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Abstract

Let G be a graph with vertex set V(G) = {v1,v2,...,v,} and edge set E(G),
and d(v;) be the degree of the vertex v;. The definition of a vertex-degree-based
topological index of G is as follows

Tr=THG) = Y fdv),d(v))),

v;0,€E(G)

where f(z,y) > 0 is a symmetric real function with > 0 and y > 0.

In this paper, we find the extremal trees with the maximum vertex-degree-based
topological index 7y among all trees of order n when f(z,y) is increasing and concave
up in respect to variable x (to variable y too, of course).

1 Introduction

All graphs considered in this paper are finite, undirected and simple. Let G be a graph
with vertex set V(G) = {v1, vq,...,v,} and edge set E(G). For i = 1,2,...,n, denote by
de(v;) (or d(v;) for short) the degree of the vertex v; in G, and N (v;) the set of neighbors of
vertex v; in G. We use S, and P, to denote the star and the path of order n, respectively,
and Sy ,—q to denote the double star of order n with the degrees of two centers being d

and n —d, where 2 < d < | §].
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In the mathematical and chemical literature, several dozens of vertex-degree-based
graph invariants (usually referred to as vertex-degree-based (VDB for short) topological
indices) have been introduced and extensively studied [1,2].

The definition of a VDB topological index of G is as follows

Tr=THG) = > fdw).dv)), (1)

vv; €E(G)

where f(z,y) > 0 is a symmetric real function with z > 0 and y > 0. Gutman [4] collected

some important and well-studied VDB topological indices (see Table 1).

Table 1. The main VDB topological indices of the form (1)

f(z,y) Name
T+y First Zagreb index
Ty Second Zagreb index
(x +y)? First hyper-Zagreb index
(2y)? Second hyper-Zagreb index
x4y 3 Modified first Zagreb index
|z —y| Albertson index
32 +Y) Extended index
(z—y)? Sigma index

1

Randi¢ index

V]

VY Reciprocal Randié¢ index
L Sum-connectivity index

Reciprocal sum-connectivity index
Harmonic index

Ve -ty
2
z+y
|2 ABC index

zy
<1~ fyy_2>3 Augmented Zagreb index
z? 4 y? Forgotten index

24 y? Inverse degree

i‘f? Geometric-arithmetic index
;\7% Arithmetic-geometric index
% Inverse sum index
r+y+ay First Gourava index

(x +y)zy Second Gourava index

(x+y+ay)® First hyper-Gourava index
((z +y)zy)?  Second hyper-Gourava index
\/ﬁ Sum-connectivity Gourava index

(z4+y)ry  Product-connectivity Gourava index

Vat+y? Sombor index
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In 2019, Rada introduced the following exponential VDB topological index of a graph
[3]. Given a VDB topological index 7 defined as in (1), the exponential VDB topological
index, denoted by €7/, is defined as
Tt =€T1(Q) = Z ef (d(vi).d(vy)) (2)
viv;€E(G)
A very interesting question is to find the extremal values of a VDB topological index
T; or exponential VDB topological index e’ for some special graph classes. There are
many papers to study the above problem among all trees of order n ( [4]- [19]). Some of
the known results are shown in Tables 2 and 3 below.

Table 2. Extremal trees for some indices 7.

f(z,y) Name Notation Min Max Ref.
T+y First Zagreb index My P, Sh (6]
Ty Second Zagreb index My P, S, [7]
\/% Randi¢ index X Sn P (8]
%ﬂ/ Harmonic index Sp P [9]
iﬁ Geometric-arithmetic index GA S, P, [10]
;\;’% Arithmetic-geometric index AG P, S (11]
Il — Sum-connectivity index SC Sy P, [12]
“’;’y_Z Atom-bond-connectivity index ABC Sn, [13]
(1+Tuy—2)2 Augmented Zagreb index AZ Sn SL%H"T”T [14,15]
(r+y)?  First hyper-Zagreb index HM P, S, [16]
% Inverse sum index 18T Sn [17]
Va2 +y%  Sombor index SO P, S, [4]

In this paper, we find the extremal trees with the maximum VDB topological index T
among all trees of order n when f(z,y) is increasing and concave up in respect to variable
x (to variable y too, of course). Here, we say that f(z,y) is increasing and concave up
(decreasing and concave down) in respect to variable z if W > 0 and % >0

(W <Oand% <0).
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Table 3. Extremal trees for some indices 7.

ef @) Name Notation Min Max Ref.
erty Exponential first Zagreb index M P, Sn [5]
ey Exponential second Zagreb index eM2 Py Sizyrey 5,18
1
evey Exponential Randi¢ index ex S, Py [5,19]
2
eTty Exponential Harmonic index et S P, [5]
b NG . . . L oA
ety Exponential Geometric-arithmetic index e Sn P, [5]
1
evVity Exponential Sum-connectivity index eS¢ S P, [5]
2ty—2
eV Exponential Atom-bond-connectivity index —eAB¢ Sn [5]
le=z)’ Exponential Augmented Zagreb index eAZ Sn 5]

2 Main results

Firstly, we introduce a transformation which is very useful to prove our results.

Let T be a tree of order n, {uw,wv} C E(T), and dr(v) > dr(u) > 2. Denote
Ny = N(u) \ {w}, N2 = N(w) \ {u,v}, and N3 = N(v) \ {w}. Let 7" be a tree obtained
from T by replacing the edge ux by a new edge vz for each vertex x € N;. We call that
T’ is obtained from T by the edge-moving transformation on vertices u and v (as

depicted in Fig. 1).

N5 Ny A
(ep) (e 9) (a9

Figure 1. The edge-moving transformation on vertices u and v.

Lemma 1 Let T" be obtained from T by the edge-moving transformation on vertices u
and v (as depicted in Fig. 1). Let f(z,y) > 0 be a symmetric real function with x > 0
and y > 0.

(1) If f(x,y) is increasing and concave up in respect to x, then Tp(T) < Tp(T").
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(2) If f(x,y) is decreasing and concave down in respect to x, then Tp(T) > T;(T").

Proof. Let T’ be obtained from T by the edge-moving transformation on vertices u and
v as depicted in Fig. 1. Denote Ny = {uy,...,us} and N3 = {vy,...,v}. Then dr(u) =
s+1,dr(v) =t+1, and

T (T) = TH(T")

= 2 F(dr(w), dr(w)) + 3 f(dr(v), dr(v) + f(dr(w), dr(w)) + f(dr(v), dr(w))

i=1
fo (dr(v) + s, dr(u)) Zf (dr(v) + s,dp(v;)) — f(1, dp(w))

-f (dT(v) + s, dr(w))

t

= 3+ L)) + X204 1))+ Fo + Ldr(w) + 10+ 1,5 (w)

—Zfs—kt—&-ldTul ZfS+t+1,dT(vj))_f(lvdT(w))
i=1 j=1

— f(s+t+1,dr(w))

—Z F(s+1,dr(w) — f(s +t + 1, dp(w)))

Z Ft+1,dr(v;)) — f(s +t+1,dr(v;)))

+f(s+ Ldr(w)) + f(t+1,dr(w)) = f(1,dr(w)) = f(s +t + 1, dp(w)).

Note that ¢ > s > 1. Then fori =1,...,s,

<0, if f(z,y) is increasing in respect to z,

fls+1,dp(u) — f(s +t+1,dr(w)) {

>0, if f(z,y) is decreasing in respect to z,

for j=1,...,¢,
<0, if f(x,y) is increasing in respect to z,

flt+1,dr(v;)) = f(s +t+1,dp(vy)) {

>0, if f(z,y) is decreasing in respect to z,

and
f(S + ]-7 dT(w)) + f(t + 17 dT(’UJ)) - f(lx dT(w)) - f(S +t+ 1) dT(w))
<0, if f(z,y) is concave up in respect to z,
>0, if f(x,y) is concave down in respect to .

Then the lemma follows. [ |
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Theorem 2 Assume that f(x,y) > 0 is a symmetric real function with x > 0 andy > 0.
If f(z,y) is increasing and concave up in respect to x (to variable y too, of course), then
among all trees of order n, the extremal tree with the mazimum index Ty is the star S,

or a double star Sqn—_q with 2 < d < %]

Proof. Let T be a tree of order n, and p(T) be the number of pendant vertices of T.
Then 2 < p(T) <n—1. If p(T) =n—1 or n —2, then T is the star S, or a double star
Sdn—d- S0 we now may assume p(7) <n — 3.

Let Tj be the graph obtained from T by deleting all pendant vertices of 7. Then Tj is a
subtree of T' with n — p(T') vertices, where n — p(T') > 3, and dr(v) > 2 for all v € V(Tj).
Take two adjacent edges in Tp, such as ww and wv. In this case, {uw,wv} C E(T),
dr(v) > 2 and dr(u) > 2. Without losing its generality, assume that dr(v) > dr(u). By
the edge-moving transformation on vertices u and v for T (see Fig. 1), we obtain a new
tree of order n, denoted by T, with p(T”) = p(T) + 1. By Lemma 1, T;(T) < T;(T").

If p(T") # n — 2 (that is, T" # Sg,—q), then performs above process for T again.
Finally, the process will end up with a double star S;,,—4. By Lemma 1, the theorem

holds. |

Remark 3 The following indices satisfy the conditions of Theorem 2. Then for each of
those VDB topological indices, the extremal tree with the mazimum index Ty is the star S,
or a double star Sg,_q with 2 < d < L%j among all trees of order n (the VDB topological

indices considered here are shown in Table 1.

o First Zagreb index: f(x,y) =z +y;

o Second Zagreb index: f(z,y) = zy;

o First hyper-Zagreb index: f(z,y) = (v +y)%;
o Second hyper-Zagreb index: f(x,y) = (zy)?;
o Forgotten index: f(z,y) = 2* + y*;

o First Gourava index: f(x,y) = +y + vy;
o Second Gourava indez: f(x,y) = (x + y)zy;

o First hyper-Gourava indez: f(z,y) = (z + y + xy)?;



541

o Second hyper-Gourava index: f(z,y) = ((z +y)zy)%;

o Sombor indez: f(z,y) = \/a?+ y2.

Thus for each of these indices, in order to determine the extremal tree with the maxi-
mum index, we only need to compare the values of Tr(Sn) and Tr(Sgn-a) with2 < d < |5].

In the next section, we will do it.

Corollary 4 If f(z,y) satisfies the conditions of Theorem 2, then among all trees of
order n, the extremal tree with the mazimum index €7f is S, or a double star San—d with

2<d< |z,

Proof. Note that if f(z,y) satisfies the conditions of Theorem 2, then e/(*¥) satisfies the
conditions of Theorem 2, too. So the result holds. |

Theorem 5 Let f(x,y) > 0 be a symmetric polynomial with nonnegative coefficients.
Then among all trees of order n, the extremal tree with the mazimum index Ty is S, or a
double star Sqpn_q with 2 < d < L%J, and the extremal tree with the mazimum index e7f

is also S, or a double star Sq,—q with 2 < d < L%J

Proof. Tt is easy to see that f(x,y) satisfies the conditions of Theorem 2. By Theorem 2

and Corollary 4, the theorem is clear. |

Theorem 6 Assume that f(z,y) > 0 is a symmetric real function with x > 0 andy > 0.

If g—i >0 and (%)2 + % > 0, then among all trees of order n, the extremal tree with the

mazimum index €7f is the star S, or a double star San-a with 2 <d < [%j

Proof. Note that
9 tew) _ i 21 (2:9)

Jz Ox

2
0 i) _ o) (af (”vy)> L ACY)
Ox

0x? 0x?
If g—£ > 0 and (%)2 + % > 0, then e/®¥ gatisfies the conditions of Theorem 2. By
Theorem 2, the result holds. | |

Remark 7 The following VDB topological indices don’t satisfy the conditions of Theorem
2, but they satisfy the conditions of Theorem 6.
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e Reciprocal Randié index: f(z,y) = /Ty;

e Reciprocal sum-connectivity indez: f(z,y) = /T + y;
o Product-connectivity Gourava index: f(x,y) = \/(z + y)zy.

Thus for each of those indices, the extremal tree with the maximum index €77 is the

star S, or a double star Sqn_q with 2 < d < |5] among all trees of order n.

Lemma 8 (Geometric-Arithmetic inequality) Let x; > 0 fori=1,2,...,n. Then

T+ -+ Ty
n

> V1T .. Ty,

the equality is attained if and only if 11 = x9 = -+ = x,,.

Lemma 9 Let 2 <d < |2]. If T¢(Sqn-a) > T;(Sn), then €77 (Sqn-a) > €7 (S,).
Proof. Note that

Ti(Sn) = (n = 1) f(n - 1,1),
T3 (San-a) = (=D f(d,1) + (n = d = 1)f(n - d, 1) + f(d,n — d),
T (S,) = (n — 1)e/ =11,

T (Sun—a) = (d— 1)/ 4+ (n — d — 1)/ (=40 4 eJldn=d),
If T7(Sup-a) > T7(S,), then
(d—=1)f(d1)+ (n—d—1)f(n—d,1)+ f(d,n—d) > (n—1)f(n—1,1).
By Lemma 8,

d—1)ef@D 1 (= § — 1)eS 1) 4 Jdn-a)

"*\'/(ef(d,l))d—l < (efn=d 1) yn—d=1 . ¢f(dn—d)

"V eld=1)f(d1)+(n—d—1) f(n—d,1)+f (d;n—d)

(d=1) f(d,1)+(n=d=1)f(n=d,1)+f(dn=d)

n—1

(n=1)f(n—1,1)
e n—1

Il
e~~~ o~~~
3
|
—
~— N N N N
5

(=1 — eTf(S,L).

The lemma holds. | |
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Theorem 10 Assume that f(x,y) satisfies the conditions of Theorem 2. Among all trees
of order n, if the double star S\n| (ny is the unique extremal tree with mazimum index Ty,

then the double star S|z |21 is also the unique extremal tree with mazimum index er.

Proof. By Theorem 2, Corollary 4, and Lemma 9, the theorem is clear. |

It is worth noting that for a VDB topological index 7; which satisfies the conditions
of Theorem 2, even if the star S, is the extremal tree with maximum index 7; among all
trees of order n, it may not be the extremal tree with maximum index ¢’/ among all trees
of order n.

For example, we consider the Second Zagreb index, that is, f(x,y) = xy. This index
satisfies the conditions of Theorem 2. From [7, 18] (see Tables 2 and 3), we know that
among all trees of order n, the star S, is the unique extremal tree with maximum Second
Zagreb index, and the double star SL%H%T is the unique extremal tree with maximum

Exponential second Zagreb index.

Theorem 11 Let a > 0. Assume that g(z) > 0 is increasing and concave up in respect
to x>0, and f(z,y) = (9(z) + g(y))*. Then among all trees of order n, the star S, is
the extremal tree with the mazimum index Ty, and S, is also the extremal tree with the

mazimum index €77 .

Proof. Let T be a tree of order n. For any edge e = vv; € E(T), without loss of
generality, assume that d(v;) < d(v;). Since d(v;) + d(v;) < n, we have that 1 < d(v;) <
|51, and d(v;) < n —d(v;). Note that g(x) is increasing and concave up in respect to .
Then

fd(vi), d(vy)) = (9(d(v:)) + g(d(v;)))*
(9(d(vi) + g(n — d(v3)))*
< (9() +g(n—1)" = f(1,n—1).

IN

Thus

THT) = Y fldw).d(v;) < (n=1)f(1,n = 1) = Tp(S),
viv;€E(G)
and
eTH(T) = Z /(@) d)) < (p — 1)1 = £T5(5,).
viv;€E(G)

The theorem follows. | |
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At the end of this section, we give the following result for the minimum index 7. Its

proof is similar to the proof of Theorem 2, and we omit it.

Theorem 12 Assume that f(z,y) > 0 is a symmetric real function with x > 0 and
y > 0. If f(z,y) is decreasing and concave down in respect to variable z (to variable y
too, of course), then the extremal tree with the minimum index Ty is S, or a double star

San—a with 2 < d < | 5] among all trees of order n.

It is worth pointing out that we haven’t found any well-known VDB topological index

T that satisfies Theorem 12.

3 Application

In this section, we will determine the extremal tree with the maximum index 7; among
all trees of order n for each VDB topological index 7y in Remark 3. Note that for n <3,
there is only one tree of order n. So we assume n > 4.

Please keep in mind that

Tf(sd,nfd)fﬁ(sn)
=(d-1f(d, 1)+ (n—d—1)f(n—d, 1)+ f(dyn—d) — (n—1)f(n—1,1).

(1) First Zagreb index: f(z,y) =z + y.
Note that for 2 <d <[], 1+d <n. So

Tf(Sd,nfd) 77}(Sn)
=(d-1)(d+1)+(n—d-1)n—-d+1)+n—n(n—1)
=—2(d-1)(n—d-1)<0.

Then by Theorem 2, the unique tree with maximum First Zagreb index is the star S,

(this result is also shown in [6]).
(2) Second Zagreb index: f(z,y) = zy.
Note that for 2 <d < [%], 1+d <n. So
Ti(San—a) = Tr(Sn)
=(d-1)d+(n—d—1)(n—d)+dn—d) —(n—1)>

=—(d-1)(n-d-1)<0.
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Then by Theorem 2, the unique tree with maximum Second Zagreb index is the star .S,
(this result is also shown in [7]).

(3) First hyper-Zagreb index: f(x,y) = (z + y)*.

Note that for 2 < d < |%],1+d <n. So

T5(San—a) = Ty(Sn)
=(d-D)d+1)*+n—d-1)n—d+1)*+(d+n—d)?— (n—1)n’
=—(d-1)(n—-d-1)Bn+2)<0.

Then by Theorem 2, the unique tree with maximum First hyper-Zagreb index is the star
Sy, (this result is also shown in [16]).

(4) Second hyper-Zagreb index: f(z,y) = (zy)2.
Note that

Ti(82) = (n=1)f(n—1,1) = (n = 1),
Ti(San-a) = (d— 1)+ (n —d — 1)(n — d)* + d*(n — d)?,
Ti(San—a) — T7(Sn) = d* — 2nd® + (n® + 3n — 2)d* — (3n® — 2n)d + 2n* — 3n + 1.

Case 1.n < 7.

Then d = 2 or 3. If d = 2, then T;(Sqn-a) — T5(Sn) = 9 —3n < 0. If d = 3,
then n > 2d = 6, and T;(Sgn-a) — T7(Ss) = 2((n — 6)2 —4) < 0. So in this case,
T (San—a) < Tr(Sn)-

Case 2. n > 8.

Note that for n > 8, and 2 < d < | %],

97;(San-a) = 4d® — 6nd® + 2(n® + 3n — 2)d — 3n* + 2n,

od
2
78 Tr(Sin—d) = 12d* — 12nd + 2n* 4 6n — 4,
Od?
T4 (San-a)
G \Wdn=d) _ 949 195 < 0.
o 24d — 120 < 0

T} (San—a) .
Thus % is concave down in respect to d, and

OT;(San—a) . [ OT;(San-a)
ad me{

5 )
od d=2’ od d=[2]
{ min{n? — 10n + 24,0} > 0, if n is even,

min{n? — 10n + 24, (n® — 6n+ 3)} > 0, if n is odd.
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So T;(San—q) is increasing in respect to d. Then

max Ty(San-a) = T;(S|2)r27)

2<d< 2]
ﬁ(Sd,n,d)‘d:% = +n?(n*+4n —8), if n is even,
N W(Sd’"’d)’#%l == (" +4n® —10n* + 120 — 7), if n is odd.
If n > 8 is even, then
THS(31r31) = Th(5) = 10 (2 + 40— 8) = (n — 1)°
1

:E(n—Q)2 (n® —8n+4) >0.

If n > 9 is odd, then

1
Tr(Sig1r51) = T2 (Sn) = 5 (n* +4n® —10n® +12n —7) — (n — 1)
1
= 17;(” —1)(n—3)(n*—8n+3) > 0.

It implies that for n > 8,

max  T;(San-a) = Tr(S|2),121) > T5(Sn).

2<d<[ 2]

Based on the above discussions, by Theorem 2, we have that if n < 7, then the unique
extremal tree with maximum Second hyper-Zagreb index is the star .S,; and if n > 8,
then the unique extremal tree with maximum Second hyper-Zagreb index is the double
star S\.%J#[%]'

(5) Forgotten index: f(z,y) = 2® + 3.

Note that for 2 < d < |§], 14+d <n. So

T/(Sd,nfd) - Tf(sn)

=d-D(@+1)+n—-d-1)((n—d)?+1)+ (P +(n—d)?) —(n—-1)((n—1)2+1)
=—3n(d—-1)(n—d—-1)<0.
Then by Theorem 2, the unique tree with maximum Forgotten index is the star S,.
(6) First Gourava index: f(z,y) =z +y + zy.
Note that for 2 <d <[], 1+d <n. So
7;"(Scl,nfd) - ’Tf(Sn)
=d-1)2d+1)+(n—-d—1)2n—2d+1)+n+dn—d)— (n—1)(2n—1)
=-3d-1)(n—-d-1)<0.
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Then by Theorem 2, the unique tree with maximum First Gourava index is the star S,,.

(7) Second Gourava index: f(z,y) = (z + y)zy.
Note that for 2 < d < |3, 14+d <n. So

7}(Sd,n—d) - 7}(Sn)

(d-—1)(d+1)d+(n—d—-1)(n—d+1)(n—d)+ndin—d) — (n—1)n(n—1)
=-2n(d—1)(n—d—1) <0.

Then by Theorem 2, the unique tree with maximum Second Gourava index is the star S,

(8) First hyper-Gourava index: f(z,y) = (z +y + zy)*
Note that

Ti(Sn) = (n—1)f(n—1,1) = (n — 1)(2n — 1)%,

Ti(Sana) = (d—1)2d+1)> + (n —d —1)(2n — 2d + 1)* + (n + d(n — d))*

=d' —2nd® + (n* +10n)d*> — 10n*d + 4n® + n* — 3n — 2,
W = 4d® — 6nd? + 2(n* + 10n)d — 10n.

If n < 20, noting that

2
% = 12d* — 12nd + 2(n® + 10n) = 3(n — 2d)* — n(n — 20) > 0,

then 7;(Sg,—a) is concave up in respect to d, and so

QSIgSaXL%J T5(San—q) = max {7—/"(Sd,n—d)‘d:27 E(Sd,n—d)‘d ) }

2

If n > 21, noting that
837}(Sd,n—d)
od?

is concave down in respect to d. Note that

=12(2d—n) <0

s (San—a)
then —55m=

M‘ — —6n® +16n+32 <0,
d=2

od
0T (San-a) ‘ n?—20n—4>0, if n is even,
ad a=lgj-1 3(n*=20n—9) >0, ifnisodd,
M‘ |0 if n is even,
ad  la=|3) Ln?—20n—1) >0, ifnisodd
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It implies that there is 2 < dy < [5] such that M <0 for 2 < d < dp, and

ilBana) > for dy < d < [2]. Thus

max  T;(Syn_q) = max {7—/(Sd>”*d))d:2’ le(Sd,n—d)‘d:LﬁJ} .

2<d<[ 2] 4
Note that

Tf(sd,n_d)‘ = 4n® — 1502 4+ 21n + 14,
d=2
{ L (n* +24n® + 16n? — 48n — 32), if n is even,
1
16

Ti(San-a)|,_, =
7(San-a) (n* 4 24n3 + 14n% — 8n — 31), if n is odd.

d=(3]

Then

+(n—4)*(n® — 32n — 16), if n is even,
1

T¢(San— — T#(Sapn- =
754 d)’d=2 (54 d)‘d=l%J { —&(n—5)(n—3)(n* —32n—17), if nis odd.

> E(Sd’n_d)‘d—m’ and if n > 33 then

—Ll2

It implies that if n < 32 then T;(Sgn-a)
d=2

ﬁ(sd,n—d)’d72 < ﬂ(sd,vz—d)‘di\-lj- So
- —L2

max T (Sqn-a) = maX{7}(5{1,717(1)‘(1:23E(Sd,n—d)‘d:LEJ}

2<d<[2]

Sdn d‘ if’n,§32,
d=2’

Sdnd‘ , ifn > 33.

d=|73]
Note that

TH(Sun-a)| = Ti(52) = =(n = 3)(Tn +5),
(n —2)%(n* — 36n — 4), if n is even,

1
T5 (San- ~Ti(S) =9 |
754 d)‘d:L%J (5n) { +(n—3)(n—1)(n* —36n—5), ifnis odd.

It implies that Tf(SdYnfd)‘d , < T (Sy), if n < 36 then T;(Sqn—a) . < T7(Sn); and if
= =2

n > 37 then ﬁ(den,,d)‘d ) > Tr(Sn).
=13
Based on the above discussions, by Theorem 2, we get that if n < 36, then the unique
extremal tree with maximum First hyper-Gourava index is the star S,; if n > 37, then

the unique extremal tree with maximum First hyper-Gourava index is the double star

SizLrg
(9) Second hyper-Gourava index: f(x,y) = ((z + y)xy)%
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Note that

Tp(Sw) = (n =1 f(n = 1,1) = (n = )(n(n - 1))*,
Ti(San-a) = (d = D((d+ 1)d)* + (n = d = 1)((n — d + 1)(n — d))* + (nd(n — d))*
= (n*+5n+2)d" —2(n® +5n° + 2n) & + (n* + 10n° 4 6n° — 3n — 2) d*
— (5n' +4n® = 3n® = 2n) d+ n® + n* —n® —n®

Case 1.n < 7.

In this case, 2 < d < 3. Note that

—2(n* — 6n® + 1702 — 20n — 12) < 0, ifd=2,4<n<T,
—2(n* — 1003 +63n? —138n — 72) <0, ifd=3,6<n<T7.
Then T;(Sgn—a) < Tr(Sn).

Case 2. n > 8.

Note that

87,7(Sd,nfd)
ad

T/(Sd,nfd) - Tf(s‘n) = {

=4 (n? +5n+2) d* — 6n (n* + 5n + 2) d> + 2 (n* + 1003 + 60 — 3n — 2) d
— (50" +4n® — 3n? — 2n)
827}(Sd,nfd)
0d?
P TH(S i)
od3

=12 (n® + 5n+2) d® — 12n (n® + 5n + 2) d + 2 (n* + 100® + 6n° — 3n — 2)

=24 (n® +5n+2) d — 12n (n? + 5n + 2) = —12(n* + 5n + 2)(n — 2d) < 0.

Then W is concave down in respect to d. Note that

M‘ — —n* 4 120° — 61n% + 1020 + 56 < 0,
od d=2
aﬁ(den_d)‘ _ n* —5n® —10n? — 14n — 4 > 0, if n is even,
ad d=[2]-1 $(n*—5n% —15n% —39n — 14) > 0, if nis odd,
87}(Sd,n,d)‘ _ 0, if n is even,
ad =3 1(n' =50 —Tn?+n+2)>0, ifnisodd

It implies that there is 2 < dy < [§] such that W < 0 for 2 < d < dy, and

W >0 for dy <d < |%]. That is, T;(San—a) is concave up in respect to d. Thus

TiSna) = s { TS TS |

max
2<d<[ 2
where
Tf(sd,n_d)‘ =% — Bt + 150 — 3502 + 40n + 24,
d=2

L (S 05+ 2nt — 4nd — 8n?), if n is even,
Tf(Sd,n—d)‘ =<7 : o
d=|3] & (n® +n®+6n® +5n? — Tn — 6), if nis odd.
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Since

7}(5,17”,(1) )d=2 - W(de"’d) d=|2|

B —35(n—4)? ((n — 7)n® +2(n — 6)(5n + 4) + 24) <0, if n is even,
= —=3)(n—5)((n—T7)n*+3(n—7)(3n+2) + 16) <0, if nis odd,

we have

max ﬁ(sd,n—d) = Inax {ﬁ(sd,n—d)’dZZ:W(Sd,n—d)‘d:Lﬂj} = ﬂ(sd,n—d)

2<d<| 2] a=(3)
Note that
Ti(Sun-a|_, = Tr(Sh)
a=13
B +n?(n —2)%(n® — 1ln +2), if n is even,
£ —=3)(n—1)(n(n*—11n*+n—>5)—2), ifnis odd.
It is easy to see that if 8 < n < 10, then T;(S4n—q) —T;(S,) < 0; and if n > 11,

d=13]
then Tf(sm,d)‘dztgJ —TH(S,) > 0.

Based on the above discussions, by Theorem 2, we get that if n < 10, then the unique
extremal tree with maximum Second hyper-Gourava index is the star S,; and if n > 11,
then the unique extremal tree with maximum Second hyper-Gourava index is the double
star S|z 2.

(10) Sombor index: f(z,y) = \/m

Note that for 2 <d < [2],1+d <n. Sod®*+ (n—d)* < (n—1)*+1 and

T7(Sam—a) = T(Sn)
—(d=DVEZ+1+m—d=DVn -2+ 1+ /P +m—-dP—(n—1D/(n—1)2+1
<(d=-n)Vin—12+14+mn—d-1)/(n—d)2+d+/d+ (n—d)?
=(n—d)(V&B+n—d?—/(n—1)2+1) <0.

Then by Theorem 2, the unique tree with maximum Sombor index is the star S, (this

result is also shown in [4]).
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