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Abstract

For a simple graph G, du denotes the degree of a vertex u in G. Let f(x, y) be a
symmetric real function in two variables, and define the weight w(e) of an edge e =
uv of G by w(e) = f(du, dv). Then the topological index TIf (G) of G defined by a
degree-based edge-weight function f(x, y) is given as TIf (G) =

∑
uv∈E(G) f(du, dv).

Let f1(x, y) = f(x + 1, y) − f(x, y), f2(x, y) = f(x, y + 1) − f(x, y), f11 = (f1)1,
f12 = (f1)2 and f111 = (f11)1. If f(x, y) satisfies some of following proper-
ties: f1 > 0, f11 > 0, f12 ≥ 0, f111 ≥ 0 and for any x1 + y1 = x2 + y2 with
|x1− y1| > |x2− y2|, f(x1, y1) > f(x2, y2), we obtain some upper bounds and lower
bounds for the topological index TIf (G) and give some graphs of given order and
size achieving the bounds. For graphs with small size, we characterize the graphs
with maximal and minimal values of the index TIf (G).

1 Introduction

In this paper, we only consider simple, finite and undirected graphs. For a graph

G, we use V (G), E(G), n and m to denote the vertex-set, the edge-set, the number of

vertices and the number of edges of G, respectively. For a vertex u ∈ G, denote by NG(u)

the neighbor set of a vertex u in G and by du the degree of u in G. We denote by ∆ and δ
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the maximum degree and minimum degree of G, respectively. A graph G is called almost

regular if ∆−δ ≤ 1. We use Pl to denote a path with length l. For k graphs G1, G2, ..., Gk,

the union G1∪G2∪· · ·∪Gk is the graph with vertex-set V (G1)∪V (G2)∪· · ·∪V (Gk) and

edge-set E(G1)∪E(G2)∪ · · · ∪E(Gk). In particular, denote by kG = G1 ∪G2 ∪ · · · ∪Gk

if G = G1 = G2 = · · · = Gk. The join G ∨ H of two graphs G and H is the graph

obtained by joining edges between each vertex of G to all vertices of H. For terminology

and notation not defined here, we refer the reader to [3, 16].

As we all know, there are many degree-based topological indices or chemical indices

which are useful in chemistry [1,16], and each of them is defined as the sum of the edge-

weights defined by a symmetric real function f(x, y), for examples, the Zagreb indices

by functions f(x, y) = x + y and f(x, y) = xy, the Randić index [13] by the function

f(x, y) = 1√
xy
, and the ABC-index [5] by the function f(x, y) =

√
x+y−2

xy
, etc. For more

functions, we refer to [7, 9, 11].

For topological indices defined by summing up the vertex-weights, Yao et al. in [17]

and Tomescu in [14,15] studied the so-called vertex-degree function-index Hf (G), which

is defined as Hf (G) =
∑

v∈V (G) f(dv), where f(x) is a real function of one variable x. Yao

et al., Tomescu, and the present authors in [10] got some extremal results for the index

Hf (G). In this paper, we will study the topological index defined by summing up the

edge-weights of a graph with edge-weights given by a symmetric real function f(x, y),

which was introduced by Gutman in [8]. The definition is stated as follows.

Definition 1.1. Let G be a graph and f(x, y) be a symmetric real function. Define the

weight w(e) of an edge e = uv in G by f(du, dv). Then the topological index TIf (G) of G

with edge-weight function f(x, y) is defined as

TIf (G) =
∑

uv∈E(G)

f(du, dv).

Cruz and Rada studied the topological index TIf (G). In [12] Rada and Cruz obtained

some extremal results for graphs with n vertices but without isolated vertices, with no

restriction on the number of edges. Later in [4] Cruz and Rada obtained some extremal

results for trees with the weight function f(x, y) being an exponential type. Now we will

study extremal problem for graphs with n vertices and m edges.
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Before proceeding, we need the following notation and terminology. For a family G
of graphs, we call a graph G minimal in G if TIf (G) = minH∈G TIf (H), and maximal

in G if TIf (G) = maxH∈G TIf (H). For a symmetric real function f(x, y), let f1(x, y) =

f(x + 1, y) − f(x, y) and f2(x, y) = f(x, y + 1) − f(x, y). So we have (f1)1(x, y) =

f1(x+ 1, y)− f1(x, y) = f(x+ 2, y)− f(x+ 1, y)− f(x+ 1, y) + f(x, y). Let f11 := (f1)1

and f12 := (f1)2. We say that f ≥ (>,=, <,≤) 0 if f(x, y) ≥ (>,=, <,≤) 0 for any x

and y. f(x, y) is called (strictly) monotonically increasing if f1 is non-negative(positive).

Notice that if f(x, y) is partial differentiable and ∂f
∂x

is positive (non-negative), then f1 is

positive (non-negative). Sometimes we need the convexity of a real function. f(x, y) is

called convex if for any (x1, y1), (x2, y2) and µ ∈ (0, 1), f(µx1+(1−µ)x2, µy1+(1−µ)y2) ≤
µf(x1, y1) + (1 − µ)f(x2, y2). Notice that the convexity of f implies f11 ≥ 0. In this

paper, we mainly consider symmetric real functions f(x, y) with f11 > 0. The following

properties of a function frequently appear in some of our results. We say that a function

f(x, y) has the property P (P ′) if for any x1 + y1 = x2 + y2 and |x1 − y1| > |x2 − y2|,
f(x1, y1) > (<) f(x2, y2). It is not difficult to see that a symmetric and convex function

has the property P .

The following observations are easily seen.

Proposition 1.2. Let G be a graph and f(x, y) be a symmetric real function.

1. If G1, G2, . . . , Gt are the connected components of G, then TIf (G) =
∑t

i=1 TIf (Gi).

2. If there is a function g(x) such that f(x, y) = g(x) + g(y) and h(x) = xg(x), then

TIf (G) =
∑

uv∈E(G)

(g(du) + g(dv)) =
∑

v∈V (G)

dvg(dv) = Hh(G).

3. If f1 ≥ 0, then TIf (G) ≥ TIf (G− uv) for any uv ∈ E(G).

Our results focus on the maximal graphs and minimal graphs among the graphs with

n vertices and m edges. For the minimal graphs, we get a general lower bound.

Theorem 1.3. Let n and m be integers such that n ≥ 2 and 1 ≤ m ≤ n(n − 1)/2. If

f(x, y) is convex and partial differentiable with ∂f
∂x

≥ 0, then we have

TIf (G) ≥ mf(2m/n, 2m/n),

the bound is sharp since all regular graphs can achieve the lower bound.
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Although this lower bound is a rough estimate, it can also be achieved by regular

graphs. However, by a deeper analysis, we can get a clearer characterization for the

minimal graphs. We give two better results under the condition that the size m is small.

Notice that these minimal graphs are all almost regular graphs.

Theorem 1.4. Let n and m be integers such that n ≥ 2 and 1 ≤ m ≤ n/2. If f(x, y)

is symmetric and f1 > 0, then for any graph G with n vertices and m edges, we have

TIf (G) ≥ mf(1, 1), and the equality holds if and only if G = mK2 ∪ (n− 2m)K1.

Theorem 1.5. Suppose n and m are integers such that n ≥ 2 and n/2 ≤ m ≤ n − 1.

Let G(n,m) be the family of graphs with n vertices and m edges. If f(x, y) satisfies that

f1 > 0, f11 > 0, f12 ≥ 0 and f(1, 3) > f(2, 2), then every minimal graph in G(n,m) is an

almost regular graph. Moreover, if f(1, 1) + f(2, 2) = 2f(1, 2), then every almost regular

graphs is also a minimal graph in G(n,m).

For a non-trivial component G1 of graph G, a vertex v is a universal vertex in G1 if

dv = |V (G1)| − 1. In this situation, the maximal graphs have following property.

Theorem 1.6. Suppose n and m are integers such that n ≥ 2 and 1 ≤ m ≤ n(n− 1)/2.

Let G(n,m) be the family of graphs with n vertices and m edges. If f(x, y) has the property

P and satisfies that f1 > 0 and f11 > 0, then the maximal graphs in G(n,m) have exactly

one non-trivial component, and the component has a universal vertex.

When m ≤ n− 1, we can prove that the unique maximal graph is the union of a star

and some isolated vertices.

Theorem 1.7. Suppose n and m are integers such that n ≥ 2 and 1 ≤ m ≤ n−1. Let G

be a graph with n vertices and m edges. If f(x, y) has the property P and satisfies f1 > 0,

then TIf (G) ≤ mf(1,m), and the equality holds if and only if G = K1,m∪ (n−m−1)K1.

When m is larger, we find the unique maximal graph among all connected graphs.

Theorem 1.8. Suppose n and m are integers such that n ≥ 3 and n− 1 ≤ m ≤ 2n− 3.

Let γ = m− n+ 1 and Gc(n,m) be the family of connected graphs with n vertices and m

edges. If f(x, y) has the property P and satisfies that f1 > 0, f11 > 0 and f111 ≥ 0, then

we have that for any G ∈ Gc(n,m), TIf (G) ≤ (n−γ−2)f(n−1, 1)+γf(n−1, 2)+γf(γ+

1, 2)+f(n−1, γ+1), and the equality holds if and only if G = K1∨(K1,γ∪(n−γ−2)K1).
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The forgotten index [6] is defined as F (G) =
∑

uv∈E(G)(d
2
u + d2v) with edge-weight

function f(x, y) = x2 + y2, which has the property P and satisfies that f1 > 0, f11 > 0,

f12 ≥ 0 and f11 ≥ 0. Thus by Theorems 1.3 to 1.8, we can get the maximal graph and

the minimal graph immediately.

Moreover, some of our theorems are suitable for more indices. For instance, the

Sombor index [9] is defined as SO(G) =
∑

uv∈E(G)

√
d2u + d2v with edge-weight function

f(x, y) =
√
x2 + y2, which has the property P and satisfies that f1 > 0 and f11 > 0,

Thus, Theorems 1.3, 1.4, 1.6 and 1.7 can be applied to the Sombor index. Moreover,

Theorem 1.4 can be applied to more indices, such as the the general Randić index [2]

with edge-weight function f(x, y) = (xy)α by setting α ≥ 1.

Similar results hold for the edge-weight function f(x, y) has the property P ′ and

satisfying that f1 < 0 and f11 < 0. In this case, we can get the extremal graphs by

similar arguments.

2 Preliminaries

When we find the extremal graphs, we always start from a graph G and get another

graph G′ by some operations such that m(G) = m(G′) and n(G) = n(G′). In the process

of comparing the values of the index of these two graphs, we always use dx and N(x) to

denote the degree of x and the neighborhood of x in G, respectively.

The following lemma can be regarded as the binary function version of the Jensen

Inequality, which is significant for the estimate of the lower bound and the minimal

graphs.

Lemma 2.1. If f(x, y) is convex in a convex set D, then for any integer k, i ∈ {1, 2, . . . ,
k}, (xi, yi) ∈ D, ui > 0 and

∑k
i=1 µi = 1,

f

(
k∑

i=1

µixi,
k∑

i=1

µiyi

)
≤

k∑

i=1

µif(xi, yi).

Proof. By induction on k, when k = 1, 2, the inequality holds obviously. Suppose that

for k = t− 1, t ≥ 3, the inequality holds. Then for k = t,

f

(
k∑

i=1

µixi,
k∑

i=1

µiyi

)
= f

(
(1− uk)

k−1∑

i=1

µixi

1− µk

+ µkxk, (1− uk)
k−1∑

i=1

µiyi
1− µk

+ µkyk

)
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≤ (1− uk)f

(
k−1∑

i=1

µixi

1− µk

,
k−1∑

i=1

µiyi
1− µk

)
+ µkf(xk, yk)

≤ (1− uk)
k−1∑

i=1

µi

1− µk

f(xi, yi) + µkf(xk, yk)

=
k−1∑

i=1

µif(xi, yi) + µkf(xk, yk) =
k∑

i=1

µif(xi, yi),

the first inequality holds by the definition of convex function, and the second inequality

holds by the induction hypothesis. The proof is thus complete.

In a graph, we say a path Pk = v0v1 . . . vk is a pendant path if dvi = 2 for any i with

1 ≤ i ≤ k − 1 and dvk = 1, and v0 is called the origin vertex of the pendant path.

Lemma 2.2. Suppose k, l ≥ 1 are integers, and G is a graph containing two pendant paths

Pk = wv1 . . . vk and Pl = wu1 . . . ul such that dw ≥ 3 (see Figure 1). If G′ = G+ u1vk −
wu1, then TIf (G

′) < TIf (G) provided that f1 > 0 and f(2, 2) < min{f(1, 3), f(2,1)+f(2,3)
2

}.

Proof. Let w = v0. Since f(x + 1, y) > f(x, y), we have that TIf (G
′)− TIf (G) is equal

to

∑

x∈N(w)\u1

[f(dx, dw − 1)− f(dx, dw)] + f(dvk−1
, 2)− f(dvk−1

, 1) + f(2, 2)− f(dw, 2)

< f(dvk−1
, 2)− f(dvk−1

, 1) + f(2, 2)− f(dw, 2).

Figure 1. The graphs G and G′ in Lemma 2.2.

If k − 1 ≥ 1, then dvk−1
= 2. We can conclude that f(2, 2) − f(2, 1) + f(2, 2) −

f(2, dw) ≤ f(2, 2) − f(2, 1) + f(2, 2) − f(2, 3) < 0. If k − 1 = 0, then f(dw, 2) −
f(dw, 1)+ f(2, 2)− f(dw, 2) = −f(dw, 1)+ f(2, 2) ≤ −f(3, 1)+ f(2, 2) < 0. It shows that

TIf (G
′)− TIf (G) < 0 holds for both two cases. The proof is thus complete.

Applying Lemma 2.2, we get the unique minimal tree among all trees of order n.
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Lemma 2.3. Suppose T is a tree with n vertices. If f(x, y) satisfies that f1 > 0 and

f(2, 2) < min{f(1, 3), f(2,1)+f(2,3)
2

}, then TIf (T ) ≥ 2f(1, 2) + (n − 1)f(2, 2), and the

equality holds if and only if T is the path Pn−1.

Proof. By a contradiction. Suppose T is a minimal graph among trees with n vertices

and T is not a path. Then T contains a vertex of degree at least three. Moreover, since

T satisfies the condition of Lemma 2.2, we can get a new tree T ′ with TIf (T
′) < TIf (T ),

which contradicts the minimality of T . The proof is thus complete.

Lemma 2.4. Suppose Gc(n, n) is the family of connected graphs with n vertices and n

edges. If f(x, y) satisfies that f1 > 0, f11 > 0, f12 ≥ 0, and f(1, 3) > f(2, 2), then for

any graph G ∈ Gc(n, n), TIf (G) ≥ nf(2, 2), and the equality holds if and only if G is a

cycle.

Proof. Suppose G is a minimal graph in Gc(n, n). Since |E(G)| = |V (G)| = n and G is

connected, G contains a unique cycle. If G is not a cycle itself, then by Lemma 2.2, G

is a cycle C with some paths pendant on different origin vertices. That is, ∆(G) ≤ 3.

Let P 1 be a pendant path in G with the origin vertex z in C and the leaf vertex, say y.

Then, dz = 3 and dy = 1. We denote the neighbor of y by y′. It follows that dy′ is either

2 or 3. We distinguish the following cases to discuss.

Case 1. There exists a neighbor w of z in the cycle C with degree 2.

Then we delete the edge zw in E(C) and add the edge wy. Thus we get a new graph

G1 ∈ Gc(n, n); see Figure 2.

Figure 2. The graphs G and G1 for Case 1 in the proof of Lemma 2.4.
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Then,

TIf (G)−TIf (G1) =
∑

v∈N(z)\{w,y}
[f(dv, 3)−f(dv, 2)]+f(3, 2)+f(1, dy′)−f(2, 2)−f(2, dy′) > 0,

which contradicts the minimality of G.

Case 2. All the neighbors of z in the cycle C have degree 3.

Then there exists another pendant path P 2 in H with the origin vertex w ∈ N(z) and

the leaf vertex, say l. We denote the neighbor of l by l′. It follows that dl′ is either 2 or

3. Deleting the edge wz and adding the edge yl, we get a new graph G2; see Figure 3.

Then,

Figure 3. The graphs G and G2 for Case 2 in the proof of Lemma 2.4.

TIf (G)− TIf (G2) =
∑

v∈N(z)\{w,y}
[f(dv, 3)− f(dv, 2)] +

∑

v∈N(w)\{z,l}
[f(dv, 3)− f(dv, 2)]

+ f(3, 3) + f(1, dy′) + f(1, dl′)− f(2, dy′)− f(2, dl′)− f(2, 2)

> f(3, 3)− f(2, 2)− f1(1, dl′)− f1(1, dy′).

Note that 2 ≤ dy′ , dl′ ≤ 3, f11 > 0, f12 ≥ 0 and f(1, 3) > f(2, 2). So,

TIf (G)− TIf (G2) > f(3, 3)− f(2, 3) + f(3, 2)− f(2, 2)− f1(1, dl′)− f1(1, dy′)

= f1(2, 3) + f1(2, 2)− f1(1, dl′)− f1(1, dy′) ≥ f1(2, 3) + f1(2, 2)− 2f1(1, 3)

= f(3, 3) + 2f(1, 3)− f(2, 2)− 2f(2, 3) > f(3, 3)− 2f(2, 3) + f(1, 3)

= f1(2, 3)− f1(1, 3) > 0.

Hence, we find a graph G2 ∈ Gc(n, n) such that TIf (G) > TIf (G2), a contradiction.

Therefore, the minimal graph G is a cycle itself. The proof is now complete.

Next we consider the number of non-trivial components in the maximal graphs and

get the following result.
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Lemma 2.5. Suppose n and m are integers such that n ≥ 2 and 1 ≤ m ≤ n(n − 1)/2.

Let G(n,m) be the family of graphs with n vertices and m edges. If f(x, y) is symmetric

and f1 > 0, then the maximal graphs in G(n,m) have exactly one non-trivial component.

Proof. Suppose to the contrary that a maximal graph G in G(n,m) contains at least

two non-trivial components. Choose two vertices v1 and v2 from two distinct non-trivial

components of G. Then we have that dv1 ≥ 1 and dv2 ≥ 1. Contracting v1 and v2

and adding an isolated vertex w, we get a new graph G′ ∈ G(n,m) with less non-trivial

components; see Figure 4.

Figure 4. The graphs G and G′ in the proof of Lemma 2.5.

Then we have TIf (G
′)− TIf (G) is equal to

∑

x∈N(v1)

[f(dv1 + dv2 , dx)− f(dv1 , dx)] +
∑

x∈N(v2)

[f(dv1 + dv2 , dx)− f(dv2 , dx)] > 0,

which contradicts of the maximality of G. Thus the maximal graphs in G(n,m) have at

most one non-trivial component.

Before considering the maximal graphs with larger size, we introduce a previous result

on the vertex-degree function-index from [15]. Let f1(x) = f(x+1)−f(x). f(x) is convex

if f1(x+ 1) ≥ f1(x). In fact, we use a weaker version of Theorem 2.3 of [15].

Lemma 2.6. [15] Suppose n and m are integers such that n ≥ 2 and 1 ≤ m ≤ n − 1.

Let G be a graph with n vertices and m edges. If f(x) and f1(x) are both convex, then

Hf (G) ≤ f(m) +mf(1) + (n−m− 1)f(0),

and G = K1,m ∪ (n−m− 1)K1 can achieve this bound.
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3 Proofs of Theorems 1.3, 1.4 and 1.5

In this section we will give the proofs of three results on the lower bounds.

Proof of Theorem 1.3: Assume that the two endpoints of e are r(e) and l(e) for any

edge e ∈ E(G). It follows from the definition of TIf (G) that

TIf (G) =
∑

e∈E(G)

f(dr(e), dl(e)) .

Let
∑

1 =
∑

e∈E(G) dr(e) and
∑

2 =
∑

e∈E(G) dl(e). Then using Lemma 2.1, we have

TIf (G) ≥ mf

(∑

1

/m,
∑

2

/m

)
.

By the symmetry and convexity of f(x, y), we have

f

(∑
1

m
,

∑
2

m

)
=

[
1

2
f

(∑
1

m
,

∑
2

m

)
+

1

2
f

(∑
2

m
,

∑
1

m

)]
≥ f

(∑
1+
∑

2

2m
,

∑
1+
∑

2

2m

)
.

Notice that
∑

1+
∑

2 =
∑

e∈E(G)(dr(e) + dl(e)) =
∑

v∈V (G) d
2
v. Then

f

(∑
1

m
,

∑
2

m

)
≥ f

(∑
1+
∑

2

2m
,

∑
1+
∑

2

2m

)
= f

(∑
v∈V (G) d

2
v

2m
,

∑
v∈V (G) d

2
v

2m

)
.

From the Cauchy-Schwarz inequality and the monotonicity of f(x, y), we have

f

(∑
v∈V (G) d

2
v

2m
,

∑
v∈V (G) d

2
v

2m

)
≥ f

(
4m2

2mn
,
4m2

2mn

)
= f

(
2m

n
,
2m

n

)
.

Combining the inequalities above, we can deduce that TIf (G) ≥ mf(2m/n, 2m/n), com-

pleting the proof.

Proof of Theorem 1.4: SupposeG is a minimal graph. We assert that ∆(G) ≤ 1. If not,

then suppose there is a vertex u ∈ V (G) of degree at least 2. Since
∑

v∈V (G) dv = 2m ≤ n,

there exists an isolated vertex w ∈ V (G). Suppose x ∈ N(u), deleting ux and adding

wx, we obtain a new graph G′. Then

TIf (G)− TIf (G
′) =

∑

v∈N(u)\x
[f(du, dv)− f(du − 1, dv)] + f(du, dx)− f(1, dx) > 0,

which contradicts the minimality of G. Consequently, the degree of each vertex in G is

at most 1, which means that G is the union of a matching and some isolated vertices.

The proof is thus complete.



515

Proof of Theorem 1.5: Suppose G is a minimal graph in G(n,m). First, we claim

that there is no isolated vertices in G. Otherwise, suppose v is an isolated vertex. Since

m ≥ n/2, there is a vertex u with degree at least 2. Suppose x ∈ N(u), deleting ux and

adding vx, we get a new graph G′ ∈ G(n,m). Then

TIf (G)− TIf (G
′) =

∑

v∈N(u)\x
[f(du, dv)− f(du − 1, dv)] + f(du, dx)− f(1, dx) > 0,

which contracts the minimality of G. Thus G contains no isolated vertices.

Suppose H1, H2, . . . , Hs are the components of G containing cycles and K1, K2, . . . , Kt

are the rest components in G that do not contain cycles. Since G contains no isolated

vertices, each component has at least 2 vertices. By Lemma 2.3 and Proposition 1.2, the

t connected components Ki of G that do not contain cycles must be paths. If s = 0, then

G is almost regular.

It remains to show that G is almost regular for s ≥ 1. Moreover, since |E(Hi)| ≥
|V (Hi)| for any i and |E(Kj)| = |V (Kj)| − 1 for any j, we have

m =
s∑

i=1

|E(Hi)|+
t∑

j=1

|E(Kj)| ≥
s∑

i=1

|V (Hi)|+
t∑

j=1

(|V (Kj)| − 1) = n− t.

Thus, t ≥ 1.

If t = 1, we know that |E(Hi)| = |V (Hi)| for any i. Applying Lemma 2.4, Hi is a

cycle for any i. Thus, G is almost regular. If t ≥ 2, we assert that Hi is a cycle for

all 1 ≤ i ≤ s. Otherwise, there is a cycle C and a vertex w ∈ C in some connected

component Hi such that dw ≥ 3. Pick an edge zw ∈ E(C). We choose a leaf x ∈ K1

and a leaf y ∈ K2. In both two cases, x, y are not adjacent. Assume that x′ and y′ are

neighbor of x and y, respectively. We obtain a new graph G′ ∈ G(n,m) from G by adding

xy and deleting wz; see Figure 5. Then

TIf (G)− TIf (G
′) =

∑

v∈N(w)\z
[f(dw, dv)− f(dw − 1, dv)] +

∑

v∈N(z)\w
[f(dz, dv)− f(dz − 1, dv)]

+ f(dx′ , 1) + f(dy′ , 1)− f(dx′ , 2)− f(dy′2) + f(dz, dw)− f(dx + 1, fy + 1)

=
∑

v∈N(w)\z
f1(dw − 1, dv) +

∑

v∈N(z)\w
f1(dz − 1, dv)

− f1(1, dx′)− f1(1, dy′) + f(dz, dw)− f(2, 2).
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Recall that dw ≥ 3, dz ≥ 2, dx′ ≤ 2 and dy′ ≤ 2. Using the property that f12 ≥ 0 and

f11 > 0, we have that TIf (G)− TIf (G
′) is at least

f1(dw − 1, 2) + f1(dz − 1, 2)− f1(1, 2)− f1(1, 2) + f(dz, dw)− f(2, 2) > 0,

which contradicts the minimality of G. Thus, Hi is a cycle for all i with 1 ≤ i ≤ s and

Kj is a path for all j with 1 ≤ j ≤ t in G.

Figure 5. The graphs G and G′ for the case that s ≥ 1 and t ≥ 2 in the proof of
Theorem 1.5.

Finally, since the degree of each vertex inG is 1 or 2, G has exactly 2m−n vertices with

degree 2 and 2n − 2m vertices with degree 1. Suppose G has r components isomorphic

to P1. Then there are (n−m− r) path-components whose lengths are at least 2. Thus

TIf (G) = rf(1, 1) + 2(n−m− r)f(1, 2) + (3m− 2n+ r)f(2, 2)

= 2(n−m)f(1, 2) + (3m− 2n)f(2, 2) + r[f(1, 1)− 2f(1, 2) + f(2, 2)].

Note that from f12 ≥ 0 one can deduce that f(1, 1)− 2f(1, 2) + f(2, 2) ≥ 0. If f(1, 1) +

f(2, 2) = 2f(1, 2), then TIf (G) is exactly a constant for any G with the property. Thus

every almost regular graph is a minimal graph in G(n,m).

The proof is now complete.
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4 Proofs of Theorems 1.6, 1.7 and 1.8

In this section we will give the proofs of three results on the upper bounds.

Proof of Theorem 1.6: Suppose G is a maximal graph in G(n,m). By Lemma 2.5,

G has only one non-trivial component G1. To prove the theorem, it is sufficient to show

that G1 contains a vertex with degree |V (G1)| − 1. This result holds when m ≤ 2. Next,

we assume m ≥ 3.

Choose a vertex x ∈ G1 such that dx = ∆. If dx ≤ |V (G1)| − 2, we can easily

find two different vertices y ∈ N(x) and z ∈ N(y) − N(x) − x. For convenience, let

A = N(x)−N(y)− y, B = N(x) ∩N(y), C = N(y)−N(x)− x and |C| = k ≥ 1. Note

that A, B and C are pairwise disjoint. We construct a new graph G′ from G by deleting

yv and adding xv for all v ∈ C; see Figure 6. It is clear that G′ ∈ G(n,m).

Figure 6. The graphs G and G′ in the proof of Theorem 1.6.

Since f(x, y) has the property P and satisfies that f1 > 0 and f11 > 0, we have

TIf (G
′)− TIf (G) =

∑

v∈A∪B∪C
f(dx + k, dv) +

∑

v∈B
f(dy − k, dv) + f(dx + k, dy − k)

−
[ ∑

v∈A∪B
f(dx, dv) +

∑

v∈B∪C
f(dy, dv) + f(dx, dy)

]

=
∑

v∈A
[f(dx + k, dv)− f(dx, dv)] +

∑

v∈C
[f(dx + k, dv)− f(dy, dv)]

+
∑

v∈B
[f(dx + k, dv) + f(dy − k, dv)− f(dx, dv)− f(dy, dv)]

+ [f(dx + k, dy − k)− f(dx, dy)] > 0.

Hence TIf (G
′) > TIf (G), which contradicts the maximality of G.

The proof is thus complete.



518

Proof of Theorem 1.7: Noting that du + dv ≤ 1 + m for any uv ∈ E(G), we have

f(du, dv) ≤ f(du + dv − 1, 1) ≤ f(m, 1). Thus

TIf (G) =
∑

uv∈E(G)

f(du, dv) ≤
∑

e∈E(G)

f(1,m) ≤ mf(1,m),

with equality if and only if G = K1,m ∪ (n−m− 1)K1. The proof is thus complete.

Proof of Theorem 1.8: Suppose G is a maximal graph in the family Gc(n,m) of

connected graphs of order n and size m. Then by Theorem 1.6, we know that G has a

universal vertex v. It follows from m ≥ n− 1 that dx = n− 1. Then we have

TIf (G) = Ig(G− v) +Hh(G− v),

where g(x, y) = f(x+1, y+1) and h(x) = f(n−1, x+1). Notice that |V (G−v)| = n−1

and |E(G− v)| = m− n+ 1 = γ ≤ n− 2.

First, we show that g(x, y) and G − v satisfy the conditions of Theorem 1.7. It

is obvious that g(x, y) is symmetric and g1 > 0, since g(x, y) = g(y, x) and g1(x, y) =

f1(x−1, y). For any four integers x1, x2, y1 and y2 satisfying the equation x1+y1 = x2+y2,

(x1 − 1) + (y1 − 1) = (x2 − 1) + (y2 − 1) is still a constant. Thus

g(x1, y1) = f(x1 − 1, y1 − 1) > f(x2 − 1, y2 − 1) = g(x2, y2)

if |(x1 − 1) − (y1 − 1)| > |(x2 − 1) − (y2 − 1)|, i.e., |x1 − y1| > |x2 − y2|. Applying

Theorem 1.7, we have

Ig(G− v) ≤ γg(γ, 1) = γf(γ + 1, 2),

with equality if and only if G− v is the union of a star and some isolated vertices.

To estimate Hh(G−v), we apply Lemma 2.6. Since h(x+1)−h(x) = f1(n−1, x+1),

f11(n − 1, x + 1) ≥ 0 implies that h(x + 2) − h(x + 1) ≥ h(x + 1) − h(x), which means

that h(x) is convex. Similarly, f111(n− 1, x+1) ≥ 0 implies that h1(x) = h(x+1)−h(x)

is convex. Consequently, we have

Hh(G− v) ≤ h(γ) + γh(1) + (n− γ − 2)h(0)

= f(n− 1, γ + 1) + γf(n− 1, 2) + (n− γ − 2)f(n− 1, 1).
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It implies that

TIf (G) = Ig(G− v) +Hh(G− v) ≤ γf(γ + 1, 2)

+ f(n− 1, γ + 1) + γf(n− 1, 2) + (n− γ − 2)f(n− 1, 1),

with equality if and only if G − v is the union of a star and some isolated vertices, i.e.,

G = K1 ∨ (K1,γ ∪ (n− γ − 2)K1).

The proof is now complete.
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