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Abstract

A graph G on n vertices of diameter D is called H-palindromic
if d(G, k) = d(G,D − k) for all k = 0, 1, . . . ,

⌊
D
2

⌋
, where d(G, k) is

the number of unordered pairs of vertices at distance k. Quantities
d(G, k) form coefficients of the Hosoya polynomial. In 1999, Ca-
porossi, Dobrynin, Gutman and Hansen found five H-palindromic
trees of even diameter and conjectured that there are no such trees
of odd diameter. We prove this conjecture for bipartite graphs.
An infinite family of H-palindromic trees of diameter 6 is also con-
structed.

1 Introduction

Let G = (V,E) be an undirected connected graph without loops and mul-

tiple edges. The distance d(x, y) between vertices x, y ∈ V is the number

of edges in the shortest path connecting x and y in G. The maximal dis-

tance between vertices of a graph is called its diameter D. By definition,
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the Hosoya polynomial of a graph G of diameter D is

H(G,λ) =

D∑
k=0

d(G, k)λk,

where d(G, k) is equal to the number of unordered pairs of vertices at

distance k in G. Clearly, d(G, 0) = |V | and d(G, 1) = |E|. This polynomial

was first proposed by Hosoya under the name Wiener polynomial in 1988

[10]. It was studied for various classes of abstract and molecular graphs.

Historical remarks and the bibliography on the Hosoya polynomial can be

found in [9]. The Wiener index W (G) is a distance-based graph invariant

defined as the sum of distances over all unordered pairs of vertices of a

graph G. Therefore, it can be presented through the coefficients of the

Hosoya polynomial as follows

W (G) =

D∑
k=1

d(G, k)k,

that is the Wiener index can be calculated as the first derivative of H(G,λ)

at λ = 1. This index was introduced by Harry Wiener for molecular graphs

of alkanes that are trees in 1947 [13]. It has numerous applications in

organic chemistry (see, for example, reviews [5, 6, 11]).

A graph G is H-palindromic if d(G, k) = d(G,D − k) for all k =

0, 1, . . . ,
⌊
D
2

⌋
. For a graph G, its H-palindromicity is defined as

Z(G) =

⌊D
2 ⌋∑

k=0

|d(G, k)− d(G,D − k)|.

Clearly, a graph is H-palindromic if and only if its H-palindromicity

equals 0. It is known that the Wiener index of H-palindromic trees T

depends only on the number of vertices n and the diameter D: W (T ) =

Dn(n+1)
4 [2].

Some families of H-palindromic cyclic graphs have been constructed

in [4]. After computer search Gutman conjectured that there are no H-

palindromic trees [7] (see also [8]). Exactly five palindromic trees were
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Table 1. H-palindromic trees of diameter D with n vertices.

T n D (d(T, 0), d(T, 1), . . . , d(T,D))
T1 21 8 (21, 20, 34, 25, 31, 25, 34, 20, 21)
T2 22 6 (22, 21, 52, 63, 52, 21, 22)
T3 22 6 (22, 21, 52, 63, 52, 21, 22)
T4 24 8 (24, 23, 39, 41, 46, 41, 39, 23, 24)
T5 24 8 (24, 23, 37, 41, 50, 41, 37, 23, 24)

found by exhaustive computer search among all trees with n ≤ 26 vertices

[2].

Table 1 shows the number of vertices, diameter and coefficients of the

palindromic Hosoya polynomial of these trees.

Some necessary conditions for the existence of H-palindromic trees of

odd diameter were found and the following conjectures were formulated

in [2] (see also [5]).

Conjecture 1. For all trees with n > 4 vertices and odd diameter the

H-palindromicity is at least
⌈
n
2

⌉
.

Conjecture 2. There are no H-palindromic trees of odd diameter.

Evidently, the second conjecture is a consequence of the first one. An

intensive computations were done to test Conjecture 1 in [3]. So far no

progress has been made on this problem.

In this work, we prove these conjectures for bipartite graphs. We also

prove that there are infinitely many H-palindromic trees of diameter 6. A

preliminary version of this article was published on Arxiv.org [1].

2 Trees of odd diameter

In this Section, we consider bipartite graphs of odd diameter.

Theorem 1. Let G be a bipartite graph on n vertices of odd diameter.

Then

Z(G) ≥
⌈n
2

⌉
.

Proof. Let a and b be the cardinalities of the bipartite parts of a graph G

of diameter D. Obviously, the distance between two vertices of G is even
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if and only if they belong to the same part. Hence, the sum of d(G, i) over

odd i equals the number of pairs from different parts:

D∑
i=0

i is odd

d(G, i) = ab,

and the sum of d(G, i) over even i equals the number of pairs from the

first part and pairs from the second part:

D∑
i=0

i is even

d(G, i) =

(
a

2

)
+ a+

(
b

2

)
+ b =

a2 + a+ b2 + b

2
.

Since the diameter D is odd, quantities i and D − i have different parity.

Then

Z(G) ≥
D∑
i=0

i is even

d(G, i)−
D∑
i=0

i is odd

d(G, i) =
(a− b)2 + a+ b

2
≥ a+ b

2
=

n

2
.

By definition, Z(G) is an integer, so the claim follows.

Since an arbitrary tree is a bipartite graph, we immediately have the

following result.

Corollary. There are no H-palindromic trees of odd diameter.

The bound of Theorem 1 is sharp. For instance, consider the Hamming

graph H(m, 2) of order 2m. Its vertex set consists of all binary words of

length m with the usual Hamming distance.

Proposition 2. For the Hamming graph H(m, 2), Z(H(m, 2)) = 2m−1.

Proof. By definition, the diameter of H(m, 2) is equal to m. Every vertex

of the graph has
(
m
k

)
neighbors at distance k for 0 ≤ k ≤ m. Hence,

d(G, k) = d(G,m − k) for 1 ≤ k ≤ m − 1, d(G, 0) = 2m, and d(G,m) =

2m−1. Then

Z(H(m, 2)) =

⌊m
2 ⌋∑

k=1

∣∣∣∣(mk
)
−
(

m

m− k

)∣∣∣∣+ |2m − 2m−1| = 2m−1,
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that is a half of the number of vertices of H(m, 2).

3 Trees of diameter 6

As it was discussed in Section 1, only five H-palindromic trees of even

diameter are known. It is easy to show that there are no such trees of

diameter 2 and 4. It is sufficient to consider a general model of such a tree

and find coefficients of Hosoya polynomial by direct calculations. However,

trees of diameter 6 may be H-palindromic.

Theorem 3. There is an infinite number of H-palindromic trees of

diameter 6.

Proof. For non-negative integers a, b, s and t, construct a tree T =

T (a, b, s, t) by the following steps:

1. take a path of length five: (v1, v2, v3, v4, v5, v6),

2. attach one pendent vertex to vertex v2 and one pendent vertex u to

vertex v5,

3. attach t, s, a and b new pendent vertices to vertices v4, v5, v6 and

u, respectively (see Fig. 1).

v1

v2 v3

v4

v5

v6

u
. . .

. . .

...

...

t

s

a

b

Figure 1. Construction of H-palindromic tree T (a, b, s, t).

Counting pairs of vertices at a given distance in the tree of diameter 6

in Fig. 1, one can calculate values of coefficients d(T, i):
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d(T, 0) = a+ b+ s+ t+ 8,

d(T, 1) = a+ b+ s+ t+ 7,

d(T, 2) =
(
a+1
2

)
+
(
b+1
2

)
+
(
s+3
2

)
+
(
t+2
2

)
+ 4,

d(T, 4) = (s+ 2) + (a+ b+ 2)(t+ 1) + ab,

d(T, 5) = a+ b+ 2(s+ 2),

d(T, 6) = 2(a+ b).

Equalities d(T, 0) = d(T, 6) and d(T, 1) = d(T, 5) are satisfied under

condition s = t+ 3 = a+b−5
2 . Since s and t are non-negative integers, the

sum a + b should be odd and not less than 11. So it remains to satisfy

the equation d(T, 2) = d(T, 4). After all necessary calculations, one can

rewrite this equality in the following form:

(a− 3b+ 3)2 − 2(2b− 3)2 + 94 = 0.

Using substitution x = a− 3b+3 and y = 2b− 3, the last equality can

be presented as the Pell equation

x2 − 2y2 = −94.

Methods for solving Pell equation can be found in [12]. It has an infinite

series of integer solutions starting from (x, y) = (2, 7). All solutions can

be represented by the following recurrent relations:xn+1 = 3xn + 4yn

yn+1 = 3yn + 2xn

with the initial conditions x0 = 2 and y0 = 7. It easy to see that xn is

always even and yn is odd. Therefore an = xn + 3yn+3
2 and bn = yn+3

2 are

both integers and their sum an + bn is odd and not less than a0 + b0 =

19 ≥ 11. So, every pair (an, bn) corresponds to some H-palindromic tree.

Table 2 shows solutions of the Pell equation and parameters of the
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initial part of the constructed series of H-palindromic vertex trees T of

diameter 6.

Table 2. First H-palindromic trees T of diameter 6.

n xn yn |V | a b s t
0 2 7 38 14 5 7 4
1 34 25 174 73 14 41 38
2 202 143 982 418 73 243 240
3 1178 833 5694 2429 418 1421 1418
n coefficients of H(T, λ)
0 (38, 37, 184, 223, 184, 37, 38)
1 (174, 173, 4536, 5459, 4536, 173, 174)
2 (982, 981, 149572, 179583, 149572, 981, 982)
3 (5694, 5693, 5059476, 6071939, 5059476, 5693, 5694)

It will be interesting to answer the following question.

Problem 1. Does there exist an infinite family of H-palindromic trees of

even diameter D ≥ 8?

We suppose that ideas from Section 3 may be successfully applied for

small values of D.
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