 0$ and $\left(\frac{\partial f}{\partial x}\right)^2 + \frac{\partial^2 f}{\partial x^2} \ge 0$, then among all trees of order n, the extremal tree with the maximum index e^{T_f} is the star S_n or a double star $S_{d,n-d}$ with $2 \le d \le \lfloor \frac{n}{2} \rfloor$.

Proof. Note that

$$\frac{\partial}{\partial x}e^{f(x,y)} = e^{f(x,y)}\frac{\partial f(x,y)}{\partial x},$$
$$\frac{\partial^2}{\partial x^2}e^{f(x,y)} = e^{f(x,y)}\left(\frac{\partial f(x,y)}{\partial x}\right)^2 + e^{f(x,y)}\frac{\partial^2 f(x,y)}{\partial x^2}.$$

If $\frac{\partial f}{\partial x} > 0$ and $\left(\frac{\partial f}{\partial x}\right)^2 + \frac{\partial^2 f}{\partial x^2} \ge 0$, then $e^{f(x,y)}$ satisfies the conditions of Theorem 2. By Theorem 2, the result holds.

Remark 7 The following VDB topological indices don't satisfy the conditions of Theorem 2, but they satisfy the conditions of Theorem 6.

- Reciprocal Randić index: $f(x, y) = \sqrt{xy}$;
- Reciprocal sum-connectivity index: $f(x,y) = \sqrt{x+y}$;
- Product-connectivity Gourava index: $f(x, y) = \sqrt{(x+y)xy}$.

Thus for each of those indices, the extremal tree with the maximum index $e^{\mathcal{T}_f}$ is the star S_n or a double star $S_{d,n-d}$ with $2 \leq d \leq \lfloor \frac{n}{2} \rfloor$ among all trees of order n.

Lemma 8 (Geometric–Arithmetic inequality) Let $x_i > 0$ for i = 1, 2, ..., n. Then

$$\frac{x_1 + \dots + x_n}{n} \ge \sqrt[n]{x_1 x_2 \dots x_n},$$

the equality is attained if and only if $x_1 = x_2 = \cdots = x_n$.

Lemma 9 Let $2 \leq d \leq \lfloor \frac{n}{2} \rfloor$. If $\mathcal{T}_f(S_{d,n-d}) > \mathcal{T}_f(S_n)$, then $e^{\mathcal{T}_f}(S_{d,n-d}) > e^{\mathcal{T}_f}(S_n)$.

Proof. Note that

$$\begin{split} \mathcal{T}_f(S_n) &= (n-1)f(n-1,1), \\ \mathcal{T}_f(S_{d,n-d}) &= (d-1)f(d,1) + (n-d-1)f(n-d,1) + f(d,n-d) \\ e^{\mathcal{T}_f}(S_n) &= (n-1)e^{f(n-1,1)}, \\ e^{\mathcal{T}_f}(S_{d,n-d}) &= (d-1)e^{f(d,1)} + (n-d-1)e^{f(n-d,1)} + e^{f(d,n-d)}. \end{split}$$

If $\mathcal{T}_f(S_{d,n-d}) > \mathcal{T}_f(S_n)$, then

$$(d-1)f(d,1) + (n-d-1)f(n-d,1) + f(d,n-d) > (n-1)f(n-1,1).$$

By Lemma 8,

$$e^{\mathcal{T}_{f}}(S_{d,n-d}) = (d-1)e^{f(d,1)} + (n-d-1)e^{f(n-d,1)} + e^{f(d,n-d)}$$

$$\geq (n-1)^{n-1}\sqrt{(e^{f(d,1)})^{d-1} \cdot (e^{f(n-d,1)})^{n-d-1} \cdot e^{f(d,n-d)}}$$

$$= (n-1)^{n-1}\sqrt{e^{(d-1)f(d,1)+(n-d-1)f(n-d,1)+f(d,n-d)}}$$

$$= (n-1)e^{\frac{(d-1)f(d,1)+(n-d-1)f(n-d,1)+f(d,n-d)}{n-1}}$$

$$> (n-1)e^{\frac{(n-1)f(n-1,1)}{n-1}}$$

$$= (n-1)e^{f(n-1,1)} = e^{\mathcal{T}_{f}}(S_{n}).$$

The lemma holds.

Theorem 10 Assume that f(x, y) satisfies the conditions of Theorem 2. Among all trees of order n, if the double star $S_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}$ is the unique extremal tree with maximum index \mathcal{T}_f , then the double star $S_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}$ is also the unique extremal tree with maximum index $e^{\mathcal{T}_f}$.

Proof. By Theorem 2, Corollary 4, and Lemma 9, the theorem is clear.

It is worth noting that for a VDB topological index \mathcal{T}_f which satisfies the conditions of Theorem 2, even if the star S_n is the extremal tree with maximum index \mathcal{T}_f among all trees of order n, it may not be the extremal tree with maximum index $e^{\mathcal{T}_f}$ among all trees of order n.

For example, we consider the Second Zagreb index, that is, f(x, y) = xy. This index satisfies the conditions of Theorem 2. From [7, 18] (see Tables 2 and 3), we know that among all trees of order n, the star S_n is the unique extremal tree with maximum Second Zagreb index, and the double star $S_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}$ is the unique extremal tree with maximum Exponential second Zagreb index.

Theorem 11 Let $\alpha > 0$. Assume that g(x) > 0 is increasing and concave up in respect to x > 0, and $f(x, y) = (g(x) + g(y))^{\alpha}$. Then among all trees of order n, the star S_n is the extremal tree with the maximum index \mathcal{T}_f , and S_n is also the extremal tree with the maximum index $e^{\mathcal{T}_f}$.

Proof. Let T be a tree of order n. For any edge $e = v_i v_j \in E(T)$, without loss of generality, assume that $d(v_i) \leq d(v_j)$. Since $d(v_i) + d(v_j) \leq n$, we have that $1 \leq d(v_i) \leq \lfloor \frac{n}{2} \rfloor$, and $d(v_j) \leq n - d(v_i)$. Note that g(x) is increasing and concave up in respect to x. Then

$$f(d(v_i), d(v_j)) = (g(d(v_i)) + g(d(v_j)))^{\alpha}$$

$$\leq (g(d(v_i)) + g(n - d(v_i)))^{\alpha}$$

$$\leq (g(1) + g(n - 1))^{\alpha} = f(1, n - 1)$$

Thus

$$\mathcal{T}_{f}(T) = \sum_{v_{i}v_{j} \in E(G)} f(d(v_{i}), d(v_{j})) \le (n-1)f(1, n-1) = \mathcal{T}_{f}(S_{n}),$$

and

$$e^{\mathcal{T}_f}(T) = \sum_{v_i v_j \in E(G)} e^{f(d(v_i), d(v_j))} \le (n-1)e^{f(1, n-1)} = e^{\mathcal{T}_f}(S_n)$$

The theorem follows.

At the end of this section, we give the following result for the minimum index \mathcal{T}_f . Its proof is similar to the proof of Theorem 2, and we omit it.

Theorem 12 Assume that f(x, y) > 0 is a symmetric real function with x > 0 and y > 0. If f(x, y) is decreasing and concave down in respect to variable x (to variable y too, of course), then the extremal tree with the minimum index \mathcal{T}_f is S_n or a double star $S_{d,n-d}$ with $2 \le d \le \lfloor \frac{n}{2} \rfloor$ among all trees of order n.

It is worth pointing out that we haven't found any well-known VDB topological index T_f that satisfies Theorem 12.

3 Application

In this section, we will determine the extremal tree with the maximum index \mathcal{T}_f among all trees of order n for each VDB topological index \mathcal{T}_f in Remark 3. Note that for $n \leq 3$, there is only one tree of order n. So we assume $n \geq 4$.

Please keep in mind that

$$\mathcal{T}_f(S_{d,n-d}) - \mathcal{T}_f(S_n)$$

=(d-1)f(d,1) + (n-d-1)f(n-d,1) + f(d,n-d) - (n-1)f(n-1,1).

(1) First Zagreb index: f(x, y) = x + y. Note that for $2 \le d \le \lfloor \frac{n}{2} \rfloor$, 1 + d < n. So

$$\mathcal{T}_f(S_{d,n-d}) - \mathcal{T}_f(S_n)$$

=(d-1)(d+1) + (n-d-1)(n-d+1) + n - n(n-1)
= -2(d-1)(n-d-1) < 0.

Then by Theorem 2, the unique tree with maximum First Zagreb index is the star S_n (this result is also shown in [6]).

(2) Second Zagreb index: f(x, y) = xy. Note that for $2 \le d \le \lfloor \frac{n}{2} \rfloor$, 1 + d < n. So

$$\mathcal{T}_f(S_{d,n-d}) - \mathcal{T}_f(S_n)$$

=(d-1)d + (n - d - 1)(n - d) + d(n - d) - (n - 1)^2
= - (d - 1)(n - d - 1) < 0.

Then by Theorem 2, the unique tree with maximum Second Zagreb index is the star S_n (this result is also shown in [7]).

(3) First hyper-Zagreb index: $f(x,y) = (x+y)^2$. Note that for $2 \le d \le \lfloor \frac{n}{2} \rfloor$, 1 + d < n. So

$$\mathcal{T}_f(S_{d,n-d}) - \mathcal{T}_f(S_n)$$

= $(d-1)(d+1)^2 + (n-d-1)(n-d+1)^2 + (d+n-d)^2 - (n-1)n^2$
= $-(d-1)(n-d-1)(3n+2) < 0.$

Then by Theorem 2, the unique tree with maximum First hyper-Zagreb index is the star S_n (this result is also shown in [16]).

(4) Second hyper-Zagreb index:
$$f(x, y) = (xy)^2$$
.
Note that

$$\mathcal{T}_f(S_n) = (n-1)f(n-1,1) = (n-1)^3,$$

$$\mathcal{T}_f(S_{d,n-d}) = (d-1)d^2 + (n-d-1)(n-d)^2 + d^2(n-d)^2,$$

$$\mathcal{T}_f(S_{d,n-d}) - \mathcal{T}_f(S_n) = d^4 - 2nd^3 + (n^2 + 3n - 2)d^2 - (3n^2 - 2n)d + 2n^2 - 3n + 1.$$

Case 1. $n \leq 7$.

Then d = 2 or 3. If d = 2, then $\mathcal{T}_f(S_{d,n-d}) - \mathcal{T}_f(S_n) = 9 - 3n < 0$. If d = 3, then $n \ge 2d = 6$, and $\mathcal{T}_f(S_{d,n-d}) - \mathcal{T}_f(S_n) = 2((n-6)^2 - 4) < 0$. So in this case, $\mathcal{T}_f(S_{d,n-d}) < \mathcal{T}_f(S_n)$.

Case 2. $n \ge 8$.

Note that for $n \ge 8$, and $2 \le d \le \lfloor \frac{n}{2} \rfloor$,

$$\begin{aligned} \frac{\partial \mathcal{T}_f(S_{d,n-d})}{\partial d} &= 4d^3 - 6nd^2 + 2(n^2 + 3n - 2)d - 3n^2 + 2n, \\ \frac{\partial^2 \mathcal{T}_f(S_{d,n-d})}{\partial d^2} &= 12d^2 - 12nd + 2n^2 + 6n - 4, \\ \frac{\partial^3 \mathcal{T}_f(S_{d,n-d})}{\partial d^3} &= 24d - 12n \le 0. \end{aligned}$$

Thus $\frac{\partial \mathcal{T}_f(S_{d,n-d})}{\partial d}$ is concave down in respect to d, and

$$\begin{aligned} \frac{\partial \mathcal{T}_f(S_{d,n-d})}{\partial d} &\geq \min\left\{\frac{\partial \mathcal{T}_f(S_{d,n-d})}{\partial d}\Big|_{d=2}, \frac{\partial \mathcal{T}_f(S_{d,n-d})}{\partial d}\Big|_{d=\lfloor\frac{n}{2}\rfloor}\right\} \\ &= \begin{cases} \min\{n^2 - 10n + 24, 0\} \ge 0, & \text{if } n \text{ is even}, \\ \min\{n^2 - 10n + 24, \frac{1}{2}(n^2 - 6n + 3)\} > 0, & \text{if } n \text{ is odd.} \end{cases} \end{aligned}$$

So $\mathcal{T}_f(S_{d,n-d})$ is increasing in respect to d. Then

$$\max_{2\leq d\leq \lfloor \frac{n}{2} \rfloor} \mathcal{T}_f(S_{d,n-d}) = \mathcal{T}_f(S_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil})$$

$$= \begin{cases} \mathcal{T}_f(S_{d,n-d}) \Big|_{d=\frac{n}{2}} = \frac{1}{16}n^2 \left(n^2 + 4n - 8\right), & \text{if } n \text{ is even,} \\ \mathcal{T}_f(S_{d,n-d}) \Big|_{d=\frac{n-1}{2}} = \frac{1}{16} \left(n^4 + 4n^3 - 10n^2 + 12n - 7\right), & \text{if } n \text{ is odd.} \end{cases}$$

If $n \ge 8$ is even, then

$$\mathcal{T}_f(S_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}) - \mathcal{T}_f(S_n) = \frac{1}{16}n^2 \left(n^2 + 4n - 8\right) - (n - 1)^3$$
$$= \frac{1}{16}(n - 2)^2 \left(n^2 - 8n + 4\right) > 0.$$

If $n \ge 9$ is odd, then

$$\mathcal{T}_f(S_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}) - \mathcal{T}_f(S_n) = \frac{1}{16} \left(n^4 + 4n^3 - 10n^2 + 12n - 7 \right) - (n-1)^3$$
$$= \frac{1}{16} (n-1)(n-3)(n^2 - 8n + 3) > 0.$$

It implies that for $n \ge 8$,

$$\max_{2 \le d \le \lfloor \frac{n}{2} \rfloor} \mathcal{T}_f(S_{d,n-d}) = \mathcal{T}_f(S_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}) > \mathcal{T}_f(S_n).$$

Based on the above discussions, by Theorem 2, we have that if $n \leq 7$, then the unique extremal tree with maximum Second hyper-Zagreb index is the star S_n ; and if $n \geq 8$, then the unique extremal tree with maximum Second hyper-Zagreb index is the double star $S_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}$.

(5) Forgotten index: $f(x, y) = x^2 + y^2$. Note that for $2 \le d \le \lfloor \frac{n}{2} \rfloor$, 1 + d < n. So

$$\mathcal{T}_f(S_{d,n-d}) - \mathcal{T}_f(S_n)$$

= $(d-1)(d^2+1) + (n-d-1)((n-d)^2+1) + (d^2+(n-d)^2) - (n-1)((n-1)^2+1)$
= $-3n(d-1)(n-d-1) < 0.$

Then by Theorem 2, the unique tree with maximum Forgotten index is the star S_n .

(6) First Gourava index: f(x, y) = x + y + xy. Note that for $2 \le d \le \lfloor \frac{n}{2} \rfloor$, 1 + d < n. So

$$\begin{aligned} \mathcal{T}_f(S_{d,n-d}) &- \mathcal{T}_f(S_n) \\ &= (d-1)(2d+1) + (n-d-1)(2n-2d+1) + n + d(n-d) - (n-1)(2n-1) \\ &= -3(d-1)(n-d-1) < 0. \end{aligned}$$

Then by Theorem 2, the unique tree with maximum First Gourava index is the star S_n .

(7) Second Gourava index: f(x,y) = (x+y)xy. Note that for $2 \le d \le \lfloor \frac{n}{2} \rfloor$, 1+d < n. So

$$\begin{aligned} \mathcal{T}_f(S_{d,n-d}) &- \mathcal{T}_f(S_n) \\ &= (d-1)(d+1)d + (n-d-1)(n-d+1)(n-d) + nd(n-d) - (n-1)n(n-1) \\ &= -2n(d-1)(n-d-1) < 0. \end{aligned}$$

Then by Theorem 2, the unique tree with maximum Second Gourava index is the star S_n .

(8) First hyper-Gourava index: $f(x, y) = (x + y + xy)^2$. Note that

$$\begin{split} \mathcal{T}_f(S_n) &= (n-1)f(n-1,1) = (n-1)(2n-1)^2, \\ \mathcal{T}_f(S_{d,n-d}) &= (d-1)(2d+1)^2 + (n-d-1)(2n-2d+1)^2 + (n+d(n-d))^2 \\ &= d^4 - 2nd^3 + (n^2+10n)d^2 - 10n^2d + 4n^3 + n^2 - 3n - 2, \\ \frac{\partial \mathcal{T}_f(S_{d,n-d})}{\partial d} &= 4d^3 - 6nd^2 + 2(n^2+10n)d - 10n^2. \end{split}$$

If $n \leq 20$, noting that

$$\frac{\partial^2 \mathcal{T}_f(S_{d,n-d})}{\partial d^2} = 12d^2 - 12nd + 2(n^2 + 10n) = 3(n-2d)^2 - n(n-20) \ge 0,$$

then $\mathcal{T}_f(S_{d,n-d})$ is concave up in respect to d, and so

$$\max_{2 \le d \le \lfloor \frac{n}{2} \rfloor} \mathcal{T}_f(S_{d,n-d}) = \max \left\{ \mathcal{T}_f(S_{d,n-d}) \Big|_{d=2}, \mathcal{T}_f(S_{d,n-d}) \Big|_{d=\lfloor \frac{n}{2} \rfloor} \right\}.$$

If $n \geq 21$, noting that

$$\frac{\partial^3 \mathcal{T}_f(S_{d,n-d})}{\partial d^3} = 12(2d-n) \le 0,$$

then $\frac{\partial T_f(S_{d,n-d})}{\partial d}$ is concave down in respect to d. Note that

$$\begin{split} & \frac{\partial \mathcal{T}_{f}(S_{d,n-d})}{\partial d} \Big|_{d=2} = -6n^{2} + 16n + 32 < 0, \\ & \frac{\partial \mathcal{T}_{f}(S_{d,n-d})}{\partial d} \Big|_{d=\lfloor \frac{n}{2} \rfloor - 1} = \begin{cases} n^{2} - 20n - 4 > 0, & \text{if } n \text{ is even} \\ \frac{3}{2} \left(n^{2} - 20n - 9\right) > 0, & \text{if } n \text{ is odd}, \end{cases} \\ & \frac{\partial \mathcal{T}_{f}(S_{d,n-d})}{\partial d} \Big|_{d=\lfloor \frac{n}{2} \rfloor} = \begin{cases} 0, & \text{if } n \text{ is even}, \\ \frac{1}{2} \left(n^{2} - 20n - 1\right) > 0, & \text{if } n \text{ is odd}. \end{cases} \end{split}$$

548

It implies that there is $2 < d_0 < \lfloor \frac{n}{2} \rfloor$ such that $\frac{\partial \mathcal{T}_f(S_{d,n-d})}{\partial d} \leq 0$ for $2 \leq d \leq d_0$, and $\frac{\partial \mathcal{T}_f(S_{d,n-d})}{\partial d} \geq 0$ for $d_0 \leq d \leq \lfloor \frac{n}{2} \rfloor$. Thus

$$\max_{2 \le d \le \lfloor \frac{n}{2} \rfloor} \mathcal{T}_f(S_{d,n-d}) = \max \left\{ \mathcal{T}_f(S_{d,n-d}) \Big|_{d=2}, \mathcal{T}_f(S_{d,n-d}) \Big|_{d=\lfloor \frac{n}{2} \rfloor} \right\}.$$

Note that

$$\begin{split} \mathcal{T}_{f}(S_{d,n-d})\Big|_{d=2} &= 4n^{3} - 15n^{2} + 21n + 14, \\ \mathcal{T}_{f}(S_{d,n-d})\Big|_{d=\lfloor\frac{n}{2}\rfloor} &= \begin{cases} \frac{1}{16}\left(n^{4} + 24n^{3} + 16n^{2} - 48n - 32\right), & \text{if } n \text{ is even} \\ \frac{1}{16}\left(n^{4} + 24n^{3} + 14n^{2} - 8n - 31\right), & \text{if } n \text{ is odd.} \end{cases} \end{split}$$

Then

$$\mathcal{T}_{f}(S_{d,n-d})\Big|_{d=2} - \mathcal{T}_{f}(S_{d,n-d})\Big|_{d=\lfloor\frac{n}{2}\rfloor} = \begin{cases} \left. -\frac{1}{16}(n-4)^{2}(n^{2}-32n-16), & \text{if } n \text{ is even}, \\ -\frac{1}{16}(n-5)(n-3)(n^{2}-32n-17), & \text{if } n \text{ is odd}. \end{cases}$$

It implies that if $n \leq 32$ then $\mathcal{T}_f(S_{d,n-d})\Big|_{d=2} > \mathcal{T}_f(S_{d,n-d})\Big|_{d=\lfloor\frac{n}{2}\rfloor}$, and if $n \geq 33$ then $\mathcal{T}_f(S_{d,n-d})\Big|_{d=2} < \mathcal{T}_f(S_{d,n-d})\Big|_{d=\lfloor\frac{n}{2}\rfloor}$. So

$$\max_{2 \le d \le \lfloor \frac{n}{2} \rfloor} \mathcal{T}_f(S_{d,n-d}) = \max \left\{ \mathcal{T}_f(S_{d,n-d}) \Big|_{d=2}, \mathcal{T}_f(S_{d,n-d}) \Big|_{d=\lfloor \frac{n}{2} \rfloor} \right\}$$
$$= \left\{ \begin{array}{c} \mathcal{T}_f(S_{d,n-d}) \Big|_{d=2}, & \text{if } n \le 32, \\ \mathcal{T}_f(S_{d,n-d}) \Big|_{d=\lfloor \frac{n}{2} \rfloor}, & \text{if } n \ge 33. \end{array} \right.$$

Note that

$$\begin{aligned} \mathcal{T}_f(S_{d,n-d})\Big|_{d=2} &- \mathcal{T}_f(S_n) = -(n-3)(7n+5),\\ \mathcal{T}_f(S_{d,n-d})\Big|_{d=\lfloor \frac{n}{2} \rfloor} &- \mathcal{T}_f(S_n) = \begin{cases} \frac{1}{16}(n-2)^2(n^2-36n-4), & \text{if } n \text{ is even,} \\ \frac{1}{16}(n-3)(n-1)(n^2-36n-5), & \text{if } n \text{ is odd.} \end{cases} \end{aligned}$$

It implies that $\mathcal{T}_f(S_{d,n-d})\Big|_{d=2} < \mathcal{T}_f(S_n)$, if $n \leq 36$ then $\mathcal{T}_f(S_{d,n-d})\Big|_{d=\lfloor\frac{n}{2}\rfloor} < \mathcal{T}_f(S_n)$; and if $n \geq 37$ then $\mathcal{T}_f(S_{d,n-d})\Big|_{d=\lfloor\frac{n}{2}\rfloor} > \mathcal{T}_f(S_n)$.

Based on the above discussions, by Theorem 2, we get that if $n \leq 36$, then the unique extremal tree with maximum First hyper-Gourava index is the star S_n ; if $n \geq 37$, then the unique extremal tree with maximum First hyper-Gourava index is the double star $S_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}$.

(9) Second hyper-Gourava index: $f(x, y) = ((x + y)xy)^2$;

Note that

$$\begin{aligned} \mathcal{T}_f(S_n) &= (n-1)f(n-1,1) = (n-1)(n(n-1))^2, \\ \mathcal{T}_f(S_{d,n-d}) &= (d-1)((d+1)d)^2 + (n-d-1)((n-d+1)(n-d))^2 + (nd(n-d))^2 \\ &= (n^2+5n+2) d^4 - 2 (n^3+5n^2+2n) d^3 + (n^4+10n^3+6n^2-3n-2) d^2 \\ &- (5n^4+4n^3-3n^2-2n) d + n^5 + n^4 - n^3 - n^2 \end{aligned}$$

Case 1. $n \leq 7$.

In this case, $2 \leq d \leq 3$. Note that

$$\mathcal{T}_f(S_{d,n-d}) - \mathcal{T}_f(S_n) = \begin{cases} -2(n^4 - 6n^3 + 17n^2 - 20n - 12) < 0, & \text{if } d = 2, \, 4 \le n \le 7, \\ -2(n^4 - 10n^3 + 63n^2 - 138n - 72) < 0, & \text{if } d = 3, \, 6 \le n \le 7. \end{cases}$$

Then $\mathcal{T}_f(S_{d,n-d}) \le \mathcal{T}_f(S_n)$

Then $\mathcal{T}_f(S_{d,n-d}) < \mathcal{T}_f(S_n)$.

Case 2. $n \ge 8$. Note that

$$\frac{\partial \mathcal{T}_f(S_{d,n-d})}{\partial d} = 4 \left(n^2 + 5n + 2\right) d^3 - 6n \left(n^2 + 5n + 2\right) d^2 + 2 \left(n^4 + 10n^3 + 6n^2 - 3n - 2\right) d^2 + 2 \left(n^4 + 10n^3 + 6n^2 + 3n - 2\right) d^2 + 2 \left(n^4 + 10n^3 + 6n^2 + 3n - 2\right) d^2 + 2 \left(n^4 + 10n^3 + 6n^2 + 3n - 2\right) d^2 + 2 \left(n^4 + 10n^3 + 6n^2 + 3n - 2\right) d^2 + 2 \left(n^4 + 10n^3 + 6n^2 + 3n - 2\right) d^2 + 2 \left(n^4 + 10n^3 + 6n^2 + 3n - 2\right) d^2 + 2 \left(n^4 + 10n^3 + 6n^2 + 3n - 2\right) d^2 + 2 \left(n^4 + 10n^3 + 6n^2 + 3n - 2\right) d^2 + 2 \left(n^4 + 10n^3 + 6n^2 + 3n - 2\right) d^2 + 2 \left(n^4 + 10n^3 + 6n^2 + 3n - 2\right) d^2 + 2 \left(n^4 + 10n^3 + 6n^2 + 3n - 2\right) d^2 + 2 \left(n^4 + 10n^3 + 6n^2 + 3n - 2\right) d^2 + 2 \left(n^4 + 10n^3 + 6n^2 + 3n - 2\right) d^2 + 2 \left(n^4 + 10n^3 + 6n^2 + 3n - 2\right) d^2 + 2 \left(n^4 + 10n^3 + 3n^2 + 3n - 2\right) d^2 + 2 \left(n^4 + 10n^3 + 3n^2 + 3n + 2\right) d^2 + 2 \left(n^4 + 10n^3 + 3n^2 + 3n + 2\right) d^2 + 2 \left$$

$$\frac{\partial^{2} T_{f}(S_{d,n-d})}{\partial d^{2}} = 12 \left(n^{2} + 5n + 2\right) d^{2} - 12n \left(n^{2} + 5n + 2\right) d + 2 \left(n^{4} + 10n^{3} + 6n^{2} - 3n - 2\right),$$

$$\frac{\partial^{3} T_{f}(S_{d,n-d})}{\partial d^{3}} = 24 \left(n^{2} + 5n + 2\right) d - 12n \left(n^{2} + 5n + 2\right) = -12(n^{2} + 5n + 2)(n - 2d) \le 0.$$

Then
$$\frac{\partial \mathcal{T}_f(S_{d,n-d})}{\partial d}$$
 is concave down in respect to d. Note that

$$\begin{split} \frac{\partial \mathcal{T}_f(S_{d,n-d})}{\partial d}\Big|_{d=2} &= -n^4 + 12n^3 - 61n^2 + 102n + 56 < 0,\\ \frac{\partial \mathcal{T}_f(S_{d,n-d})}{\partial d}\Big|_{d=\lfloor\frac{n}{2}\rfloor - 1} = \begin{cases} n^4 - 5n^3 - 10n^2 - 14n - 4 > 0, & \text{if } n \text{ is even},\\ \frac{3}{2}\left(n^4 - 5n^3 - 15n^2 - 39n - 14\right) > 0, & \text{if } n \text{ is odd}, \end{cases}\\ \frac{\partial \mathcal{T}_f(S_{d,n-d})}{\partial d}\Big|_{d=\lfloor\frac{n}{2}\rfloor} = \begin{cases} 0, & \text{if } n \text{ is even},\\ \frac{1}{2}\left(n^4 - 5n^3 - 7n^2 + n + 2\right) > 0, & \text{if } n \text{ is odd}. \end{cases}$$

It implies that there is $2 < d_0 < \lfloor \frac{n}{2} \rfloor$ such that $\frac{\partial \mathcal{T}_f(S_{d,n-d})}{\partial d} \leq 0$ for $2 \leq d \leq d_0$, and $\frac{\partial \mathcal{T}_f(S_{d,n-d})}{\partial d} \geq 0$ for $d_0 \leq d \leq \lfloor \frac{n}{2} \rfloor$. That is, $\mathcal{T}_f(S_{d,n-d})$ is concave up in respect to d. Thus

$$\max_{2 \le d \le \lfloor \frac{n}{2} \rfloor} \mathcal{T}_f(S_{d,n-d}) = \max \left\{ \left. \mathcal{T}_f(S_{d,n-d}) \right|_{d=2}, \left. \mathcal{T}_f(S_{d,n-d}) \right|_{d=\lfloor \frac{n}{2} \rfloor} \right\},$$

where

$$\begin{split} \mathcal{T}_f(S_{d,n-d})\Big|_{d=2} &= n^5 - 5n^4 + 15n^3 - 35n^2 + 40n + 24, \\ \mathcal{T}_f(S_{d,n-d})\Big|_{d=\lfloor\frac{n}{2}\rfloor} &= \begin{cases} \left.\frac{1}{16}\left(n^6 + n^5 + 2n^4 - 4n^3 - 8n^2\right), & \text{if n is even,} \\ \left.\frac{1}{16}\left(n^6 + n^5 + 6n^3 + 5n^2 - 7n - 6\right), & \text{if n is odd.} \end{cases} \end{split}$$

Since

$$\begin{split} \mathcal{T}_{f}(S_{d,n-d})\Big|_{d=2} &- \mathcal{T}_{f}(S_{d,n-d})\Big|_{d=\lfloor\frac{n}{2}\rfloor} \\ &= \begin{cases} -\frac{1}{16}(n-4)^{2}\left((n-7)n^{3}+2(n-6)(5n+4)+24\right)<0, & \text{if } n \text{ is even}, \\ -\frac{1}{16}(n-3)(n-5)\left((n-7)n^{3}+3(n-7)(3n+2)+16\right)<0, & \text{if } n \text{ is odd}, \end{cases} \end{split}$$

we have

$$\max_{2 \le d \le \lfloor \frac{n}{2} \rfloor} \mathcal{T}_f(S_{d,n-d}) = \max \left\{ \left. \mathcal{T}_f(S_{d,n-d}) \right|_{d=2}, \left. \mathcal{T}_f(S_{d,n-d}) \right|_{d=\lfloor \frac{n}{2} \rfloor} \right\} = \left. \mathcal{T}_f(S_{d,n-d}) \right|_{d=\lfloor \frac{n}{2} \rfloor}.$$

Note that

$$\begin{split} \mathcal{T}_{f}(S_{d,n-d})\Big|_{d=\lfloor\frac{n}{2}\rfloor} & -\mathcal{T}_{f}(S_{n}) \\ = \begin{cases} \left. \frac{1}{16}n^{2}(n-2)^{2}(n^{2}-11n+2), & \text{if } n \text{ is even}, \\ \left. \frac{1}{16}(n-3)(n-1)\left(n\left(n^{3}-11n^{2}+n-5\right)-2\right), & \text{if } n \text{ is odd.} \end{cases} \end{split}$$

It is easy to see that if $8 \le n \le 10$, then $\mathcal{T}_f(S_{d,n-d})\Big|_{d=\lfloor\frac{n}{2}\rfloor} - \mathcal{T}_f(S_n) < 0$; and if $n \ge 11$, then $\mathcal{T}_f(S_{d,n-d})\Big|_{d=\lfloor\frac{n}{2}\rfloor} - \mathcal{T}_f(S_n) > 0$.

Based on the above discussions, by Theorem 2, we get that if $n \leq 10$, then the unique extremal tree with maximum Second hyper-Gourava index is the star S_n ; and if $n \geq 11$, then the unique extremal tree with maximum Second hyper-Gourava index is the double star $S_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}$.

$$\begin{aligned} &(10) \text{ Sombor index: } f(x,y) = \sqrt{x^2 + y^2}. \\ &\text{Note that for } 2 \leq d \leq \lfloor \frac{n}{2} \rfloor, \ 1 + d < n. \text{ So } d^2 + (n-d)^2 < (n-1)^2 + 1 \text{ and} \\ &\mathcal{T}_f(S_{d,n-d}) - \mathcal{T}_f(S_n) \\ &= (d-1)\sqrt{d^2 + 1} + (n-d-1)\sqrt{(n-d)^2 + 1} + \sqrt{d^2 + (n-d)^2} - (n-1)\sqrt{(n-1)^2 + 1} \\ &< (d-n)\sqrt{(n-1)^2 + 1} + (n-d-1)\sqrt{(n-d)^2 + d^2} + \sqrt{d^2 + (n-d)^2} \\ &= (n-d)(\sqrt{d^2 + (n-d)^2} - \sqrt{(n-1)^2 + 1}) < 0. \end{aligned}$$

Then by Theorem 2, the unique tree with maximum Sombor index is the star S_n (this result is also shown in [4]).

References

- V. R. Kulli, Graph indices, in: M. Pal, S. Samanta, A. Pal (Eds.), Handbook of Research of Advanced Applications of Graph Theory in Modern Society, Global, Hershey, 2020, pp. 66–91.
- [2] R. Todeschini, V. Consonni, Molecular Descriptors for Chemoinformatics, Wiley-VCH, Weinheim, 2009.
- [3] J. Rada, Exponential vertex-degree-based topological indices and discrimination, MATCH Commun. Math. Comput. Chem. 82 (2019) 29–41.
- [4] I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem. 86 (2021) 11–16.
- [5] R. Cruz, J. Rada, The path and the star as extremal values of vertex-degree-based topological indices among trees, MATCH Commun. Math. Comput. Chem. 82 (2019) 715–732.
- [6] I. Gutman, K. C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004) 83–92.
- [7] K. C. Das, I. Gutman, Some properties of the second Zagreb index, MATCH Commun. Math. Comput. Chem. 52 (2004) 103–112.
- [8] B. Bollobás, Erdös, Graphs with extremal weights, Ars Combin. 50 (1998) 225–233.
- [9] L. Zhong, The harmonic index for graphs, Appl. Math. Lett. 25 (2012) 561–566.
- [10] D. Vukičcević, B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem. 46 (2009) 1369– 1376.
- [11] S. Vujošević, G. Popivoda, Ż. Kovijanić Vukićević, B. Furtula, R. Škrekovski, Arithmetic–geometric index and its relations with geometric–arithmetic index, Appl. Math. Comput. 391 (2021) #125706.
- [12] B. Zhou, N. Trinajstić, On a novel connectivity index, J. Math. Chem. 46 (2009) 1252–1270.
- [13] B. Furtula, A. Graovac, D. Vukičević, Atom-bond connectivity index of trees, *Discr. Appl. Math.* 157 (2009) 2828–2835.
- [14] B. Furtula, A. Graovac, D. Vukičević, Augmented Zagreb index, J. Math. Chem. 48 (2010) 370–380.

- [15] W. Lin, D. Dimitrov, R. Škrekovski, Complete characterization of trees with maximal augmented Zagreb index, MATCH Commun. Math. Comput. Chem. 83 (2020) 167– 178.
- [16] W. Gao, M. K. Jamil, A. Javed, M. R. Farahani, S. Wang, J. B. Liu, Sharp bounds of the hyper–Zagreb index on acyclic, unicyclic, and bicyclic graphs, *Discr. Dyn. Nat. Soc.* (2017) #6079450.
- [17] J. Sedlar, D. Stevanović, A. Vasilyev, On the inverse sum indeg index, *Discr. Appl. Math.* 184 (2015) 202–212.
- [18] R. Cruz, J. Monsalve, J. Rada, The balanced double star has maximum exponential second Zagreb index, J. Comb. Optim. 41 (2021) 544–552.
- [19] R. Cruz, J. Monsalve, J. Rada, Trees with maximum exponential Randić index, Discr. Appl. Math. 283 (2020) 634–643.