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Instituto de Matemáticas, Universidad de Antioquia Medelĺın, Colombia
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Abstract

In this paper we present a general criteria to decide when the cycle Cn on n
vertices and Hn,1, the coalescence of the star Sn−2 with the cycle C3, are extremal
unicyclic graphs of a vertex-degree-based (VDB) topological index. We show that
many of the well known results on extremal values of VDB topological indices over
unicyclic graphs can be obtained as particular cases of ours. Moreover, we ob-
tain new results on extremal values of VDB topological indices, such as the gener-
alized Geometric-Arithmetic indices, the generalized Atom-Bond-Connectivity in-
dices, and its exponentials, among others.

1 Introduction

Let G be a simple graph with set of vertices V (G) and set of edges E (G). Given a vertex

u of G, the open neighborhood of u, denoted by NG (u), is the set of vertices adjacent

to u and the degree of u, denoted by dG (u) = d (u), is the cardinality of the set NG (u).

If u, v ∈ V (G) and uv ∈ E (G), by G − uv we denote the graph obtained from G by

removing the edge uv. Similarly, if uv /∈ E (G), G+ uv denotes the graph obtained from

G by adding the edge uv.

Recall that an unicyclic graph with n vertices is a connected graph with m = n edges.

We denote by Gn,1 the set of unicyclic graphs with n vertices. This set of graphs are

of great importance and have been widely studied in graphical indices, chemical graph
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theory and spectral graph theory, as we can see in the recent papers [1, 3–5, 7, 23, 24, 28–

31,37,38,41–44,46].

A formal definition of a vertex-degree-based topological index (VDB topological index)

is as follows. Let Gn be the set of simple graphs with n non-isolated vertices. Consider

the set

K = {(i, j) ∈ N× N : 1 ≤ i ≤ j ≤ n− 1}

and for a graph G ∈ Gn, denote by mi,j (G) the number of edges in G joining vertices of

degree i and j. A VDB topological index over Gn is a function φ : Gn −→ R induced by

real numbers {φij}(i,j)∈K defined as

φ (G) =
∑

(i,j)∈K
mi,j (G)φi,j, (1)

for every G ∈ Gn. We note that the topological indices of the form (2) were referred as

bond incident degree indices in [34]. These indices were also considered in [26]. A list of

well known VDB topological indices is presented in Table 1.

Index Symbol φij

First Zagreb [22] M1 i+ j
Second Zagreb [22] M2 ij

Sombor [21] SO
√
i2 + j2

Forgotten [19] F i2 + j2

Randić [33] χ 1√
ij

Harmonic [47] H 2
i+j

Sum-Connectivity [45] SC 1√
i+j

Geometric-Arithmetic [35] GA 2
√
ij

i+j

Arithmetic-Geometric [27] AG i+j
2
√
ij

Atom-Bond-Connectivity [16] ABC
√

i+j−2
ij

Augmented Zagreb [17] AZ
(

ij
i+j−2

)3

Table 1. Some well-known VDB topological indices.

The exponential of the VDB topological index φ was introduced in [32] as the VDB

topological index eφ induced by the real numbers {eφij}(i,j)∈K . These indices have nice

discrimination properties and there are several recent papers solving the problem of finding

extremal graphs with respect to the exponentials of some of the VDB topological indices

listed in Table 1 (see [8–12]).

In the case of unicyclic graphs, for G ∈ Gn,1, m1,1(G) = 0 and mx,y(G) = 0 for any

1 ≤ x ≤ y ≤ n − 1 such that x + y > n + 1. Then, the definition in (1) is rewritten as
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follows

φ (G) =
∑

(x,y)∈P
mx,y (G)φ (x, y) , (2)

where

P = {(x, y) ∈ N× N : 1 ≤ x ≤ y ≤ n− 1, (x, y) ̸= (1, 1) , x+ y ≤ n+ 1} .

When it is required, we consider φ (x, y) as a symmetric, continuously differentiable func-

tion defined over the set [1,+∞)× [1,+∞).

We denote by Cn the cycle with n vertices and by Hn,1 the unicyclic graph obtained

from the star Sn by adding an edge between two pendent vertices.

In this paper we find general conditions on the function φ (x, y) in order to assure that

the cycle Cn (see Section 2) and the graph Hn,1 (see Section 3) are extremal unicyclic

graphs with respect to the VDB topological index φ.

Using results in Section 2, we recover known results about the cycle Cn as an extremal

graph with respect to the First Zagreb [13], the Second Zagreb [13], the Sombor [8],

the Forgotten [1], the Harmonic [25], the Sum-Connectivity [14], the Randić [6], the

Geometric-Arithmetic [15] and the Arithmetic-Geometric [36] indices. As an application

we prove that the cycle Cn is an extremal graph with respect to the exponentials of the

mentioned VDB indices except for the case of the exponential of the Randic index.

In the case of the graph Hn,1, using the results in Section 3, we recover known results

about this graph as an extremal graph with respect to the First Zagreb [13], the Sombor

[8], the Forgotten [1], the Atom-Bond-Connectyivity [40] and the Augmented Zagreb [44]

indices. As an application we prove that the graph Hn,1 is an extremal graph with respect

to the exponentials of the First Zagreb, the Second Zagreb, the Sombor, the Forgotten,

the Harmonic, the Sum-Connectivity, the Atom-Bond-Connectyivity and the Augmented

Zagreb indices.

In summary, the results in Section 2 and Section 3 unify the theory of extreme values

of VDB topological indices on unicyclic graphs, and also can be applied to deduce when

Cn and Hn,1 are extremal graphs with respect to new VDB topological indices on unicyclic

graphs.

Finally, in Section 4, we discuss some open problems.
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2 VDB topological indices with the cycle as extremal

unicyclic graph

We start this section considering VDB topological indices induced by the function φ (x, y)

which is monotone as a function of x ∈ [1,+∞) for each fixed value of y ∈ [1,+∞). In this

case we find conditions on the function φ (x, y) in order to assure that the cycle Cn is an

extremal unicyclic graph with respect to the VDB topological index φ. These conditions

are obtained by applying transformations used in [13] to a general VDB topological index.

For integer values of x ≥ 1 and y ≥ 1, we introduce the following functions associated

to φ that will be used in sequel:

f1 (x) = 2φ (x+ 2, 1)− φ (x+ 1, 2)− φ (2, 1) ,

f2 (x) = φ (x+ 2, 2) + φ (x+ 2, 1)− φ (x+ 1, 2)− φ (2, 2) ,

f3 (x) = 2φ (x+ 2, 2)− φ (x+ 1, 2)− 2φ (2, 2) + φ (2, 1) ,

f4 (x, y) = φ (x, 3)− φ (x, 2) + φ (y, 3)− φ (y, 2)− φ (2, 2) + φ (3, 1) ,

f5 (x, y) = φ (x, 3)− φ (x, 2) + φ (y, 3)− φ (y, 2)− 2φ (2, 2) + φ (2, 1) + φ (3, 2) .

For each integer value of 2 ≤ x ≤ y ≤ 3, the values of f4 (x, y) and f5 (x, y) for

known VDB topological indices are presented in Table 2. The correspondent values for

the exponentials of these indices are presented in Table 3.

M1 M2 SO F H SC χ
f4 (2, 2) 2 3 1.888 12 −0.200 −0.106 −0.106
f4 (2, 3) 2 4 1.748 12 −0.167 −0.092 −0.089
f4 (3, 3) 2 5 1.608 12 −0.133 −0.078 −0.072
f5 (2, 2) 2 4 1.739 12 −0.133 −0.081 −0.068
f5 (2, 3) 2 5 1.599 12 −0.100 −0.067 −0.051
f5 (3, 3) 2 6 1.459 12 −0.067 −0.053 −0.034

Table 2. Values of f4 (x, y) and f5 (x, y) for known VDB topological indices.

Let p ≥ 3, 1 ≤ i < p , G ∈ Gn,1, u ∈ V (G) and Gp,i ∈ Gn+p−1,1 is obtained from G as

depicted in Figure 1.

Proposition 2.1. Let φ be a VDB topological index defined as in (2).

1. If φ (x, y) is increasing as a function of x and f1 (x) ≥ 0, f2 (x) ≥ 0 and f3 (x) ≥ 0

for each integer value of x ≥ 1, then φ (Gp,i) ≥ φ (Gp,1) .

2. If φ (x, y) is decreasing as a function of x and f1 (x) ≤ 0, f2 (x) ≤ 0 and f3 (x) ≤ 0

for each integer value of x ≥ 1, then φ (Gp,i) ≤ φ (Gp,1).
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eM1 eM2 eSO eF eH eSC eχ

f4 (2, 2) 187.63 663.15 46.47 8.98× 105 −0.314 −0.170 −0.156
f4 (2, 3) 348.83 8014.0 59.38 6.57× 107 −0.253 −0.145 −0.121
f4 (3, 3) 510.03 15365 72.28 1.30× 108 −0.192 −0.120 −0.085
f5 (2, 2) 246.93 999.28 52.09 1.32× 106 −0.172 −0.122 −0.054
f5 (2, 3) 408.13 8350.1 64.99 6.61× 107 −0.111 −0.097 −0.018
f5 (3, 3) 569.33 15701 77.90 1.31× 108 −0.050 −0.072 0.018

Table 3. Values of f4 (x, y) and f5 (x, y) for the exponentials of known VDB topo-
logical indices.

G

1 i

u

p

Gp,i

Figure 1. The unicyclic graph Gp,i.

Proof. Let dG(u) = x ≥ 1 and NG (u) = {u1, . . . , ux}. Since Gp,i ∈ Gn,1, we may assume

dG (ux) = y ≥ 2. We prove part 1. The proof of the second part is similar.

If p = 3, then

φ (G3,2)− φ (G3,1) =
x∑

j=1

[φ (x+ 2, dG (uj))− φ (x+ 1, dG (uj))]

+2φ (x+ 2, 1)− φ (x+ 1, 2)− φ (2, 1)

≥ 2φ (x+ 2, 1)− φ (x+ 1, 2)− φ (2, 1) = f1 (x) .

If p > 3 and i = 2, then

φ (Gp,2)− φ (Gp,1) =
x∑

j=1

[φ (x+ 2, dG (uj))− φ (x+ 1, dG (uj))]

+φ (x+ 2, 2)− φ (2, 2) + φ (x+ 2, 1)− φ (x+ 1, 2)

≥ φ (x+ 2, 2)− φ (2, 2) + φ (x+ 2, 1)− φ (x+ 1, 2) = f2 (x) .

If 2 < i < p
2
, then

φ (Gp,i)− φ (Gp,1) =
x∑

j=1

[φ (x+ 2, dG (uj))− φ (x+ 1, dG (uj))]

+2φ (x+ 2, 2)− φ (x+ 1, 2)− 2φ (2, 2) + φ (2, 1)

≥ 2φ (x+ 2, 2)− φ (x+ 1, 2)− 2φ (2, 2) + φ (2, 1) = f3 (x) .
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Proposition 2.2. Let φ be a VDB topological index defined as in (2), G1 ∈ Gn,1 such

that each vertex in the unique cycle of G1 has degree 2 or 3. Let w1 . . . wk be a pendent

path of G1 such that uw1, vw1 ∈ E (G1) and G2 = G1 − vw1 + vwk (see Figure 2).

u

v

w1 wk

G1

u

v

w1

wk

G2

Figure 2. Graph used in Proposition 2.2.

1. If f4 (x, y) ≥ 0 and f5 (x, y) ≥ 0 for each integer value of 2 ≤ x ≤ y ≤ 3, then

φ (G1) ≥ φ (G2).

2. If f4 (x, y) ≤ 0 and f5 (x, y) ≤ 0 for each integer value of 2 ≤ x ≤ y ≤ 3, then

φ (G1) ≤ φ (G2) .

Proof. Assume that dG1 (u) = x and dG1 (v) = y. It is easy to see that if k = 2, φ (G1)−
φ (G2) = f4 (x, y) and, if k > 2, φ (G1)− φ (G2) = f5 (x, y) .

Theorem 2.3. Let φ be a VDB topological index defined as in (2).

1. If φ (x, y) is increasing as a function of x, f1 (x) ≥ 0, f2 (x) ≥ 0, f3 (x) ≥ 0 for

each integer value of x ≥ 1 and f4 (x, y) ≥ 0, f5 (x, y) ≥ 0 for each integer value of

2 ≤ x ≤ y ≤ 3, then φ (G) ≥ φ (Cn) for any G ∈ Gn,1.

2. If φ (x, y) is decreasing as a function of x, f1 (x) ≤ 0, f2 (x) ≤ 0, f3 (x) ≤ 0 for

each integer value of x ≥ 1 and f4 (x, y) ≤ 0, f5 (x, y) ≤ 0 for each integer value of

2 ≤ x ≤ y ≤ 3, then φ (G) ≤ φ (Cn) for any G ∈ Gn,1.

Proof. We prove part 1. The proof of the second part is similar.

Let G ∈ Gn,1. Since f1 (x) ≥ 0, f2 (x) ≥ 0, f3 (x) ≥ 0 for each integer value of x ≥ 1,

by Proposition 2.1, φ (G) ≥ φ (G′), where G′ is a unicyclic graph with all the vertices in

the cycle having degree 2 or 3, and each of such vertices of degree 3 is attached to a path.

Finally, by Proposition 2.2, the fact that f4 (x, y) ≥ 0, f5 (x, y) ≥ 0 for each integer value

of 2 ≤ x ≤ y ≤ 3 implies φ (G) ≥ φ (Cn).
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In the next two corollaries we recover known results about the cycle as an extremal

unicyclic graph for several VDB topological indices [1, 6, 8, 13,14,25].

Corollary 2.4. The cycle Cn is the minimal graph over Gn,1 with respect to M1,M2,SO,
and F .

Proof. For each of these indices we check that conditions in part 1 of Theorem 2.3 hold.

Specifically we check that φ (x, y) is increasing as a function of x and f1 (x) ≥ 0, f2 (x) ≥ 0,

f3 (x) ≥ 0 for each integer value of x ≥ 1. The conditions f4 (x, y) ≥ 0, f5 (x, y) ≥ 0 for

each integer value of 2 ≤ x ≤ y ≤ 3 can be checked in Table 2.

1. The First Zagreb index M1 is induced by the function φ (x, y) = x + y, which is

increasing as a function of x for each fixed value of y ≥ 1. We have

f1 (x) = f2 (x) = f3 (x) = x.

2. The Second Zagreb index M2 is induced by the function φ (x, y) = xy, which is

increasing as a function of x for each fixed value of y ≥ 1. We have

f1 (x) = 0, f2 (x) = x, f3 (x) = 2x.

3. The Sombor index SO is induced by the function φ (x, y) =
√
x2 + y2 which is

increasing as a function of x for each fixed value of y ≥ 1. For x ≥ 1 we have

f1 (x) = 2
√
x2 + 4x+ 5−

√
x2 + 2x+ 5−

√
5 >

√
x2 + 4x+ 5−

√
5 > 0,

f2 (x) =
√
x2 + 4x+ 5−

√
x2 + 2x+ 5 +

√
x2 + 4x+ 8− 2

√
2 > 0,

f3 (x) = 2
√
x2 + 4x+ 8−

√
x2 + 2x+ 5− 4

√
2 +

√
5

>
√
x2 + 4x+ 8− 4

√
2 +

√
5 >

√
13− 4

√
2 +

√
5 > 0.

4. The Forgotten index F is induced by the function φ (x, y) = x2 + y2 which is

increasing as a function of x for each fixed value of y ≥ 1. We have

f1 (x) = f2 (x) = f3 (x) = x (x+ 6) .

Corollary 2.5. The cycle Cn is the maximal graph over Gn,1 with respect to H,SC, and
χ.
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Proof. For each of these indices we check that conditions in part 2 of Theorem 2.3 hold.

Specifically we check that φ (x, y) is decreasing as a function of x and f1 (x) ≤ 0, f2 (x) ≤
0, f3 (x) ≤ 0 for each integer value of x ≥ 1. The conditions f4 (x, y) ≤ 0, f5 (x, y) ≤ 0

for each integer value of 2 ≤ x ≤ y ≤ 3 can be checked in Table 2.

1. The Harmonic index H is induced by the function φ (x, y) = 2
x+y

which is decreasing

as a function of x for each fixed value of y ≥ 1. We have

f1 (x) = − 2x

3 (x+ 3)
, f2 (x) = − x

2 (x+ 4)
, f3 (x) = − x (x+ 1)

3 (x2 + 7x+ 12)
.

2. The Sum-Connectivity index SC is induced by the function φ (x, y) = 1√
x+y

which

is decreasing as a function of x for each fixed value of y ≥ 1. We have

f1 (x) = −
√
x+ 3−

√
3√

3
√
x+ 3

, f2 (x) = −
√
x+ 4− 2

2
√
x+ 4

,

f3 (x) = −
(
3−

√
3
)√

x+ 3
√
x+ 4 + 3

√
x+ 4− 6

√
x+ 3

3
√
x+ 3

√
x+ 4

.

3. The Randić index χ is induced by the function φ (x, y) = 1√
xy

which is decreasing

as a function of x for each fixed value of y ≥ 1. We have

f1 (x) = −
√
2
√
x+ 2 +

√
2
√
x+ 1

√
x+ 2− 4

√
x+ 1

2
√
x+ 1

√
x+ 2

,

f2 (x) = −
√
2
√
x+ 2−

√
2
√
x+ 1 +

√
x+ 1

√
x+ 2− 2

√
x+ 1

2
√
x+ 1

√
x+ 2

,

f3 (x) = −
√
2
√
x+ 2− 2

√
2
√
x+ 1 + 2

√
x+ 1

√
x+ 2−

√
2
√
x+ 1

√
x+ 2

2
√
x+ 1

√
x+ 2

.

We can use Theorem 2.3 to prove that new VDB topological indices attain their

maximal value in Cn.

Theorem 2.6. The cycle Cn is the minimal graph over Gn,1 with respect to eM1 , eM2 , eSO,

and eF .

Proof. For each of these indices we check that conditions in part 1 of Theorem 2.3 hold.

Specifically we check that φ (x, y) is increasing as a function of x and f1 (x) ≥ 0, f2 (x) ≥ 0,

f3 (x) ≥ 0 for each integer value of x ≥ 1. The conditions f4 (x, y) ≥ 0, f5 (x, y) ≥ 0 for

each integer value of 2 ≤ x ≤ y ≤ 3 can be checked in Table 3.
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1. The exponential of the First Zagreb index eM1 is induced by the function φ (x, y) =

ex+y which is increasing as a function of x for each fixed value of y ≥ 1. For x ≥ 1

we have

f1 (x) = ex+3 − e3, f2 (x) = ex+4 − e4,

f3 (x) = 2ex+4 − ex+3 + e3 − 2e4 ≥ ex+4 + e3 − 2e4 ≥ e5 + e3 − 2e4 > 0.

2. The exponential of the Sombor index eSO is induced by the function φ (x, y) =

e
√

x2+y2 which is increasing as a function of x for each fixed value of y ≥ 1. For

x ≥ 1 we have

f1 (x) = 2e
√
x2+4x+5 − e

√
x2+2x+5 − e

√
5 ≥ e

√
x2+4x+5 − e

√
5 > 0,

f2 (x) = e
√
x2+4x+5 + e

√
x2+4x+8 − e

√
x2+2x+5 − e2

√
2 ≥ e

√
x2+4x+8 − e2

√
2 > 0,

f3 (x) = 2e
√
x2+4x+8 − e

√
x2+2x+5 − 2e2

√
2 + e

√
5 ≥ e

√
x2+4x+8 − 2e2

√
2 + e

√
5

≥ e
√
13 − 2e2

√
2 + e

√
5 > 0.

3. The exponential of the Forgotten index eF is induced by the function φ (x, y) =

ex
2+y2 which is increasing as a function of x for each fixed value of y ≥ 1. For x ≥ 1

we have

f1 (x) = 2ex
2+4x+5 − ex

2+2x+5 − e5 ≥ ex
2+4x+5 − e5 > 0,

f2 (x) = ex
2+4x+5 + ex

2+4x+8 − ex
2+2x+5 − e8 ≥ ex

2+4x+8 − e8 > 0,

f3 (x) = 2ex
2+4x+8 − ex

2+2x+5 − 2e8 + e5 ≥ ex
2+4x+8 − 2e8 + e5

≥ e13 − 2e8 + e5 > 0.

4. The exponential of the Second Zagreb index eM2 is induced by φ (x, y) = exy which

is increasing as a function of x for each fixed value of y ≥ 1. Note that

f1 (x) = ex+2 (2− ex)− e2 < 0

for x ≥ 1. First we show directly that eM2 (G3,2) ≥ eM2 (G3,1). Let dG(u) = x ≥ 1

and NG (u) = {u1, . . . , ux}. Since G3,2 ∈ Gn,1, we may assume dG (ux) = y ≥ 2.

eM2 (G3,2)− eM2 (G3,1) =
x∑

j=1

[
e(x+2)dG(uj) − e(x+1)dG(uj)

]
+ 2ex+2 − e2x+2 − e2

≥ e(x+2)y − e(x+1)y + 2ex+2 − e2x+2 − e2.
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It is easy to check that e(x+2)y − e(x+1)y is increasing as a function of y, then

eM2 (G3,2)− eM2 (G3,1) ≥ e2x+4 + 2ex+2 − 2e2x+2 − e2

≥ 2ex+2 − e2 > 0.

Using the same arguments in the proof of part 1 of Theorem 2.3, to prove the result

we need to verify the following conditions:

f2 (x) = e2e2x+2 − e2x+2 + ex+2 − e4

≥ e2x+2 + ex+2 − e4 > 0,

f3 (x) = 2e2e2x+2 − e2x+2 + e2 − 2e4

≥ 2e2x+2 + e2 − 2e4 > 0.

Theorem 2.7. The cycle Cn is the maximal graph over Gn,1 with respect to eH and eSC.

Proof. For each of these indices we check that conditions in part 2 of Theorem 2.3 hold.

Specifically we check that φ (x, y) is decreasing as a function of x and f1 (x) ≤ 0, f2 (x) ≤
0, f3 (x) ≤ 0 for each integer value of x ≥ 1. The conditions f4 (x, y) ≤ 0, f5 (x, y) ≤ 0

for each integer value of 2 ≤ x ≤ y ≤ 3 can be checked in Table 3.

1. The exponential of the Harmonic index eH is induced by the function φ (x, y) = e
2

x+y

which is decreasing as a function of x for each fixed value of y ≥ 1. For x ≥ 3 we

have

f1 (x) = e
2

x+3 − e
2
3 < 0, f2 (x) = e

2
x+4 − e

1
2 < 0,

f3 (x) = 2e
2

x+4 − e
2

x+3 + e
2
3 − 2e

1
2 ≤ e

2
x+4 + e

2
3 − 2e

1
2 ≤ e

2
7 + e

2
3 − 2e

1
2 < 0,

and, by direct calculation, we obtain that f1 (1), f1 (2), f2 (1), f2 (2), f3 (1) and

f3 (2) are negative.

2. The exponential of the Sum-Connectivity index eSC is induced by the function

φ (x, y) = e
1√
x+y which is decreasing as a function of x for each fixed value of y ≥ 1.

For x ≥ 2 we have

f1 (x) = e
1√
x+3 − e

1√
3 < 0, f2 (x) = e

1√
x+4 − e

1
2 < 0,

f3 (x) = 2e
1√
x+4 − e

1√
x+3 + e

1√
3 − 2e

1
2 ≤ e

1√
x+4 + e

1√
3 − 2e

1
2 ≤ e

1√
6 + e

1√
3 − 2e

1
2 < 0,

and, by direct calculation, we obtain that f1 (1), f2 (1) and f3 (1) are negative.
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Next we show that for those vertex-degree-based topological indices induced by func-

tions that are not monotone as a function of x ∈ [1,+∞), for each fixed value of

y ∈ [1,+∞), the cycle Cn is a extremal unicyclic graph when φ (2, 2) is an extremal

value of the function φ (x, y) over P .

Theorem 2.8. Let G ∈ Gn,1 and φ is a VDB topological index as in (2).

If φ (x, y) ≥ φ (2, 2) for each (x, y) ∈ P then φ (G) ≥ φ (2, 2)n = φ (Cn) .

If φ (x, y) ≤ φ (2, 2) for each (x, y) ∈ P then φ (G) ≤ φ (2, 2)n = φ (Cn) .

Proof. We prove the first part. The second part is proven similarly by reversing inequal-

ities.

For any G ∈ Gn,1, the value of φ (G) is

φ (G) =
∑

(x,y)∈P
φ (x, y)mx,y ≥ φ (2, 2)

∑

(x,y)∈P
mx,y = φ (2, 2)n = φ (Cn) .

Let GAα be the generalized Geometric-Arithmetic index induced by the function

φ (x, y) =

(
2
√
xy

x+ y

)α

. Note that for α = 1 we recover the usual Geometric-Arithmetic

index and for α = −1 we recover the usual Arithmetic-Geometric index. The expo-

nential of the generalized Geometric-Arithmetic index eGAα is induced by the function

ψ (x, y) = e

(
2
√

xy

x+y

)α

.

Theorem 2.9. For α > 0 (α < 0) the cycle Cn is the maximal (minimal) unicyclic graph

with respect to GAα and with respect to eGAα.

Proof. Let φ (x, y) =
(

2
√
xy

x+y

)α
and ψ (x, y) = e

(
2
√

xy

x+y

)α

. We have

∂

∂y
φ (x, y) = α2α−1 (x− y)

√
xy

y (x+ y)2

( √
xy

x+ y

)α−1

,

∂

∂y
ψ (x, y) = α2α−1 (x− y)

√
xy

y (x+ y)2

( √
xy

x+ y

)α−1

e

(
2
√

xy

x+y

)α

φ (x, x) = φ (2, 2) = 1,

ψ (x, x) = ψ (2, 2) = e.

For α > 0, ∂
∂y
φ (x, y) ≤ 0 and ∂

∂y
ψ (x, y) ≤ 0 for each (x, y) ∈ P . Then φ (1, y) ≤ φ (1, 2) =

(
2
3

√
2
)α
< φ (2, 2) and for x ≥ 2, φ (x, y) ≤ φ (x, x) = φ (2, 2). It means that the condition

of the second part of Theorem 2.8 holds. Analogously, for the function ψ (x, y) we have:

ψ (1, y) ≤ ψ (1, 2) = e(
2
3

√
2)

α

< ψ (2, 2) and for x ≥ 2, ψ (x, y) ≤ ψ (x, x) = ψ (2, 2). On

the other hand, for α < 0 the condition of the first part of Theorem 2.8 holds for each of

the functions φ (x, y) and ψ (x, y).
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3 VDB topological indices with Hn,1 as extremal uni-

cyclic graph

We begin this section with a lemma proved by Ali and Dimitrov in [2] that provides

conditions on the function φ (x, y) in order to assure that the graph Hn,1 is an extremal

unicyclic graph with respect to the VDB topological index φ. This lemma is used for VDB

topological indices induced by a function φ (x, y) which is monotone in both variables on

the interval [1,+∞).

Lemma 3.1. [2] Let the function φ (x, y), associated to the VDB topological index φ, be

defined in [1,∞)× [1,∞). Let

∆1 (φ) = φ(x+ t, y)− φ(x, y) + φ(c− t, y)− φ(c, y),

∆2 (φ) = φ(x+ t, c− t)− φ(x, c),

where x ≥ c > t ≥ 1, c ≥ 2 and y ≥ 1.

1. Let G be the connected graph with n vertices and m edges with maximum value of the

VDB topological index φ and both expressions ∆1 (φ) and ∆2 (φ) are non-negatives.

Furthermore, if one of the following two conditions holds:

(a) The function φ is increasing in both variables on the interval [1,∞) and at

least one of the expressions ∆1 (φ) and ∆2 (φ) is positive,

(b) The function φ is strictly increasing in both variables on the interval [1,∞),

then the maximum vertex degree in G is n− 1.

2. Let G be the connected graph with n vertices and m edges with minimum value of the

VDB topological index φ and both expressions ∆1 (φ) and ∆2 (φ) are non-positives.

Furthermore, if one of the following two conditions holds:

(a) The function φ is decreasing in both variables on the interval [1,∞) and at

least one of the expressions ∆1 (φ) and ∆2 (φ) is negative,

(b) The function φ is strictly decreasing in both variables on the interval [1,∞),

then the maximum vertex degree in G is n− 1.
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In the next corollary, using Lemma 3.1, we recover known results about Hn,1 as an

extremal unicyclic graph for several VDB topological indices [1, 8, 13].

Corollary 3.2. The graph Hn,1 is the maximal graph over Gn,1 with respect to M1,SO,
and F .

Proof. For each of these indices we show that the corresponding function φ (x, y) is strictly

increasing in both variables and check the conditions ∆1(φ) ≥ 0 and ∆2(φ) ≥ 0. Then,

by Lemma 3.1, the maximal graph over Gn,1 with respect to the corresponding index has

maximum degree n− 1 and the unique graph in Gn,1 with maximum degree n− 1 is Hn,1.

1. The First Zagreb index M1 is induced by the function φ (x, y) = x + y, which is

strictly increasing in both variables in [1,∞). It is easy to see that

∆1 (M1) = 0,∆2 (M1) = 0.

2. The Sombor index SO is induced by the function φ (x, y) =
√
x2 + y2, which is

strictly increasing in both variables in [1,∞). By the Mean Value Theorem, there

exist c1 and x1, with c− t < c1 < c ≤ x < x1 < x+ t, such that

∆1 (SO) =

√
(x+ t)2 + y2 −

√
x2 + y2 +

√
(c− t)2 + y2 −

√
c2 + y2

=
x1t√
x21 + y2

− c1t√
c21 + y2

.

It is easy to see that the function x√
x2+y2

is increasing as a function of x, then

∆1 (SO) ≥ 0 . Also,

∆2 (SO) =

√
(x+ t)2 + (c− t)2−

√
x2 + c2 =

2t (t+ x− c)√
(x+ t)2 + (c− t)2 +

√
x2 + c2

> 0.

3. The Forgotten index F is induced by the function φ (x, y) = x2+y2, which is strictly

increasing in both variables in [1,∞). We obtain

∆1 (F) = 2t (t+ x− c) > 0,∆2 (F) = 2t (t+ x− c) > 0.

We cannot apply the Lemma 3.1 to the Second Zagreb index because the condition

∆2 (φ) ≥ 0 fails. In the case of the Randić, the Harmonic and the Sum Connectivity

indices, we neither can apply the Lemma 3.1 because condition ∆1 (φ) ≤ 0 fails in each

case.
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Theorem 3.3. The graph Hn.1 is the maximal graph over Gn,1 with respect to eM1 , eSO,

and eF .

Proof. For each of these indices we show that the corresponding function φ (x, y) is strictly

increasing in both variables and check the conditions ∆1(φ) ≥ 0 and ∆2(φ) ≥ 0. Then,

by Lemma 3.1, the maximal graph over Gn,1 with respect to the corresponding index has

maximum degree n− 1 and the unique graph in Gn,1 with maximum degree n− 1 is Hn,1.

1. The exponential of the First Zagreb index eM1 is induced by the function φ (x, y) =

ex+y which is strictly increasing in both variables in [1,∞). By the Mean Value

Theorem, there exist c1 and x1, with c− t < c1 < c ≤ x < x1 < x+ t, such that

∆1

(
eM1

)
= ex+y+t − ex+y + ec−t+y − ec+y = tey (ex1 − ec1) ≥ 0.

∆2

(
eM1

)
= ex+c − ex+c = 0.

2. The exponential of the Sombor index eSO is induced by the function φ (x, y) =

e
√

x2+y2 which is strictly increasing in both variables in [1,∞). Similarly, by the

Mean Value Theorem, there exist c1 and x1, with c− t < c1 < c ≤ x < x1 < x+ t,

such that

∆1

(
eSO
)

= e
√

(x+t)2+y2 − e
√

x2+y2 + e
√

(c−t)2+y2 − e
√

c2+y2

=
x1t√
x21 + y2

e
√

x2
1+y2 − c1t√

c21 + y2
e
√

c21+y2 .

It is easy to see that the function x√
x2+y2

e
√

x2+y2 is increasing as a function of x,

then ∆1

(
eSO
)
≥ 0.

∆2

(
eSO
)
= e

√
(x+t)2+(c−t)2 − e

√
x2+c2 = e

√
x2+c2+2t(x+t−c) − e

√
x2+c2 ≥ 0.

3. The exponential of the Forgotten index eF is induced by the function φ (x, y) =

ex
2+y2 which is strictly increasing in both variables in [1,∞). Similarly, by the

Mean Value Theorem, there exist c1 and x1, with c− t < c1 < c ≤ x < x1 < x + t,

such that

∆1

(
eF
)

= e(x+t)2+y2 − ex
2+y2 + e(c−t)2+y2 − ec

2+y2 = 2t
(
x1e

x2
1+y2 − c1e

c21+y2
)
≥ 0

∆2

(
eF
)

= e(x+t)2+(c−t)2 − ex
2+c2 = ex

2+c2
(
e2t(x+t−c) − 1

)
≥ 0.
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As in the case of Second Zagreb index, we cannot apply the Lemma 3.1 to the expo-

nential of the Second Zagreb index because the condition ∆2 (φ) ≥ 0 fails. In the case of

the exponentials of the Randić, the Harmonic and Sum connectivity indices, we neither

can apply the Lemma 3.1 because condition ∆1 (φ) ≤ 0 fails in each case as it occurs in

the case of the Randić, the Harmonic and the Sum connectivity indices.

In order to prove that the graph Hn,1 is the minimal unicyclic graph with respect

to the exponentials of the Harmonic and the Sum-Connectivity index, we generalize the

method used in [14] for the general Sum-Connectivity index.

Proposition 3.4. Let φ be a VDB topological index defined as (2) and G be a connected

graph with uv ∈ E (G), where dG (u) , dG (v) ≥ 2 and NG (u) ∩NG (v) = ∅. Let G′ be the

graph obtained from G by deleting the edge uv, identifying vertices u and v in one vertex

denoted by w in G′, and attaching a pendant vertex to w.

1. If φ (x, y) is increasing as a function of x and φ (x, y) ≤ φ (x+ 1, y − 1) for y > 1,

then φ (G) ≤ φ (G′).

2. If φ (x, y) is decreasing as a function of x and φ (x, y) ≥ φ (x+ 1, y − 1) for y > 1,

then φ (G) ≥ φ (G′) .

Proof. We prove part 1. The proof of the second part is similar.

φ (G)− φ (G′) =
∑

a∈NG(u)

φ (dG (u) , dG (a))− φ (dG (u) + dG (v)− 1, dG (a))

+
∑

b∈NG(v)

φ (dG (v) , dG (b))− φ (dG (u) + dG (v)− 1, dG (b))

+φ (dG (u) , dG (v))− φ (dG (u) + dG (v)− 1, 1) < 0.

Let C3
p,q,r ∈ Gn,1, where p ≥ q ≥ r ≥ 0 and p + q + r = n − 3, be a unicyclic graph

obtained from 3-cycle C3 with V (C3) = {u, v, w}, adding p, q and r pendent vertices to

the vertices u, v and w, respectively (see Figure 3). Note that C3
n−3,0,0 = Hn,1.

Theorem 3.5. Let φ be a VDB topological index defined as (2), G ∈ Gn,1, and for x ≥ y,

g (x, y) = xφ (x+ 2, 1) + φ (x+ 2, y).

1. If φ (x, y) is increasing as a function of x, φ (x, y) ≤ φ (x+ 1, y − 1) for y > 1 and

g (x+ 1, y)− g (x, y) is increasing as a function of x for each value of y ≥ 2 , then

φ (G) ≤ φ (Hn,1) .
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qp

r

Figure 3. Unicyclic graph C3
p,q,r.

2. If φ (x, y) is decreasing as a function of x, φ (x, y) ≥ φ (x+ 1, y − 1) for y > 1 and

g (x+ 1, y)− g (x, y) is decreasing as a function of x for each value of y ≥ 2 , then

φ (G) ≥ φ (Hn,1) .

Proof. We prove part 1. The proof of the second part is similar.

Since φ (x, y) is increasing as a function of x and φ (x, y) ≤ φ (x+ 1, y − 1) for y > 1,

the maximal graph in Gn,1 with respect to the VDB topological index φ is a graph of the

form C3
p,q,r. We need to prove that φ

(
C3

p,q,r

)
≤ φ (Hn,1) . To do this it is sufficient to

prove that φ
(
C3

p+1,q−1,r

)
≥ φ

(
C3

p,q,r

)
for q ≥ 1.

∆3 (φ) = φ
(
C3

p+1,q−1,r

)
− φ

(
C3

p,q,r

)

= [(p+ 1)φ (p+ 3, 1)− pφ (p+ 2, 1)]− [qφ (q + 2, 1)− (q − 1)φ (q + 1, 1)]

+ [φ (p+ 3, r + 2)− φ (p+ 2, r + 2)]− [φ (q + 2, r + 2)− φ (q + 1, r + 2)]

+ [φ (p+ 3, q + 1)− φ (p+ 2, q + 2)]

= [(p+ 1)φ (p+ 3, 1) + φ (p+ 3, r + 2)− pφ (p+ 2, 1)− φ (p+ 2, r + 2)]

− [qφ (q + 2, 1) + φ (q + 2, r + 2)− (q − 1)φ (q + 1, 1)− φ (q + 1, r + 2)]

+ [φ (p+ 3, q + 1)− φ (p+ 2, q + 2)]

= [g (p+ 1, r + 2)− g (p, r + 2)]− [g (q, r + 2)− g (q − 1, r + 2)]

+ [φ (p+ 3, q + 1)− φ (p+ 2, q + 2)]

≥ 0.

As an application of the previous theorem, we obtain that the graphHn,1 is the minimal

graph over Gn,1with respect to the exponential of the Harmonic and the Sum-Connectivity

indices.
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Theorem 3.6. The graph Hn,1 is the minimal graph over Gn,1 with respect to eH and eSC.

Proof. For each of these indices we check that conditions in part 2 of Theorem 3.5 hold.

Then, the minimal graph over Gn,1 with respect to the corresponding index is Hn,1.

1. The exponential of the Harmonic index eH is induced by the function φ (x, y) = e
2

x+y

which is decreasing as a function of x. We also have that φ (x, y)−φ (x+ 1, y − 1) =

0. Finally, the derivative

∂2

∂x2
g (x, y) = −4 (2x+ 9)

(x+ 3)4
e

2
x+3 +

4 (x+ y + 3)

(x+ y + 2)4
e

2
x+y+2

<

(
4 (x+ y + 3)

(x+ y + 2)4
− 4 (2x+ 9)

(x+ 3)4

)
e

2
x+3

< 4e
2

x+3
(x+ y + 3)− (2x+ 9)

(x+ 3)4

= 4e
2

x+3
y − x− 6

(x+ 3)4
< 0,

which implies that g (x+ 1, y)− g (x, y) is decreasing.

2. The exponential of the Sum-Connectivity index eSC is induced by the function

φ (x, y) = e
1√
x+y which is decreasing as a function of x. We also have that φ (x, y)−

φ (x+ 1, y − 1) = 0. Finally, the derivative

∂2

∂x2
g (x, y) = e

1√
x+3

(
x
(
1 + 3

√
x+ 3

)
− 4 (x+ 3)

3
2

4 (x+ 3)3

)

+e
1√

x+y+2
1 + 3

√
x+ y + 2

4 (x+ y + 2)3

< e
1√
x+3

(
4x

√
x+ 3− 4 (x+ 3)

3
2

4 (x+ 3)3

)
+ e

1√
x+y+2

4
√
x+ y + 2

4 (x+ y + 2)3

= e
1√
x+3

−3
√
x+ 3

(x+ 3)3
+ e

1√
x+y+2

√
x+ y + 2

(x+ y + 2)3

< e
1√
x+3

(√
x+ y + 2− 3

√
x+ 3

(x+ 3)3

)

< e
1√
x+3

(√
2x+ 2− 3

√
x+ 3

(x+ 3)3

)
< 0,

which implies that g (x+ 1, y)− g (x, y) is decreasing.
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We cannot apply Proposition 3.4 to the exponential of the Randić index because the

condition φ (x, y) ≥ φ (x+ 1, y − 1) does not hold.

Our next result is useful to prove that the graph Hn,1 is an extremal graph over Gn,1

for VDB topological indices induced by functions φ (x, y) that behave similarly to the

function that induces the Atom-Bond-Connectivity index.

Theorem 3.7. Let φ be a VDB topological index defined as (2).

1. If φ (1, y) is decreasing for y ≥ 2, φ (1, 2) = φ (2, y) ≤ φ (3, 3) for 2 ≤ y ≤ n − 1

and for y ≥ 3 fixed, φ (x, y) is increasing for x ≥ 3, then φ (G) ≥ φ (Hn,1) for any

G ∈ Gn,1.

2. If φ (1, y) is increasing for y ≥ 2, φ (1, 2) = φ (2, y) ≥ φ (3, 3) for 2 ≤ y ≤ n − 1

and for y ≥ 3 fixed, φ (x, y) is decreasing for x ≥ 3, then φ (G) ≤ φ (Hn,1) for any

G ∈ Gn,1.

Proof. We prove part 1. The proof of the second part is similar. Let G ∈ Gn,1

φ (G) =
∑

(x,y)∈P
mx,yφ (x, y) =

n−1∑

y=2

m1,yφ (1, y) +
∑

2≤x≤y≤n+1−x

mx,yφ (x, y)

≥ φ (1, n− 1)
n−1∑

y=2

m1,y + φ (2, n− 1)
∑

2≤x≤y≤n+1−x

mx,y

= n1φ (1, n− 1) + (n− n1)φ (2, n− 1) ,

where n1 is the number of vertices with degree 1. Note that the previous expression is

decreasing as a function of n1 and the maximal value of n1 over the set of unicyclic graphs

with n vertices is n− 3. Then,

φ (G) ≥ (n− 3)φ (1, n− 1) + 3φ (2, n− 1)

= (n− 3)φ (1, n− 1) + φ (2, 2) + 2φ (2, n− 1) = φ (Hn,1) .

Let ABCα be the generalized Atom Bond Connectivity index [39] induced by the

function φ (x, y) =

(
x+ y − 2

xy

)α

. Note that for α = 1
2
we recover the usual Atom

Bond Connectivity index and for α = −3 we recover the Augmented Zagreb index. The

exponential of the generalized Atom Bond Connectivity index eABCα is induced by the

function ψ (x, y) = e(
x+y−2

xy )
α

.
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Theorem 3.8. For α < 0 (α > 0) the graph Hn,1 is the minimal (maximal) unicyclic

graph with respect to ABCα and eABCα.

Proof. Let φ (x, y) =
(

x+y−2
xy

)α
and ψ (x, y) = e(

x+y−2
xy )

α

. We have

∂

∂y
φ (1, y) = α

(y − 1)α−1

yα+1
,

φ (2, y) =

(
1

2

)α

,

∂

∂x
φ (x, y) = −α (y − 2)

(x+ y − 2)α−1

xα+1yα
,

∂

∂y
ψ (1, y) = α

(y − 1)α−1

yα+1
e(

y−1
y )

α

,

ψ (2, y) = e(
1
2)

α

,

∂

∂x
ψ (x, y) = −α (y − 2)

(x+ y − 2)α−1

xα+1yα
e(

x+y−2
xy )

α

.

The proof follows from Theorem 3.7 since for α < 0 the conditions of the first part of the

theorem hold and for α > 0 the conditions of the second part of theorem hold for both

the generalized Atom-Bond-Connectivity index ABCα and its exponential eABCα .

4 Open problems

As we already mentioned, the minimal unicyclic graph with respect to the ABC index

is not known. The same occurs with the maximal unicyclic graph with respect to the

AZ index. In the case of the exponentials of these indices, it seems to occur the same

situation. Next we show that the cycle Cn is not the minimal unicyclic graph with respect

to eABC neither the maximal unicyclic graph with respect to eAZ . In fact, for each k ≥ 3,

we construct a unicyclic graph Tk,2+e with n = 1+5k vertices, by adding an edge joining

two leaves to the Kragujevac tree Tk,2 [18] with a central vertex of degree k and k branches

of type B2 (see Figure 4). The Kragujevac tree Tk,2 was used in [12] to show that the

path is not the minimal tree with respect to eABC neither the maximal tree with respect

to eAZ . For any VDB topological index φ, we obtain

φ (Tk,2 + e)− φ (C5k+1) = kφ (3, k) + (2k − 2)φ (1, 2) + 2kφ (2, 3)− (5k − 2)φ (2, 2) .
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1 2 k

Figure 4. Unicyclic graph Tk,2 + e.

Then

∆
(
eABC) = eABC (Tk,2 + e)− eABC (C5k+1)

= ke
√

k+1
3k + (2k − 2) e

√
1
2 + 2ke

√
1
2 − (5k − 2) e

√
1
2

= k
(
e
√

1
3
+ 1

3k − e
√

1
2

)
< 0

∆
(
eAZ) = eAZ (Tk,2 + e)− eAZ (C5k+1)

= ke(
3k
k+1)

3

+ (2k − 2) e8 + 2ke8 − (5k − 2) e8

= k
(
e(

3k
k+1)

3

− e8
)
> 0.

Although we proved in Section 2 that the cycle is an extremal unicyclic graph with re-

spect to the exponentials of the Geometric-Arithmetic and Arithmetic-Geometric indices,

using the techniques in Section 3 we could not prove that the graph Hn,1 is an extremal

unicyclic graph with respect to these indices.
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