Graphs with Minimum Vertex-Degree Function-Index for Convex Functions*

Zhoukun Hu, Xueliang Li, Danni Peng
Center for Combinatorics and LPMC, Nankai University, Tianjin 300071, China
huzhoukun@mail.nankai.edu.cn; lxl@nankai.edu.cn;
pengdanni@mail.nankai.edu.cn

(Received November 3, 2021)

Abstract

An (n, m)-graph is a graph with n vertices and m edges. The vertex-degree function-index $H_{f}(G)$ of a graph G is defined as $H_{f}(G)=\sum_{v \in V(G)} f(d(v))$, where f is a real function. Recently, Tomescu considered the upper bound of $H_{f}(G)$ and got the connected (n, m)-graph G with $m \geq n$ which maximizes $H_{f}(G)$ if $f(x)$ is strictly convex with two special properties. He also characterized all (n, m)-graphs G with $1 \leq m \leq n$ satisfying that $H_{f}(G) \leq f(m)+m f(1)+(n-m-1) f(0)$ if $f(x)$ is strictly convex and differentiable and its derivative is strictly convex. In this paper, we will consider the lower bound of $H_{f}(G)$ and show that every (n, m)-graph with $1 \leq m \leq n(n-1) / 2$ satisfies that $H_{f}(G) \geq r f(k+1)+(n-r) f(k)$ if $f(x)$ is strictly convex, where $k=\lfloor 2 m / n\rfloor$ and $r=2 m-n k$. Moreover, the equality holds if and only if $G \in \mathcal{G}(n, m)$, where $\mathcal{G}(n, m)$ is the family of all (n, m)-graphs G satisfying that the vertex-degree $d(v) \in\left\{\left\lfloor\frac{2 m}{n}\right\rfloor,\left\lceil\frac{2 m}{n}\right\rceil\right\}$ for all $v \in V(G)$. Under the same condition on f we also obtain a result for the minimum of $H_{f}(G)$ among all connected (n, m)-graphs. It is easy to see that if $f(x)$ is strictly concave, we can get the maximum case for $H_{f}(G)$.

1 Introduction

We only consider simple and finite graphs in this paper. For terminology and notation not defined here, we refer the reader to $[2,20]$. We use $V(G)$ and $E(G)$ to denote the vertex-set and edge-set of a graph G, respectively. An (n, m)-graph is a graph $G=(V(G), E(G))$, where $m=|E(G)|$ and $n=|V(G)|$. Let $G(n, m)$ represent the collection of all (n, m) graphs. For any two vertices u and v, if u is adjacent to v, we denote it by $u \sim v$. A graph

[^0]G is called k-regular if the degree $d(v)=k$ for every $v \in V(G)$. We denote a complete graph with n vertices by K_{n}. Moreover, we use C_{n} and P_{n} to denote a cycle and a path on n vertices, respectively.

For two disjoint graphs G and H, the union $G \cup H$ of G and H is a new graph with $V(G \cup H)=V(G) \cup V(H)$ and $E(G \cup H)=E(G) \cup E(H)$. For two disjoint graphs G and H, we use $G \vee H$ to denote a new graph obtained by adding edges joining every vertex of G to every vertex of H. For a subset F of $E(G)$, we use $G-F$ to denote the subgraph of G obtained by deleting all edges of F from G, whereas for a subset S of $V(G)$, we use $G-S$ to denote the subgraph of G induced by $V \backslash S$ in G. If M is a matching of G, we use $|M|$ to denote the number of edges in M.

Denote the degree of a vertex v in G also by d_{v}, and denote the sequence of degrees of a graph G with n vertices by $\boldsymbol{d}=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$. In this paper, we will study a kind of general chemical index, called the vertex-degree function-index $H_{f}(G)$ of a graph G with function $f(x)$, which was first introduced by Linial and Rozenman in [14], and is defined as follows:

$$
H_{f}(G)=\sum_{v \in V(G)} f\left(d_{v}\right)
$$

Another topological function-index $T I$ was introduced by Gutman in [5]. For a symmetric real function $f(x, y)$ and a graph G, the topological index is defined as

$$
T I(G)=\sum_{u v \in E(G)} f\left(d_{u}, d_{v}\right)
$$

This was also called the bond-incident-degree index $\operatorname{BID}(G)$ by Vukičević and Durdević in [21]. Notice that by taking the symmetric real function equals to $f(x) / x+f(y) / y$ for some function $f(x)$, one could deduce that $H_{f}(G)$ is a special case of $T I(G)$. For more knowledge on $T I$ we refer to $[4,5,10,16,21]$, and we denoted $T I(G)$ by $I T_{f}(G)$ in [10].

In the past years, many researchers have done a lot of work on chemical indices, including Zagreb indices; see $[3,6,8,9,11-13,17]$ and the references therein. Recently, Tomescu $[18,19]$ studied $H_{f}(G)$ for convex function f. He gave some upper bounds for the function-index $H_{f}(G)$ and the function f is required to satisfy some other properties except for the convexity. Their results are stated as follows.

Theorem 1.1. [Lemma 2.2 [18]] If $G \in G(n, m)$ maximizes (minimizes) $H_{f}(G)$ where $f(x)$ is strictly convex (concave), then G has at most one nontrivial connected component C and C has a vertex of degree $|V(C)|-1$.

Theorem 1.2. [Theorem 2.3 [19]] Let $n \geq 2$ and $G \in G(n, m)$ such that $1 \leq m \leq n-1$. If $f(x)$ is a strictly convex function having property that $f(x)$ is differentiable and its derivative is strictly convex, then it holds that

$$
H_{f}(G) \leq f(m)+m f(1)+(n-m-1) f(0),
$$

with equality if and only if $G=S_{m+1} \cup(n-m-1) K_{1}$.
Theorem 1.3. [Theorem 2.4 [19]] If $n \geq 3, n \leq m \leq 2 n-3, f(x)$ is a strictly convex function having property that $f(x)$ is differentiable and its derivative is strictly convex, and $G \in G(n, m)$ is connected, then it holds that

$$
H_{f}(G) \leq f(n-1)+f(m-n+2)+(m-n+1) f(2)+(2 n-m-3) f(1)
$$

with equality if and only if $G=K_{1} \vee\left(K_{1, m-n+1} \cup(2 n-m-3) K_{1}\right)$.

As one can see, Tomescu's results are all about the upper bound of $H_{f}(G)$. Ali et al. in [1] gave the following lower bound for connected (n, m)-graphs under some constraints on n and m.

Theorem 1.4. [Theorem 1 [1]] If $n \geq 4,3 n / 2 \geq m \geq n+1$ and $f(x)$ is a convex function, then among all connected (n, m)-graphs, graphs in $\mathcal{G}(n, m)$ attain the minimum value of $H_{f}(G)$, where the graph family $\mathcal{G}(n, m)$ is defined in the following Definition 1.5.

In this paper, we will further study the minimum (maximum) values of $H_{f}(G)$ among all (n, m)-graphs with the property that f is strictly convex (concave). Moreover, we will give a same result among all connected (n, m)-graphs. Note that our result Theorem 1.7 will cover the result Theorem 1.4. Before proceeding, we give the definition of our extremal graphs as follows.

Definition 1.5. Given $n \geq 2$ and $1 \leq m \leq n(n-1) / 2$, define $\mathcal{G}(n, m)$ to be the family of all (n, m)-graphs G satisfying that $d(v) \in\left\{\left\lfloor\frac{2 m}{n}\right\rfloor,\left\lceil\frac{2 m}{n}\right\rceil\right\}$ for all $v \in V(G)$.

For an (n, m)-graph G, let $k=\lfloor 2 m / n\rfloor$ and $r=2 m-k n \in\{0,1, \ldots, n-1\}$, then G belongs to $\mathcal{G}(n, m)$ if and only if G has r vetices of degree k and $n-r$ vertices of degree $k+1$. Note that for some given m and n, the graph family $\mathcal{G}(n, m)$ contains both connected and disconnected graphs. We give an example in Figure 1.

Our main results are stated as follows.

Figure 1. Graphs P_{n} and $C_{n-2} \cup K_{2}$ in $\mathcal{G}(n, m)$ for $m=n-1$ and $n \geq 5$.

Theorem 1.6. Let $n \geq 2$ and G be an (n, m)-graph with $1 \leq m \leq n(n-1) / 2$, and let $k=\lfloor 2 m / n\rfloor$ and $r=2 m-k n$. If f is a strictly convex function, then it holds that

$$
H_{f}(G) \geq r f(k+1)+(n-r) f(k)
$$

and the equality holds if and only if $G \in \mathcal{G}(n, m)$.
We will construct some graphs to show that for $n \leq m \leq n(n-1) / 2$, there are connected graphs $G \in \mathcal{G}(n, m)$, and for $m=n-1$, we have the path $P_{n} \in \mathcal{G}(n, n-1)$. Therefore, if we consider only connected (n, m)-graphs, we also have the following result.

Theorem 1.7. Let $n \geq 2$ and G be a connected (n, m)-graph with $n-1 \leq m \leq n(n-1) / 2$, and let $k=\lfloor 2 m / n\rfloor$ and $r=2 m-k n$. If f is a strictly convex function, then it holds that

$$
H_{f}(G) \geq r f(k+1)+(n-r) f(k)
$$

and the equality holds if and only if G is connected and $G \in \mathcal{G}(n, m)$.
Our results can cover some previous known results. For example, for the general zeroth-order Randić index ${ }^{0} R_{\alpha}(G)$, the function $f(x)=x^{\alpha}$ is strictly convex for $\alpha>1$. Then we can obtain a lower bound of Randić index ${ }^{0} R_{\alpha}(G)$ by Theorem 1.6, and moreover, ${ }^{0} R_{\alpha}(G)$ attains the minimum if and only if $G \in \mathcal{G}(n, m)$.

2 Preliminaries

At first we recall an important inequality, the Jensen inequality. which states that

$$
\sum_{i=1}^{n} f\left(x_{i}\right) \geq n f\left(\frac{\sum_{i=1}^{n} x_{i}}{n}\right)
$$

for any $x_{1}, x_{2}, \ldots, x_{n} \in[a, b]$ if f is a convex function on an interval $[a, b]$. Using this inequality, we can get the following lemma.

Lemma 2.1. Let $n \geq 1, m \geq 0$ be integers and f be a strictly convex function. Suppose that $s_{1}, s_{2}, \ldots, s_{n}$ is a sequence of non-negative integers such that $\sum_{i=1}^{n} s_{i}=2 m$. Let $k=\lfloor 2 m / n\rfloor$ and $r=2 m-n k$. Then we have

$$
\sum_{i=1}^{n} f\left(s_{i}\right) \geq r f(k+1)+(n-r) f(k) .
$$

Proof. If $r=0$, then by the convexity of f and the Jensen inequality, we have

$$
\sum_{i=1}^{n} f\left(s_{i}\right) \geq n f\left(\frac{\sum_{i=1}^{n} s_{i}}{n}\right)=n f\left(\frac{2 m}{n}\right)=n f(k) .
$$

It remains to show that the result is true for any $r \in\{1,2, \ldots, n-1\}$. Suppose that $\left\{s_{i}\right\}_{i=1}^{n}$ is a sequence of integers such that $\sum_{i=1}^{n} f\left(s_{i}\right)$ is minimal. We claim that $s_{i} \in\{k, k+1\}$ for all $1 \leq i \leq n$. If the claim does not hold, without loss of generality, suppose that $s_{1} \geq s_{2} \geq \cdots \geq s_{n}$. Since $1 \leq r \leq n-1$, we have $s_{1} \geq k+1$ and $s_{n} \leq k$. Then, there would be some $s_{i} \notin\{k, k+1\}$ such that either $s_{1} \geq k+2$ or $s_{n} \leq k-1$. Thus, $s_{1}-s_{n}-1 \geq 1$. Let $s_{1}^{\prime}=s_{1}-1, s_{i}^{\prime}=s_{i}$ for $2 \leq i \leq n-1$ and $s_{n}^{\prime}=s_{n}+1$. Since $s_{1}-s_{n}-1 \geq 1, s_{1}^{\prime} \neq s_{n}$ and $s_{n}^{\prime} \neq s_{1}$, it shows that $\left\{s_{i}^{\prime}\right\}_{i=1}^{n}$ is a different sequence from $\left\{s_{i}\right\}_{i=1}^{n}$. Since f is a strictly convex function, then $f(x+1)-f(x)$ is strictly monotone increasing. So, we would obtain that

$$
\sum_{i=1}^{n} f\left(s_{i}^{\prime}\right)-\sum_{i=1}^{n} f\left(s_{i}\right)=\left[f\left(s_{n}+1\right)-f\left(s_{n}\right)\right]-\left[f\left(s_{1}\right)-f\left(s_{1}-1\right)\right]<0
$$

which contradicts the minimality of $\sum_{i=1}^{n} f\left(s_{i}\right)$.
The proof is thus complete.
We prove Theorem 1.7 by constructing a connected (n, m)-graph G such that $d(v) \in$ $\left\{\left\lfloor\frac{2 m}{n}\right\rfloor,\left\lceil\frac{2 m}{n}\right\rceil\right\}$ for all $v \in V(G)$. In order to make our construction more consistent and reasonable, we need the following two lemmas.

Lemma 2.2. Let $\lfloor 2 m / n\rfloor=k$ and $r=2 m-n k$, where r is even and $r \neq 0$. Then there is a k-regular graph with n vertices and $m-r / 2$ edges, and its complement has a matching with r/2 edges.

Proof. Since r is even, it shows that $n k$ is also even. Note that $r \neq 0$. Then $k<n-1$. We consider the following three cases.

Case 1. k is even and n is odd.

Consider a graph G_{1} with vertex-set $\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$ and $v_{i} \sim v_{j}$ if and only if $|i-j|$ is congruent modulo n with a number belonging to the set $\{-k / 2,-k / 2+1, \ldots,-1,1$, $\ldots, k / 2\}$. Then G_{1} is a k-regular graph with $m-r / 2$ edges. By the construction of G_{1}, there is a matching M_{1} in the complement of G_{1} with edge-set $\left\{v_{i} v_{i+\frac{n-1}{2}}: 1 \leq i \leq\right.$ $(n-1) / 2\}$ satisfying $\left|M_{1}\right|=(n-1) / 2$. Note that $k / 2<(n-1) / 2$. Then these edges do not appear in G_{1}. That is, M_{1} is a matching with $(n-1) / 2$ edges in the complement of G_{1}. Since $r \leq n-1, G_{1}$ is a required graph.

Figure 2. G_{1} for k is even.
Case 2. Both k and n are even.
Consider the graph G_{1} we constructed above. Then there is a matching M_{2} with edge-set $\left\{v_{i} v_{i+\frac{n}{2}}: 1 \leq i \leq n / 2\right\}$ in the complement of G_{1}. Note that $\left|M_{2}\right|=n / 2$ and $r \leq n-1$. Then G_{1} is also a required graph.

Case 3. k is odd and n is even.
Consider a graph G_{3} with vertex-set $\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$ and $v_{i} \sim v_{j}$ if and only if $|i-j|$ is congruent modulo n with a number belonging to the set $\{-(k-1) / 2,-(k-1) / 2+$ $1, \ldots,-1,1, \ldots,(k-1) / 2\}$ or $j=i+n / 2$, where $1 \leq i \leq n / 2$. By the construction of G_{3}, we know that G_{3} is a k-regular graph and $G_{3} \in G(n, m-r / 2)$, and there is a matching M_{3} with edge-set $\left\{v_{i} v_{i+\frac{n}{2}-1}: 1 \leq i \leq n / 2-1\right\}$ satisfying $\left|M_{3}\right|=n / 2-1$. Note that $k<n-1$. So we get $(k-1) / 2<n / 2-1$, which means that M_{3} is a matching in the complement of G_{3}. Since both r and n are even and $r \leq n-1$, we have $r \leq n-2$. Therefore, G_{3} is a required graph.

The proof is thus complete.
Lemma 2.3. Let $2 m=k n+1$. Then there is a k-regular graph with $n-1$ vertices and $m-(k+1) / 2$ edges, having a matching with $(n-1) / 2$ edges.

Figure 3. G_{3} for k is odd and n is even.

Proof. Since $2 m=n k+1$, both n and k are odd. From $k<n-1$, we deduce that $(k+1) / 2 \leq(n-1) / 2$. Consider a k-regular graph G_{4} with $n-1$ vertices as follows: $V\left(G_{4}\right)=\left\{v_{1}, v_{2}, \ldots v_{n-1}\right\}$ and $v_{i} \sim v_{j}$ if and only if $|i-j|$ is congruent modulo $n-1$ with a number belonging to the set $\{-(k-1) / 2,-(k-1) / 2+1, \ldots,-1,1, \ldots,(k-1) / 2\}$ or $j=i+(n-1) / 2$, where $1 \leq i \leq(n-1) / 2$. Since $2 m=k n+1$, we have $2(m-(k+1) / 2)=$ $k(n-1)$. That is, G_{4} is a k-regular graph and $G_{4} \in G(n-1, m-(k+1) / 2)$. Note that $k-1<n-1$. Then there is a matching M_{4} with edge-set $\left\{v_{i} v_{i+\frac{n-1}{2}}: 1 \leq i \leq(n-1) / 2\right\}$ in G_{4}, such that $\left|M_{4}\right|=(n-1) / 2$. Hence, G_{4} is a required graph.

3 Proofs of main results

Now we are ready to give the proofs of our main results Theorems 1.6 and 1.7.
Proof of Theorem 1.6: Since $2 m=k n+r$ and $k=\lfloor 2 m / n\rfloor$, noticing that $H_{f}(G)=$ $\sum_{i=1}^{n} f\left(d_{v_{i}}\right)$ and $\sum_{i=1}^{n} d_{v_{i}}=2 m$, by Lemma 2.1 we have

$$
H_{f}(G) \geq r f(k+1)+(n-r) f(k)
$$

Moreover, $H_{f}(G)=r f(k+1)+(n-r) f(k)$ if and only if the (n, m)-graph G has r vertices of degree $k+1$ and $n-r$ vertices of degree k. That is, the equality holds if and only if $G \in \mathcal{G}(n, m)$.

Now, we only need to show $\mathcal{G}(n, m) \neq \emptyset$. That is, there always exist a graph G with degree sequence $\boldsymbol{d}=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ where $d_{i}=k+1$ and $d_{j}=k$ for $1 \leq i \leq r$ and $r+1 \leq j \leq n$. In fact, it is easy to see that the degree sequence is graphical simply by verifying the conditions in [7].

Algorithm 1 Find an (n, m)-graph G with degree sequence $\boldsymbol{d}=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ where $d_{i}=k+1$ and $d_{j}=k$ for $1 \leq i \leq r$ and $r+1 \leq j \leq n$.
Input: $E^{(0)}=\emptyset, \boldsymbol{d}^{(0)^{\prime}}=\boldsymbol{d}$ and $V^{(0)^{\prime}}=\left(v_{1}^{(0)^{\prime}}, v_{2}^{(0)^{\prime}}, \ldots, v_{n}^{(0)^{\prime}}\right)$.
Output: An (n, m)-graph $G=\left(V^{(l)}, E^{(l-1)}\right)$ with degree sequence $\boldsymbol{d}=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ where $d_{i}=k+1$ and $d_{j}=k$ for $1 \leq i \leq r$ and $r+1 \leq j \leq n$.
: Set $l=1$.
Find a permutation σ, such that $\sigma \boldsymbol{d}^{(l-1)^{\prime}}=\left(d_{1}^{(l)}, d_{2}^{(l)}, \ldots, d_{n}^{(l)}\right)$ is non-increasing for $\boldsymbol{d}^{(l-1)^{\prime}}=\left(d_{1}^{(l-1)^{\prime}}, d_{2}^{(l-1)^{\prime}}, \ldots, d_{n}^{(l-1)^{\prime}}\right)$. Denote $\sigma V^{(l-1)^{\prime}}=\left(v_{1}^{(l)}, v_{2}^{(l)}, \ldots, v_{n}^{(l)}\right)=V^{(l)}$.
if $d_{1}^{(l)} \neq 0$ then
Set $E^{(l)}=E^{(l-1)} \cup\left\{v_{1}^{(l)} v_{j}^{(l)} \mid j=2,3, \ldots, d_{1}^{(l)}+1\right\}$ and $\boldsymbol{d}^{(l)^{\prime}}=\left(0, d_{2}^{(l)}-1, \ldots, d_{d_{1}^{(l)}+1}^{(l)}-\right.$ $\left.1, d_{d_{1}^{(l)}+2}^{(l)}, \ldots, d_{n}^{(l)}\right)$.
else go to 7 .
Set $l=l+1$ and go to 2 .
return $G=\left(V^{(l)}, E^{(l-1)}\right)$.

By choosing different permutations σ in Algorithm 1, we can obtain some (n, m)graphs $G \in \mathcal{G}(n, m)$ which minimize the value of $H_{f}(G)$. However, from [15] we can get the following algorithm, which can generate all graphs of $\mathcal{G}(n, m)$.

```
Algorithm 2 Find all ( \(n, m\) )-graphs with degree sequence \(\boldsymbol{d}=\left(d_{1}, d_{2}, \ldots, d_{n}\right)\) where
\(d_{i}=k+1\) and \(d_{j}=k\) for \(1 \leq i \leq r\) and \(r+1 \leq j \leq n\).
    Input: \(n, m\) and \(\boldsymbol{d}=\left(d_{1}, d_{2}, \ldots, d_{n}\right)\) where \(d_{i}=k+1\) and \(d_{j}=k\) for \(1 \leq i \leq r\) and
\(r+1 \leq j \leq n\).
    Output: \(\mathcal{G}(n, m)\) for any given \(n\) and \(m\).
    : Construct a complete \(n\)-partite graph \(H=\left(P_{1}, P_{2}, \ldots, P_{n}\right)\), such that each \(P_{i}\) for
    \(1 \leq i \leq r\) has \(k+1\) vertices and each \(P_{j}\) for \(r+1 \leq j \leq n\) has \(k\) vertices.
    Find all perfect matchings in \(H\), denoted by \(\left\{M_{1}, M_{2}, \ldots, M_{l}\right\}\).
    Set \(\mathcal{G}(n, m)=\emptyset\) and \(s=1\).
    while \(s \leq l\) do
        Construct a new graph \(G_{s}\) with vertex-set \(\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}\) and \(p_{i} \sim p_{j}\) if and only
    if there is an edge between \(P_{i}\) and \(P_{j}\) in \(M_{s}\).
        if \(G_{s}\) does not have multiple edges and \(G_{s} \not \equiv G\) for any \(G \in \mathcal{G}(n, m)\) then
            Set \(\mathcal{G}(n, m)=\mathcal{G}(n, m) \bigcup\left\{G_{s}\right\}\).
        else \(\mathcal{G}(n, m)=\mathcal{G}(n, m)\).
        Set \(s=s+1\) and go to 4 .
    return \(\mathcal{G}(n, m)\).
```

Note that to check that $G_{s} \not \approx G$ for any $G \in \mathcal{G}(n, m)$ is a very hard nut to crack. Although this algorithm can be used to generate all graphs of $\mathcal{G}(n, m)$, it cannot guarantee the existence of any graph in $\mathcal{G}(n, m)$.

Proof of Theorem 1.7: By the proof of Theorem 1.6, we only need to show that there is a connected (n, m)-graph belonging to $\mathcal{G}(n, m)$ for any given n and m such that $n-1 \leq m \leq n(n-1) / 2$.

If $m=n-1$ we have the path $P_{n} \in \mathcal{G}(n, n-1)$, which is connected, as required.
If $n \leq m \leq n(n-1) / 2$, then $k=\left\lfloor\frac{2 m}{n}\right\rfloor \geq 2$. Noticing that $2 m=k n+r$, we distinguish the following three cases to discuss.

Case 1. $r=0$, i.e., $2 m=n k$.
In this case, we need to find a connected k-regular (n, m)-graph. From the condition [2] for a sequence to be graphical, we know that a k-regular graph with n vertices exists if and only if $n \geq k+1$ and $n k$ is even. Noticing that $m \leq n(n-1) / 2$, there must be a k-regular (n, m)-graph which satisfies $2 m=n k$. Moreover, it is easy to know that there also exists a connected k-regular (n, m)-graph G which satisfies $2 m=n k$. That is, $G \in \mathcal{G}(n, m)$ and G is connected.

Case 2. r is even and $r \neq 0$.
From $2 m=n k+r$, we obtain $2(m-r / 2)=k n$. By Lemma 2.2, there is a k-regular graph H^{*} with n vertices and $m-r / 2$ edges, and its complement has a matching M^{*} with $r / 2$ edges. Adding all $r / 2$ edges that appear in M^{*} to the graph H^{*}, we then get a new graph, called G. One can see that $G \in G(n, m)$ and $H_{f}(G)=r f(k+1)+(n-r) f(k)$. That is, $G \in \mathcal{G}(n, m)$. From our construction, there is an n-cycle $v_{1} v_{2} \ldots v_{n} v_{1}$ in G, and so G is also connected.

Case 3. r is odd.
Note that $k<n-1$. First, we show that it is true for $r=1$. By Lemma 2.3, there is a k-regular graph $H^{* *} \in G(n-1, m-(k+1) / 2)$, which contains a matching $M^{* *}$ with $(k+1) / 2$ edges. Deleting all $(k+1) / 2$ edges in $M^{* *}$ from $H^{* *}$ and adding a new vertex such that this vertex is adjacent to all $k+1$ vertices of $M^{* *}$, we get a graph $G \in G(n, m)$, which satisfies $H_{f}(G)=f(k+1)+(n-1) f(k)$. By our construction, the graph G is also connected.

It remains to show that the result is true for $r \geq 3$ and r is odd. The equality can be written as $2(m-(r-1) / 2)=n k+1$. By Lemma 2.3, there is a k-regular graph $D_{1} \in G(n-1, m-(k+r) / 2)$, which contains a matching N_{1} with $(k+1) / 2$ edges. Deleting all $(k+1) / 2$ edges in N_{1} from D_{1} and adding a new vertex such that this vertex is adjacent to all $k+1$ vertices of N_{1}, we get a graph $D_{2} \in G(n, m-(r-1) / 2)$ and

Figure 4. $H^{* *}$ and G for $r=1$.
$H_{f}\left(D_{2}\right)=f(k+1)+(n-1) f(k)$. If $r-1 \leq k+1$, we can add any $(r-1) / 2$ edges in N_{1} to D_{2}. Thus, we find a graph $G \in G(n, m)$ satisfying $H_{f}(G)=r f(k+1)+(n-r) f(k)$. If $r-1>k+1$, we denote $s=r-k-2$. Notice that $2(m-(r-1) / 2)=n k+1$. Since r is odd, then both n and k are odd. That is, both $n-1$ and $k+r$ are even. From the construction we give above, in fact, by the proof of Case 3 in Lemma 2.2, there is a k-regular graph $D_{3} \in G(n-1, m-(k+r) / 2)$, whose complement has a matching N_{2} with $(n-3) / 2$ edges. Note that $s=r-k-2 \leq n-3-2=n-5<n-3$. So we can add any $s / 2$ edges in matching N_{2} to D_{3}. In this way, we obtain a graph D_{4} with $n-1$ vertices and $m-(k+1)$ edges. Moreover, it has s vertices of degree $k+1$ and $n-1-s$ vertices of degree k. Add a new vertex to D_{4} such that the new vertex is adjacent to any $k+1$ of the remaining $n-1-s$ vertices. It does works since $n-1-s=n-1-(r-k-2) \geq n-1-(n-2-k-2)=k+3$. Hence, we get a graph $G \in G(n, m)$ satisfying $H_{f}(G)=r f(k+1)+(n-r) f(k)$. It is easy to see from our construction that G is also connected. That is, there is a connected graph $G \in \mathcal{G}(n, m)$ when r is odd.

Figure 5. Graphs for $r \geq 3$ and $r-1>k+1$.

The above proof can guarantee the existence of connected graphs in $\mathcal{G}(n, m)$. The
following Algorithm 3 (similar to Algorithm 2) can be used to find all connected graphs in $\mathcal{G}(n, m)$.
$\overline{\text { Algorithm } 3 \text { Find all connected }(n, m) \text {-graphs with degree sequence } \boldsymbol{d}=\left(d_{1}, d_{2}, \ldots, d_{n}\right)}$ where $d_{i}=k+1$ and $d_{j}=k$ for $1 \leq i \leq r$ and $r+1 \leq j \leq n$.

Input: n, m and $\boldsymbol{d}=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ where $d_{i}=k+1$ and $d_{j}=k$ for $1 \leq i \leq r$ and $r+1 \leq j \leq n$.
Output: All connected graphs in $\mathcal{G}(n, m)$ for any given n and m, denoted by $\mathcal{G}^{*}(n, m)$.
: Construct a complete n-partite graph $H=\left(P_{1}, P_{2}, \ldots, P_{n}\right)$, such that each P_{i} for $1 \leq i \leq r$ has $k+1$ vertices and each P_{j} for $r+1 \leq j \leq n$ has k vertices.
Find all perfect matchings in H, denoted by $\left\{M_{1}, M_{2}, \ldots, M_{l}\right\}$.
Set $\mathcal{G}^{*}(n, m)=\emptyset$ and $s=1$.
while $s \leq l$ do
Construct a new graph G_{s} with vertex-set $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ and $p_{i} \sim p_{j}$ if and only if there is an edge between P_{i} and P_{j} in M_{s}.
if G_{s} is connected with no multiple edges and $G_{s} \not \nexists G$ for any $G \in \mathcal{G}^{*}(n, m)$ then

Set $\mathcal{G}^{*}(n, m)=\mathcal{G}^{*}(n, m) \bigcup\left\{G_{s}\right\}$.
else $\mathcal{G}^{*}(n, m)=\mathcal{G}^{*}(n, m)$.
Set $s=s+1$ and go to 4 .
return $\mathcal{G}^{*}(n, m)$.

Note that although this algorithm can be used to generate all connected graphs of $\mathcal{G}(n, m)$, it cannot guarantee the existence of any connected graph in $\mathcal{G}(n, m)$.

Acknowledgement: The authors are very grateful to the reviewers and editors for their valuable comments and suggestions, which were helpful in improving the presentation of the paper.

References

[1] A. Ali, I. Gutman, H. Saber, A. M. Alanazi, On bond incident degree indices of (n, m)-graphs, MATCH Commun. Math. Comput. Chem. 87 (2022) 89-96.
[2] J. A. Bondy, U. S. R. Murty, Graph Theory, Springer, London, 2008.
[3] S. M. Cioaba, Sums of powers of the degrees of a graph, Discr. Math. 306 (2008) 959-1964.
[4] R. Cruz, J. Rada, The path and the star as extremal values of vertex-degree-based topological indices among trees, MATCH Commun. Math. Comput. Chem. 82 (2019) 715-732.
[5] I. Gutman, Degree-based topological indices, Croat. Chem. Acta 86 (2013) 351-361.
[6] I. Gutman, B. Furtula, Novel Molecular Structure Descriptors - Theory and Applications I and II, Univ. Kragujevac, Kragujevac, 2010.
[7] V. Havel, A remark on the existence of finite graphs, Časopis Pest. Mat. 6 (1995) 161-179.
[8] Y. Hu, Y. Shi, X. Li, T. Xu, On molecular graphs with smallest and greatest zerothorder general Randić index, MATCH Commun. Math. Comput. Chem. 54 (2005) 425-434.
[9] Y. Hu, Y. Shi, X. Li, T. Xu, Connected graphs with minimum and maximum zerothorder general Randić index, Discr. Appl. Math. 155 (2007) 1044-1054.
[10] Z. Hu, L. Li, X. Li, D. Peng, Extremal graphs for topological index defined by a degree-based edge-weight function, MATCH Commun. Math. Comput. Chem. 88 (2022) 505-520.
[11] R. Lang, X. Li, S. Zhang, Inverse problem for the Zagreb index of molecular graphs, Appl. Math. J. Chinese Univ. Ser. A 4 (2003) 487-493.
[12] X. Li, I. Gutman, Mathematical Aspects of Randić-Type Molecular Structure Descriptors, Univ. Kragujevac, Kragujevac, 2006.
[13] X. Li, J. Zheng, A unified approach to the extremal trees for different indices, MATCH Commun. Math. Comput. Chem. 54 (2005) 195-208.
[14] N. Linial, E. Rozenman, An extremal problem on degree sequences of graphs, Graph. Comb. 18 (2002) 573-582.
[15] M. Molloy, B. Reed, A critical point for random graphs with a given degree sequence, Rand. Struct. Alg. 80 (1955) 477-480.
[16] J. Rada, R. Cruz, Vertex-degree-based topological indices over graphs, MATCH Commun. Math. Comput. Chem. 72 (2014) 603-616.
[17] G. Su, M. Meng, L. Cui, Z. Chen, X. Lan, The general zeroth-order Randić index of maximal outerplanar graphs and trees with k maximum degree vertices, Sci. Asia 43 (2017) \#387.
[18] I. Tomescu, Properties of connected (n, m)-graphs extremal relatively to vertex degree function index for convex functions, MATCH Commun. Math. Comput. Chem. 85 (2021) 285-294.
[19] I. Tomescu, Graphs with given cyclomatic number extremal relatively to vertex degree function index for convex functions, MATCH Commun. Math. Comput. Chem. 87 (2022) 109-114.
[20] N. Trinajstić, Chemical Graph Theory, CRC Press, Boca Raton, 1992.
[21] D. Vukičević, J. Đurđević, Bond additive modeling 10. Upper and lower bounds of bond incident degree indices of catacondensed fluoranthenes, Chem. Phys. Lett. 515 (2011) 186-189.

[^0]: *Supported by NSFC No. 12131013 and 11871034.

