Graphs with Minimum Vertex–Degree Function–Index for Convex Functions^{*}

Zhoukun Hu, Xueliang Li, Danni Peng

Center for Combinatorics and LPMC, Nankai University, Tianjin 300071, China

huzhoukun@mail.nankai.edu.cn; lxl@nankai.edu.cn; pengdanni@mail.nankai.edu.cn

(Received November 3, 2021)

Abstract

An (n, m)-graph is a graph with n vertices and m edges. The vertex-degree function-index $H_f(G)$ of a graph G is defined as $H_f(G) = \sum_{v \in V(G)} f(d(v))$, where f is a real function. Recently, Tomescu considered the upper bound of $H_f(G)$ and got the connected (n, m)-graph G with $m \ge n$ which maximizes $H_f(G)$ if f(x) is strictly convex with two special properties. He also characterized all (n, m)-graphs G with $1 \le m \le n$ satisfying that $H_f(G) \le f(m) + mf(1) + (n - m - 1)f(0)$ if f(x) is strictly convex and differentiable and its derivative is strictly convex. In this paper, we will consider the lower bound of $H_f(G)$ and show that every (n, m)-graph with $1 \le m \le n(n-1)/2$ satisfies that $H_f(G) \ge rf(k+1) + (n-r)f(k)$ if f(x) is strictly convex, where $k = \lfloor 2m/n \rfloor$ and r = 2m - nk. Moreover, the equality holds if and only if $G \in \mathcal{G}(n, m)$, where $\mathcal{G}(n, m)$ is the family of all (n, m)-graphs G satisfying that the vertex-degree $d(v) \in \{\lfloor \frac{2m}{n} \rfloor, \lceil \frac{2m}{n} \rceil\}$ for all $v \in V(G)$. Under the same condition on f we also obtain a result for the minimum of $H_f(G)$ among all connected (n, m)-graphs. It is easy to see that if f(x) is strictly concave, we can get the maximum case for $H_f(G)$.

1 Introduction

We only consider simple and finite graphs in this paper. For terminology and notation not defined here, we refer the reader to [2,20]. We use V(G) and E(G) to denote the vertex-set and edge-set of a graph G, respectively. An (n,m)-graph is a graph G = (V(G), E(G)), where m = |E(G)| and n = |V(G)|. Let G(n,m) represent the collection of all (n,m)graphs. For any two vertices u and v, if u is adjacent to v, we denote it by $u \sim v$. A graph

^{*}Supported by NSFC No.12131013 and 11871034.

G is called k-regular if the degree d(v) = k for every $v \in V(G)$. We denote a complete graph with n vertices by K_n . Moreover, we use C_n and P_n to denote a cycle and a path on n vertices, respectively.

For two disjoint graphs G and H, the union $G \cup H$ of G and H is a new graph with $V(G \cup H) = V(G) \cup V(H)$ and $E(G \cup H) = E(G) \cup E(H)$. For two disjoint graphs G and H, we use $G \vee H$ to denote a new graph obtained by adding edges joining every vertex of G to every vertex of H. For a subset F of E(G), we use G - F to denote the subgraph of G obtained by deleting all edges of F from G, whereas for a subset S of V(G), we use G - S to denote the subgraph of G induced by $V \setminus S$ in G. If M is a matching of G, we use |M| to denote the number of edges in M.

Denote the degree of a vertex v in G also by d_v , and denote the sequence of degrees of a graph G with n vertices by $\mathbf{d} = (d_1, d_2, \ldots, d_n)$. In this paper, we will study a kind of general chemical index, called the vertex-degree function-index $H_f(G)$ of a graph G with function f(x), which was first introduced by Linial and Rozenman in [14], and is defined as follows:

$$H_f(G) = \sum_{v \in V(G)} f(d_v).$$

Another topological function-index TI was introduced by Gutman in [5]. For a symmetric real function f(x, y) and a graph G, the topological index is defined as

$$TI(G) = \sum_{uv \in E(G)} f(d_u, d_v).$$

This was also called the *bond-incident-degree index* BID(G) by Vukičević and Durdević in [21]. Notice that by taking the symmetric real function equals to f(x)/x + f(y)/y for some function f(x), one could deduce that $H_f(G)$ is a special case of TI(G). For more knowledge on TI we refer to [4,5,10,16,21], and we denoted TI(G) by $IT_f(G)$ in [10].

In the past years, many researchers have done a lot of work on chemical indices, including Zagreb indices; see [3, 6, 8, 9, 11-13, 17] and the references therein. Recently, Tomescu [18, 19] studied $H_f(G)$ for convex function f. He gave some upper bounds for the function-index $H_f(G)$ and the function f is required to satisfy some other properties except for the convexity. Their results are stated as follows.

Theorem 1.1. [Lemma 2.2 [18]] If $G \in G(n,m)$ maximizes (minimizes) $H_f(G)$ where f(x) is strictly convex (concave), then G has at most one nontrivial connected component C and C has a vertex of degree |V(C)| - 1.

Theorem 1.2. [Theorem 2.3 [19]] Let $n \ge 2$ and $G \in G(n,m)$ such that $1 \le m \le n-1$. If f(x) is a strictly convex function having property that f(x) is differentiable and its derivative is strictly convex, then it holds that

$$H_f(G) \le f(m) + mf(1) + (n - m - 1)f(0),$$

with equality if and only if $G = S_{m+1} \cup (n - m - 1)K_1$.

Theorem 1.3. [Theorem 2.4 [19]] If $n \ge 3$, $n \le m \le 2n - 3$, f(x) is a strictly convex function having property that f(x) is differentiable and its derivative is strictly convex, and $G \in G(n,m)$ is connected, then it holds that

$$H_f(G) \le f(n-1) + f(m-n+2) + (m-n+1)f(2) + (2n-m-3)f(1),$$

with equality if and only if $G = K_1 \vee (K_{1,m-n+1} \cup (2n-m-3)K_1)$.

As one can see, Tomescu's results are all about the upper bound of $H_f(G)$. Ali et al. in [1] gave the following lower bound for connected (n, m)-graphs under some constraints on n and m.

Theorem 1.4. [Theorem 1 [1]] If $n \ge 4$, $3n/2 \ge m \ge n+1$ and f(x) is a convex function, then among all connected (n, m)-graphs, graphs in $\mathcal{G}(n, m)$ attain the minimum value of $H_f(G)$, where the graph family $\mathcal{G}(n, m)$ is defined in the following Definition 1.5.

In this paper, we will further study the minimum (maximum) values of $H_f(G)$ among all (n, m)-graphs with the property that f is strictly convex (concave). Moreover, we will give a same result among all connected (n, m)-graphs. Note that our result Theorem 1.7 will cover the result Theorem 1.4. Before proceeding, we give the definition of our extremal graphs as follows.

Definition 1.5. Given $n \ge 2$ and $1 \le m \le n(n-1)/2$, define $\mathcal{G}(n,m)$ to be the family of all (n,m)-graphs G satisfying that $d(v) \in \{\lfloor \frac{2m}{n} \rfloor, \lceil \frac{2m}{n} \rceil\}$ for all $v \in V(G)$.

For an (n, m)-graph G, let $k = \lfloor 2m/n \rfloor$ and $r = 2m - kn \in \{0, 1, ..., n - 1\}$, then G belongs to $\mathcal{G}(n, m)$ if and only if G has r vetices of degree k and n - r vertices of degree k + 1. Note that for some given m and n, the graph family $\mathcal{G}(n, m)$ contains both connected and disconnected graphs. We give an example in Figure 1.

Our main results are stated as follows.

Figure 1. Graphs P_n and $C_{n-2} \cup K_2$ in $\mathcal{G}(n,m)$ for m = n-1 and $n \ge 5$.

Theorem 1.6. Let $n \ge 2$ and G be an (n,m)-graph with $1 \le m \le n(n-1)/2$, and let $k = \lfloor 2m/n \rfloor$ and r = 2m - kn. If f is a strictly convex function, then it holds that

$$H_f(G) \ge rf(k+1) + (n-r)f(k),$$

and the equality holds if and only if $G \in \mathcal{G}(n, m)$.

We will construct some graphs to show that for $n \leq m \leq n(n-1)/2$, there are connected graphs $G \in \mathcal{G}(n,m)$, and for m = n - 1, we have the path $P_n \in \mathcal{G}(n,n-1)$. Therefore, if we consider only connected (n,m)-graphs, we also have the following result.

Theorem 1.7. Let $n \ge 2$ and G be a connected (n, m)-graph with $n-1 \le m \le n(n-1)/2$, and let $k = \lfloor 2m/n \rfloor$ and r = 2m - kn. If f is a strictly convex function, then it holds that

$$H_f(G) \ge rf(k+1) + (n-r)f(k),$$

and the equality holds if and only if G is connected and $G \in \mathcal{G}(n, m)$.

Our results can cover some previous known results. For example, for the general zeroth-order Randić index ${}^{0}R_{\alpha}(G)$, the function $f(x) = x^{\alpha}$ is strictly convex for $\alpha > 1$. Then we can obtain a lower bound of Randić index ${}^{0}R_{\alpha}(G)$ by Theorem 1.6, and moreover, ${}^{0}R_{\alpha}(G)$ attains the minimum if and only if $G \in \mathcal{G}(n, m)$.

2 Preliminaries

At first we recall an important inequality, the *Jensen inequality*. which states that

$$\sum_{i=1}^{n} f(x_i) \ge nf\left(\frac{\sum_{i=1}^{n} x_i}{n}\right)$$

for any $x_1, x_2, \ldots, x_n \in [a, b]$ if f is a convex function on an interval [a, b]. Using this inequality, we can get the following lemma.

Lemma 2.1. Let $n \ge 1$, $m \ge 0$ be integers and f be a strictly convex function. Suppose that s_1, s_2, \ldots, s_n is a sequence of non-negative integers such that $\sum_{i=1}^n s_i = 2m$. Let $k = \lfloor 2m/n \rfloor$ and r = 2m - nk. Then we have

$$\sum_{i=1}^{n} f(s_i) \ge rf(k+1) + (n-r)f(k)$$

Proof. If r = 0, then by the convexity of f and the Jensen inequality, we have

$$\sum_{i=1}^{n} f(s_i) \ge nf\left(\frac{\sum_{i=1}^{n} s_i}{n}\right) = nf\left(\frac{2m}{n}\right) = nf(k).$$

It remains to show that the result is true for any $r \in \{1, 2, ..., n-1\}$. Suppose that $\{s_i\}_{i=1}^n$ is a sequence of integers such that $\sum_{i=1}^n f(s_i)$ is minimal. We claim that $s_i \in \{k, k+1\}$ for all $1 \le i \le n$. If the claim does not hold, without loss of generality, suppose that $s_1 \ge s_2 \ge \cdots \ge s_n$. Since $1 \le r \le n-1$, we have $s_1 \ge k+1$ and $s_n \le k$. Then, there would be some $s_i \notin \{k, k+1\}$ such that either $s_1 \ge k+2$ or $s_n \le k-1$. Thus, $s_1 - s_n - 1 \ge 1$. Let $s'_1 = s_1 - 1$, $s'_i = s_i$ for $2 \le i \le n-1$ and $s'_n = s_n + 1$. Since $s_1 - s_n - 1 \ge 1$, $s'_1 \ne s_n$ and $s'_n \ne s_1$, it shows that $\{s'_i\}_{i=1}^n$ is a different sequence from $\{s_i\}_{i=1}^n$. Since f is a strictly convex function, then f(x+1) - f(x) is strictly monotone increasing. So, we would obtain that

$$\sum_{i=1}^{n} f(s'_i) - \sum_{i=1}^{n} f(s_i) = [f(s_n+1) - f(s_n)] - [f(s_1) - f(s_1-1)] < 0,$$

which contradicts the minimality of $\sum_{i=1}^{n} f(s_i)$.

The proof is thus complete.

We prove Theorem 1.7 by constructing a connected (n, m)-graph G such that $d(v) \in \{\lfloor \frac{2m}{n} \rfloor, \lceil \frac{2m}{n} \rceil\}$ for all $v \in V(G)$. In order to make our construction more consistent and reasonable, we need the following two lemmas.

Lemma 2.2. Let $\lfloor 2m/n \rfloor = k$ and r = 2m - nk, where r is even and $r \neq 0$. Then there is a k-regular graph with n vertices and m - r/2 edges, and its complement has a matching with r/2 edges.

Proof. Since r is even, it shows that nk is also even. Note that $r \neq 0$. Then k < n - 1. We consider the following three cases.

Case 1. k is even and n is odd.

Consider a graph G_1 with vertex-set $\{v_1, v_2, \ldots v_n\}$ and $v_i \sim v_j$ if and only if |i - j|is congruent modulo n with a number belonging to the set $\{-k/2, -k/2 + 1, \ldots, -1, 1, \ldots, k/2\}$. Then G_1 is a k-regular graph with m - r/2 edges. By the construction of G_1 , there is a matching M_1 in the complement of G_1 with edge-set $\{v_i v_{i+\frac{n-1}{2}} : 1 \leq i \leq (n-1)/2\}$ satisfying $|M_1| = (n-1)/2$. Note that k/2 < (n-1)/2. Then these edges do not appear in G_1 . That is, M_1 is a matching with (n-1)/2 edges in the complement of G_1 . Since $r \leq n - 1$, G_1 is a required graph.

Figure 2. G_1 for k is even.

Case 2. Both k and n are even.

Consider the graph G_1 we constructed above. Then there is a matching M_2 with edge-set $\{v_i v_{i+\frac{n}{2}} : 1 \leq i \leq n/2\}$ in the complement of G_1 . Note that $|M_2| = n/2$ and $r \leq n-1$. Then G_1 is also a required graph.

Case 3. k is odd and n is even.

Consider a graph G_3 with vertex-set $\{v_1, v_2, \ldots v_n\}$ and $v_i \sim v_j$ if and only if |i - j|is congruent modulo n with a number belonging to the set $\{-(k-1)/2, -(k-1)/2 + 1, \ldots, -1, 1, \ldots, (k-1)/2\}$ or j = i + n/2, where $1 \leq i \leq n/2$. By the construction of G_3 , we know that G_3 is a k-regular graph and $G_3 \in G(n, m - r/2)$, and there is a matching M_3 with edge-set $\{v_i v_{i+\frac{n}{2}-1} : 1 \leq i \leq n/2 - 1\}$ satisfying $|M_3| = n/2 - 1$. Note that k < n - 1. So we get (k - 1)/2 < n/2 - 1, which means that M_3 is a matching in the complement of G_3 . Since both r and n are even and $r \leq n - 1$, we have $r \leq n - 2$. Therefore, G_3 is a required graph.

The proof is thus complete.

Lemma 2.3. Let 2m = kn + 1. Then there is a k-regular graph with n - 1 vertices and m - (k + 1)/2 edges, having a matching with (n - 1)/2 edges.

Figure 3. G_3 for k is odd and n is even.

Proof. Since 2m = nk + 1, both n and k are odd. From k < n - 1, we deduce that $(k + 1)/2 \leq (n - 1)/2$. Consider a k-regular graph G_4 with n - 1 vertices as follows: $V(G_4) = \{v_1, v_2, \ldots v_{n-1}\}$ and $v_i \sim v_j$ if and only if |i - j| is congruent modulo n - 1 with a number belonging to the set $\{-(k - 1)/2, -(k - 1)/2 + 1, \ldots, -1, 1, \ldots, (k - 1)/2\}$ or j = i + (n - 1)/2, where $1 \leq i \leq (n - 1)/2$. Since 2m = kn + 1, we have 2(m - (k + 1)/2) = k(n - 1). That is, G_4 is a k-regular graph and $G_4 \in G(n - 1, m - (k + 1)/2)$. Note that k - 1 < n - 1. Then there is a matching M_4 with edge-set $\{v_i v_{i+\frac{n-1}{2}} : 1 \leq i \leq (n - 1)/2\}$ in G_4 , such that $|M_4| = (n - 1)/2$. Hence, G_4 is a required graph.

3 Proofs of main results

Now we are ready to give the proofs of our main results Theorems 1.6 and 1.7.

Proof of Theorem 1.6: Since 2m = kn + r and $k = \lfloor 2m/n \rfloor$, noticing that $H_f(G) = \sum_{i=1}^n f(d_{v_i})$ and $\sum_{i=1}^n d_{v_i} = 2m$, by Lemma 2.1 we have

$$H_f(G) \ge rf(k+1) + (n-r)f(k).$$

Moreover, $H_f(G) = rf(k+1) + (n-r)f(k)$ if and only if the (n, m)-graph G has r vertices of degree k + 1 and n - r vertices of degree k. That is, the equality holds if and only if $G \in \mathcal{G}(n, m)$.

Now, we only need to show $\mathcal{G}(n,m) \neq \emptyset$. That is, there always exist a graph G with degree sequence $\mathbf{d} = (d_1, d_2, \dots, d_n)$ where $d_i = k + 1$ and $d_j = k$ for $1 \leq i \leq r$ and $r + 1 \leq j \leq n$. In fact, it is easy to see that the degree sequence is graphical simply by verifying the conditions in [7].

Algorithm 1 Find an (n, m)-graph G with degree sequence $\boldsymbol{d} = (d_1, d_2, \dots, d_n)$ where $d_i = k + 1$ and $d_j = k$ for $1 \leq i \leq r$ and $r + 1 \leq j \leq n$.

Input: $E^{(0)} = \emptyset$, $d^{(0)'} = d$ and $V^{(0)'} = (v_1^{(0)'}, v_2^{(0)'}, \dots, v_n^{(0)'})$. Output: An (n, m)-graph $G = (V^{(l)}, E^{(l-1)})$ with degree sequence $d = (d_1, d_2, \dots, d_n)$ where $d_i = k + 1$ and $d_j = k$ for $1 \le i \le r$ and $r + 1 \le j \le n$. 1: Set l = 1. 2: Find a permutation σ , such that $\sigma d^{(l-1)'} = (d_1^{(l)}, d_2^{(l)}, \dots, d_n^{(l)})$ is non-increasing for $d^{(l-1)'} = (d_1^{(l-1)'}, d_2^{(l-1)'}, \dots, d_n^{(l-1)'})$. Denote $\sigma V^{(l-1)'} = (v_1^{(l)}, v_2^{(l)}, \dots, v_n^{(l)}) = V^{(l)}$. 3: if $d_1^{(l)} \ne 0$ then 4: Set $E^{(l)} = E^{(l-1)} \cup \{v_1^{(l)}v_j^{(l)}| j = 2, 3, \dots, d_1^{(l)} + 1\}$ and $d^{(l)'} = (0, d_2^{(l)} - 1, \dots, d_{d_1^{(l)}+1}^{(l)} - 1, d_{d_1^{(l)}+2}^{(l)}, \dots, d_n^{(l)})$. 5: else go to 7. 6: Set l = l + 1 and go to 2. 7: return $G = (V^{(l)}, E^{(l-1)})$.

By choosing different permutations σ in Algorithm 1, we can obtain some (n, m)graphs $G \in \mathcal{G}(n, m)$ which minimize the value of $H_f(G)$. However, from [15] we can get the following algorithm, which can generate all graphs of $\mathcal{G}(n, m)$.

Algorithm 2 Find all (n,m)-graphs with degree sequence $d = (d_1, d_2, \ldots, d_n)$ where $d_i = k + 1$ and $d_j = k$ for $1 \le i \le r$ and $r + 1 \le j \le n$.

Input: n, m and $d = (d_1, d_2, \ldots, d_n)$ where $d_i = k + 1$ and $d_j = k$ for $1 \le i \le r$ and $r+1 \le j \le n$.

Output: $\mathcal{G}(n,m)$ for any given n and m.

1: Construct a complete *n*-partite graph $H = (P_1, P_2, \ldots, P_n)$, such that each P_i for $1 \le i \le r$ has k + 1 vertices and each P_j for $r + 1 \le j \le n$ has k vertices.

- 2: Find all perfect matchings in H, denoted by $\{M_1, M_2, \ldots, M_l\}$.
- 3: Set $\mathcal{G}(n,m) = \emptyset$ and s = 1.
- 4: while $s \leq l$ do
- 5: Construct a new graph G_s with vertex-set $\{p_1, p_2, \ldots, p_n\}$ and $p_i \sim p_j$ if and only if there is an edge between P_i and P_j in M_s .
- 6: **if** G_s does not have multiple edges and $G_s \ncong G$ for any $G \in \mathcal{G}(n, m)$ **then**
- 7: Set $\mathcal{G}(n,m) = \mathcal{G}(n,m) \bigcup \{G_s\}.$
- 8: else $\mathcal{G}(n,m) = \mathcal{G}(n,m)$.
- 9: **Set** s = s + 1 and go to 4.
- 10: return $\mathcal{G}(n,m)$.

Note that to check that $G_s \ncong G$ for any $G \in \mathcal{G}(n,m)$ is a very hard nut to crack. Although this algorithm can be used to generate all graphs of $\mathcal{G}(n,m)$, it cannot guarantee the existence of any graph in $\mathcal{G}(n,m)$. **Proof of Theorem 1.7:** By the proof of Theorem 1.6, we only need to show that there is a connected (n,m)-graph belonging to $\mathcal{G}(n,m)$ for any given n and m such that $n-1 \leq m \leq n(n-1)/2$.

If m = n - 1 we have the path $P_n \in \mathcal{G}(n, n - 1)$, which is connected, as required.

If $n \le m \le n(n-1)/2$, then $k = \lfloor \frac{2m}{n} \rfloor \ge 2$. Noticing that 2m = kn + r, we distinguish the following three cases to discuss.

Case 1. r = 0, *i.e.*, 2m = nk.

In this case, we need to find a connected k-regular (n, m)-graph. From the condition [2] for a sequence to be graphical, we know that a k-regular graph with n vertices exists if and only if $n \ge k+1$ and nk is even. Noticing that $m \le n(n-1)/2$, there must be a k-regular (n, m)-graph which satisfies 2m = nk. Moreover, it is easy to know that there also exists a connected k-regular (n, m)-graph G which satisfies 2m = nk. That is, $G \in \mathcal{G}(n, m)$ and G is connected.

Case 2. r is even and $r \neq 0$.

From 2m = nk + r, we obtain 2(m - r/2) = kn. By Lemma 2.2, there is a k-regular graph H^* with n vertices and m - r/2 edges, and its complement has a matching M^* with r/2 edges. Adding all r/2 edges that appear in M^* to the graph H^* , we then get a new graph, called G. One can see that $G \in G(n,m)$ and $H_f(G) = rf(k+1) + (n-r)f(k)$. That is, $G \in \mathcal{G}(n,m)$. From our construction, there is an n-cycle $v_1v_2 \dots v_nv_1$ in G, and so G is also connected.

Case 3. r is odd.

Note that k < n - 1. First, we show that it is true for r = 1. By Lemma 2.3, there is a k-regular graph $H^{**} \in G(n - 1, m - (k + 1)/2)$, which contains a matching M^{**} with (k + 1)/2 edges. Deleting all (k + 1)/2 edges in M^{**} from H^{**} and adding a new vertex such that this vertex is adjacent to all k + 1 vertices of M^{**} , we get a graph $G \in G(n, m)$, which satisfies $H_f(G) = f(k + 1) + (n - 1)f(k)$. By our construction, the graph G is also connected.

It remains to show that the result is true for $r \ge 3$ and r is odd. The equality can be written as 2(m - (r - 1)/2) = nk + 1. By Lemma 2.3, there is a k-regular graph $D_1 \in G(n - 1, m - (k + r)/2)$, which contains a matching N_1 with (k + 1)/2 edges. Deleting all (k + 1)/2 edges in N_1 from D_1 and adding a new vertex such that this vertex is adjacent to all k + 1 vertices of N_1 , we get a graph $D_2 \in G(n, m - (r - 1)/2)$ and

Figure 4. H^{**} and G for r = 1.

 $H_f(D_2) = f(k+1) + (n-1)f(k)$. If $r-1 \le k+1$, we can add any (r-1)/2 edges in N_1 to D_2 . Thus, we find a graph $G \in G(n,m)$ satisfying $H_f(G) = rf(k+1) + (n-r)f(k)$. If r-1 > k+1, we denote s = r-k-2. Notice that 2(m-(r-1)/2) = nk+1. Since r is odd, then both n and k are odd. That is, both n-1 and k+r are even. From the construction we give above, in fact, by the proof of Case 3 in Lemma 2.2, there is a k-regular graph $D_3 \in G(n-1,m-(k+r)/2)$, whose complement has a matching N_2 with (n-3)/2 edges. Note that $s = r-k-2 \le n-3-2 = n-5 < n-3$. So we can add any s/2 edges in matching N_2 to D_3 . In this way, we obtain a graph D_4 with n-1 vertices and m-(k+1) edges. Moreover, it has s vertices of degree k+1 and n-1-s vertices of degree k. Add a new vertex to D_4 such that the new vertex is adjacent to any k+1 of the remaining n-1-s vertices. It does works since $n-1-s = n-1-(r-k-2) \ge n-1-(n-2-k-2) = k+3$. Hence, we get a graph $G \in G(n,m)$ satisfying $H_f(G) = rf(k+1) + (n-r)f(k)$. It is easy to see from our construction that G is also connected. That is, there is a connected graph $G \in \mathcal{G}(n,m)$ when r is odd.

Figure 5. Graphs for $r \ge 3$ and r - 1 > k + 1.

The above proof can guarantee the existence of connected graphs in $\mathcal{G}(n,m)$. The

following Algorithm 3 (similar to Algorithm 2) can be used to find all connected graphs in $\mathcal{G}(n,m)$.

Algorithm 3 Find all connected (n, m)-graphs with degree sequence $d = (d_1, d_2, \ldots, d_n)$ where $d_i = k + 1$ and $d_j = k$ for $1 \le i \le r$ and $r + 1 \le j \le n$.

Input: n, m and $d = (d_1, d_2, \ldots, d_n)$ where $d_i = k + 1$ and $d_j = k$ for $1 \le i \le r$ and $r+1 \le j \le n$.

Output: All connected graphs in G(n, m) for any given n and m, denoted by G*(n, m).
1: Construct a complete n-partite graph H = (P₁, P₂, ..., P_n), such that each P_i for 1 ≤ i ≤ r has k + 1 vertices and each P_i for r + 1 ≤ j ≤ n has k vertices.

- 2: Find all perfect matchings in H, denoted by $\{M_1, M_2, \ldots, M_l\}$.
- 3: Set $\mathcal{G}^*(n,m) = \emptyset$ and s = 1.
- 4: while $s \leq l$ do
- 5: Construct a new graph G_s with vertex-set $\{p_1, p_2, \ldots, p_n\}$ and $p_i \sim p_j$ if and only if there is an edge between P_i and P_j in M_s .
- 6: if G_s is connected with no multiple edges and $G_s \ncong G$ for any $G \in \mathcal{G}^*(n,m)$ then
- 7: Set $\mathcal{G}^*(n,m) = \mathcal{G}^*(n,m) \bigcup \{G_s\}.$
- 8: else $\mathcal{G}^*(n,m) = \mathcal{G}^*(n,m)$.
- 9: **Set** s = s + 1 and go to 4.

10: return $G^*(n, m)$.

Note that although this algorithm can be used to generate all connected graphs of $\mathcal{G}(n,m)$, it cannot guarantee the existence of any connected graph in $\mathcal{G}(n,m)$.

Acknowledgement: The authors are very grateful to the reviewers and editors for their valuable comments and suggestions, which were helpful in improving the presentation of the paper.

References

- A. Ali, I. Gutman, H. Saber, A. M. Alanazi, On bond incident degree indices of (n,m)-graphs, MATCH Commun. Math. Comput. Chem. 87 (2022) 89–96.
- [2] J. A. Bondy, U. S. R. Murty, Graph Theory, Springer, London, 2008.
- [3] S. M. Cioaba, Sums of powers of the degrees of a graph, Discr. Math. 306 (2008) 959–1964.
- [4] R. Cruz, J. Rada, The path and the star as extremal values of vertex-degree-based topological indices among trees, MATCH Commun. Math. Comput. Chem. 82 (2019) 715–732.

- [5] I. Gutman, Degree-based topological indices, Croat. Chem. Acta 86 (2013) 351-361.
- [6] I. Gutman, B. Furtula, Novel Molecular Structure Descriptors Theory and Applications I and II, Univ. Kragujevac, Kragujevac, 2010.
- [7] V. Havel, A remark on the existence of finite graphs, *Casopis Pest. Mat.* 6 (1995) 161–179.
- [8] Y. Hu, Y. Shi, X. Li, T. Xu, On molecular graphs with smallest and greatest zerothorder general Randić index, MATCH Commun. Math. Comput. Chem. 54 (2005) 425–434.
- [9] Y. Hu, Y. Shi, X. Li, T. Xu, Connected graphs with minimum and maximum zerothorder general Randić index, *Discr. Appl. Math.* **155** (2007) 1044–1054.
- [10] Z. Hu, L. Li, X. Li, D. Peng, Extremal graphs for topological index defined by a degree–based edge–weight function, MATCH Commun. Math. Comput. Chem. 88 (2022) 505–520.
- [11] R. Lang, X. Li, S. Zhang, Inverse problem for the Zagreb index of molecular graphs, Appl. Math. J. Chinese Univ. Ser. A 4 (2003) 487–493.
- [12] X. Li, I. Gutman, Mathematical Aspects of Randić-Type Molecular Structure Descriptors, Univ. Kragujevac, Kragujevac, 2006.
- [13] X. Li, J. Zheng, A unified approach to the extremal trees for different indices, MATCH Commun. Math. Comput. Chem. 54 (2005) 195–208.
- [14] N. Linial, E. Rozenman, An extremal problem on degree sequences of graphs, Graph. Comb. 18 (2002) 573–582.
- [15] M. Molloy, B. Reed, A critical point for random graphs with a given degree sequence, Rand. Struct. Alg. 80 (1955) 477–480.
- [16] J. Rada, R. Cruz, Vertex-degree-based topological indices over graphs, MATCH Commun. Math. Comput. Chem. 72 (2014) 603–616.
- [17] G. Su, M. Meng, L. Cui, Z. Chen, X. Lan, The general zeroth-order Randić index of maximal outerplanar graphs and trees with k maximum degree vertices, *Sci. Asia* 43 (2017) #387.
- [18] I. Tomescu, Properties of connected (n, m)-graphs extremal relatively to vertex degree function index for convex functions, MATCH Commun. Math. Comput. Chem. 85 (2021) 285–294.

- [19] I. Tomescu, Graphs with given cyclomatic number extremal relatively to vertex degree function index for convex functions, MATCH Commun. Math. Comput. Chem. 87 (2022) 109–114.
- [20] N. Trinajstić, Chemical Graph Theory, CRC Press, Boca Raton, 1992.
- [21] D. Vukičević, J. Đurđević, Bond additive modeling 10. Upper and lower bounds of bond incident degree indices of catacondensed fluoranthenes, *Chem. Phys. Lett.* 515 (2011) 186–189.