Wiener Index of Families of Unicyclic Graphs Obtained From a Tree

Andrey A. Dobrynin
Sobolev Institute of Mathematics, Siberian Branch of the Russian
Academy of Sciences, Novosibirsk, 630090, Russia
dobr@math.nsc.ru

(Received April 1, 2022)

Abstract

The Wiener index $W(G)$ of a graph G is the sum of distances between all vertices of G. The Wiener index of a family \mathcal{G} of connected graphs is defined as the sum of the Wiener indices of its members, $W(\mathcal{G})=\sum_{G \in \mathcal{G}} W(G)$. Let U_{e} be a unicyclic graph obtained by replacing an edge e of a tree T with a fixed length cycle. A simple relation between Wiener indices of the family $\left\{U_{e} \mid e \in E(T)\right\}$ and a tree T is presented for certain positions of the cycle.

1 Introduction

In this article, all graphs are undirected, connected, without loops or multiple edges. The vertex and edge sets of a graph G are denoted by $V(G)$ and $E(G)$, respectively. The cardinality of $V(G)$ is called the order of the graph G and is denoted by n_{G}. The distance $d_{G}(u, v)$ between vertices u and v of G is the number of edges in a shortest path connecting them. The distance of a vertex v of a graph G is the sum of distances from v to all vertices of the graph, $d_{G}(v)=\sum_{u \in V(G)} d_{G}(v, u)$. The Wiener index of a graph G is a distance-based topological index introduced as structural
descriptor for acyclic organic molecules [20]:

$$
W(G)=\sum_{u, v \in V(G)} d(u, v)=\frac{1}{2} \sum_{v \in V(G)} d_{G}(v)
$$

It has found numerous applications in organic chemistry and related fields (see selected books $[1,14,16,17,19]$ and reviews $[2,9,11,15,18]$).

In this paper, we study the Wiener index of families of graphs which may arise as the result of structural transformations of a given graph. For example, attaching a cycle to tree vertices generates a family of unicyclic graphs. The Wiener index of a family $\mathcal{G}=\left\{G_{1}, G_{2}, \ldots, G_{r}\right\}$ of connected graphs is defined as the sum of the Wiener indices of its members,

$$
W(\mathcal{G})=W\left(G_{1}\right)+W\left(G_{2}\right)+\cdots+W\left(G_{r}\right)
$$

In this case, values of $W(\mathcal{G})$ depend on the structures of several graphs. It is clear that if all graphs of a family \mathcal{G} are isomorphic to the simple path or the complete graph of order n, then $W(\mathcal{G})$ takes extremal values among all families of cardinality r with n-vertex graphs. Properties of the Wiener index for some families of acyclic structures and benzenoid graphs were studied in $[3-8,10]$.

Denote by P_{n} and C_{n} the simple path and the simple cycle of order n, respectively. In is known that $W\left(P_{n}\right)=n\left(n^{2}-1\right) / 6, d_{C_{n}}(v)=n^{2} / 4$ and $W\left(C_{n}\right)=n^{3} / 8$ for even $n, d_{C_{n}}(v)=\left(n^{2}-1\right) / 4$ and $W\left(C_{n}\right)=n\left(n^{2}-1\right) / 8$ for odd n [13]. The edge k-subdivision of an edge $e \in E(G)$ is the graph G_{e} constructed by replacing e with path $P_{k+2}=\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ in a graph G. Vertices $v_{i}, i=1,2, \ldots k$, are called the subdivision vertices of e.

Let U_{e} be a unicyclic graph obtained by replacing edge $e=(u, v)$ of a tree T of order n with a cycle of length c and let $\mathcal{U}_{c}=\left\{U_{e} \mid e \in E(T)\right\}$. In general case, the calculating formula for the Wiener index $W\left(U_{e}\right)$ should include the distance of vertices u and v in T. It is shown that the Wiener index of the family \mathcal{U}_{c} can be expressed in terms of $W(T)$ for certain positions of the cycle. This also allows the finding the average value of the Wiener index of graphs in \mathcal{U}_{c}.

2 Main result

Let $T_{e, k}$ and $T_{e, m}$ be trees obtained by k - and m-subdivision an edge e of a tree T, respectively. Then the process of replacing the edge e with cycle C_{k+m+2} can be represented as a join of $T_{e, k}$ and $T_{e, m}$ as shown in Fig. 1. Namely, the corresponding vertices of the trees are identified with the exception of the subdivision vertices. We calculate the Wiener index of the resulting graph U_{e} through distance characteristics of $T_{e, k}$ and $T_{e, m}$.

Figure 1. Replacing an edge e of a tree T with cycle C_{k+m+2}.

The following two lemmas are useful for computing the Wiener index of families of trees obtained by edge subdivisions [6].

Lemma 1. For k-subdivisions $T_{e_{1}}, T_{e_{2}}, \ldots, T_{e_{n-1}}$ of edges $e_{1}, e_{2}, \ldots, e_{n-1}$ of a tree T of order n,

$$
\begin{aligned}
& W\left(T_{e_{1}}\right)+W\left(T_{e_{2}}\right)+\cdots+W\left(T_{e_{n-1}}\right)= \\
& \quad=\quad(3 k+n-1) W(T)+(n-1)\binom{k+1}{3}+2\binom{k}{2}\binom{n}{2}
\end{aligned}
$$

The next result shows that the distances of all subdivision vertices can be expressed through the Wiener index of the initial tree.

Lemma 2. For subdivision vertices $v_{1}, v_{2}, \ldots, v_{k}$ of k-subdivision of edges $e_{1}, e_{2}, \ldots, e_{n-1}$ of an n-vertex tree T, $\sum_{i=1}^{n-1}\left(d_{T_{e_{i}}}\left(v_{1}\right)+\cdots+d_{T_{e_{i}}}\left(v_{k}\right)\right)=2 k W(T)+\frac{1}{6} k(k-1)(n-1)(2 k+3 n+2)$.

Let the family $\mathcal{U}_{k+m+2}=\left\{U_{e} \mid e \in E(T)\right\}$ be obtained from an arbitrary tree T as described above. Then there is a simple relation between quantities $W\left(\mathcal{U}_{k+m+2}\right)$ and $W(T)$ for certain positions of cycle C_{k+m+2}.

Theorem 1. For the Wiener index of the family $\mathcal{U}_{k+m+2}, k \leq m \leq k+2$,

$$
\begin{aligned}
& W\left(\mathcal{U}_{k+m+2}\right)=(n+2 k+3 m-1) W(T)+ \\
& \quad+\frac{1}{8}(n-1)\left[4 n[k(k-1)+m(m-1)]+(k+m)^{2}(k+m+2)+\phi\right]
\end{aligned}
$$

where $\phi=4(k-m)$ if $k+m$ is even, and $\phi=3 k-5 m+2$ if $k+m$ is odd.
Proof. Consider an arbitrary tree T of order n. Let U_{e} be a unicyclic graph obtained by replacing an edge $e=(x, y)$ of T with cycle C_{k+m+2}, where $k \geq 0$ and $m \geq k$. To apply Lemmas 1 and 2 , graph U_{e} is constructed as follows. First, k - and m-subdivisions are applied to the edge e in two copies of the tree T. Further, the corresponding vertices of the resulting trees $T_{e, k}$ and $T_{e, m}$ are identified as depicted in Fig. 1. Since $k \leq m$, it is obvious that $d_{U_{e}}(v)=d_{T_{e, k}}(v)$ for all $v \in V\left(U_{e}\right) \backslash\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$. Since $m \leq k+2$, the length of path $\left(u_{1}, u_{2}, \ldots, u_{m}, y\right)$ does not exceed the length of path $\left(u_{1}, x, v_{1}, v_{2}, \ldots, v_{k}, y\right)$ and, therefore, $d_{U_{e}}\left(u_{i}\right)=d_{T_{e, m}}\left(u_{i}\right)$ for all $i=1,2, \ldots, m$. Then

$$
\begin{align*}
W\left(U_{e}\right) & =W\left(T_{e, k}\right)+\sum_{i=1}^{m} d_{U_{e}}\left(u_{i}\right)-W\left(P_{m}\right)+\sum_{i=1}^{m} \sum_{j=1}^{k} d_{U_{e}}\left(u_{i}, v_{j}\right) \\
& =W\left(T_{e, k}\right)+\sum_{i=1}^{m} d_{T_{e, m}}\left(u_{i}\right)-W\left(P_{m}\right)+\sum_{i=1}^{m} \sum_{j=1}^{k} d_{U_{e}}\left(u_{i}, v_{j}\right) \tag{1}
\end{align*}
$$

The last term of equation (1) can be easily calculated through the Wiener index of cycle C_{k+m+2} as follows:

$$
\begin{aligned}
\sum_{i=1}^{m} \sum_{j=1}^{k} d_{U_{e}}\left(u_{i}, v_{j}\right) & =W\left(C_{k+m+2}\right)-\sum_{i<j}^{m} d_{P_{m}}\left(u_{i}, u_{j}\right)-\sum_{i<j}^{k} d_{P_{k}}\left(v_{i}, v_{j}\right) \\
& -d_{C_{k+m+2}}(x)-d_{C_{k+m+2}}(y)+d_{U_{e}}(x, y) \\
& =W\left(C_{k+m+2}\right)-W\left(P_{m}\right)-W\left(P_{k}\right) \\
& -d_{C_{k+m+2}}(x)-d_{C_{k+m+2}}(y)+(k+1)
\end{aligned}
$$

Summing equation (1) for all edges $e \in E(T)$, we have

$$
\begin{aligned}
W\left(\mathcal{U}_{k+m+2}\right) & =\sum_{e \in E(T)} W\left(U_{e}\right)=\sum_{e \in E(T)} W\left(T_{e, k}\right)+\sum_{e \in E(T)} \sum_{i=1}^{m} d_{T_{e, m}}\left(u_{i}\right) \\
& -(n-1) W\left(P_{m}\right)+(n-1)\left[W\left(C_{k+m+2}\right)-W\left(P_{m}\right)\right. \\
& \left.-W\left(P_{k}\right)-2 d_{C_{k+m+2}}(x)+(k+1)\right] .
\end{aligned}
$$

Substitution expressions from Lemmas 1 and 2 into this equality completes the proof.

Graphs of the family \mathcal{U}_{k+m+2} are relevant to chemical unicyclic structures when m and k are both small. Examples of such graphs will be considered in the subsequent sections.

Denote by $W_{\text {avr }}(\mathcal{U})$ the average value of the Wiener index of unicyclic graphs in a family \mathcal{U}, i.e. $W_{\text {avr }}(\mathcal{U})=W(\mathcal{U}) /|\mathcal{U}|$. Theorem 1 shows that $W_{\text {avr }}(\mathcal{U})$ can be calculated in terms of the characteristics of the initial tree and parameters of a given cycle. In general case, quantity $W_{\text {avr }}(\mathcal{U})$ may be a fractional number or the realization of integer $W_{\mathrm{avr}}(\mathcal{U})$ by graphs may not exists. Obviously, a family \mathcal{U} obtained from the star contains graphs G with $W(G)=W_{\text {avr }}(\mathcal{U})$.

3 Odd cycles

If edges of a tree are replaced by an odd cycle ($k+m$ is odd), then $m=k+1$, $k \geq 0$. Since $T_{e, 0}$ coincides with T, triangles arise in unicyclic graphs when $k=0$. We have only one suitable way of inserting an odd cycle.

Corollary 1. Let a family of unicyclic graphs $\mathcal{U}_{2 k+3}$ be obtained from a tree T of order n by replacing its edges with odd cycle $C_{2 k+3}, k \geq 0$. Then

$$
W\left(\mathcal{U}_{2 k+3}\right)=(5 k+n+1) W(T)+\frac{1}{2}(n-1) k\left(2 n k+2 k^{2}+5 k+3\right),
$$

and the average value of the Wiener index of graphs of the family is

$$
W_{\mathrm{avr}}\left(\mathcal{U}_{2 k+3}\right)=\left(1+\frac{5 k+2}{n-1}\right) W(T)+\frac{1}{2} k\left(2 n k+2 k^{2}+5 k+3\right) .
$$

The last equation may be useful for estimating how the Wiener index changes on average under such edge cyclization. Quantity $W_{\text {avr }}\left(\mathcal{U}_{2 k+3}\right)$ is integer if $W(T)$ or $5 k+2$ are divisible by $n-1$. For instance, $W_{\mathrm{avr}}\left(\mathcal{U}_{2 k+3}\right)$ is integer if a tree T has order 8 and cycles have length 5 . For small cycles, expressions of Corollary 1 have a simple form.

Corollary 2. For the families of unicyclic graphs with 3-, 5- or 7-membered cycles,

$$
\begin{aligned}
& W\left(\mathcal{U}_{3}\right)=(n+1) W(T) \\
& W\left(\mathcal{U}_{5}\right)=(n+6) W(T)+(n-1)(n+5) \\
& W\left(\mathcal{U}_{7}\right)=(n+11) W(T)+(n-1)(4 n+21)
\end{aligned}
$$

and the average values of the Wiener index of unicyclic graphs are

$$
\begin{aligned}
W_{\mathrm{avr}}\left(\mathcal{U}_{3}\right) & =\left(1+\frac{2}{n-1}\right) W(T) \\
W_{\mathrm{avr}}\left(\mathcal{U}_{5}\right) & =\left(1+\frac{7}{n-1}\right) W(T)+n+5 \\
W_{\mathrm{avr}}\left(\mathcal{U}_{7}\right) & =\left(1+\frac{12}{n-1}\right) W(T)+4 n+21
\end{aligned}
$$

For unicyclic graphs with triangles, $W_{\text {avr }}\left(\mathcal{U}_{3}\right) \rightarrow W(T)$ if $n \rightarrow \infty$. As an illustration, consider families of unicyclic graphs with cycles of length 3 , 5 , and 7 shown in Fig. 2. Wiener indices are indicated near graph diagrams. By Corollary 2, $W\left(\mathcal{U}_{3}\right)=7 \cdot 32=224, W\left(\mathcal{U}_{5}\right)=12 \cdot 32+55=439$, and $W\left(\mathcal{U}_{7}\right)=17 \cdot 32+225=769$. All average values are fractional.

4 Even cycles

If edges of a tree are replaced by an even cycle $(k+m$ is even $)$, then k and m are both even or odd, $k \geq 0$. Therefore, even cycles can be suitably inserted when $m \in\{k, k+2\}$.

Corollary 3. Let a family of unicyclic graphs \mathcal{U}_{k+m+2} be obtained from a tree T of order n by replacing its edges with even cycle C_{m+k+2}.

Figure 2. Families of graphs with 3-, 5- and 7-membered cycles.

Then for $m=k \geq 1$,

$$
W\left(\mathcal{U}_{2 k+2}\right)=(n+5 k-1) W(T)+(n-1) k[n(k-1)+k(k+1)],
$$

and for $m=k+2 \geq 0$,

$$
\begin{aligned}
W\left(\mathcal{U}_{2 k+4}\right)=(n+5 k & +5) W(T)+ \\
& +(n-1)\left[n\left(k^{2}+k+1\right)+(k+1)^{2}(k+2)-1\right],
\end{aligned}
$$

and the average values of the Wiener index of unicyclic graphs are

$$
\begin{aligned}
& W_{\mathrm{avr}}\left(\mathcal{U}_{2 k+2}\right)=\left(1+\frac{5 k}{n-1}\right) W(T)+k[n(k-1)+k(k+1)], \\
& W_{\mathrm{avr}}\left(\mathcal{U}_{2 k+4}\right)=\left(1+\frac{5 k+6}{n-1}\right) W(T)+n\left(k^{2}+k+1\right)+(k+1)^{2}(k+2)-1 .
\end{aligned}
$$

If $m=k$, then cycles have length $4,6,8$, etc. If $m=k+2$, then odd k gives cycles of length $6,10,14$, etc., while even k gives cycles of length $4,8,12$, etc.

Figure 3. Families of unicyclic graphs with 4- and 6-membered cycles.

Corollary 4. For the families of unicyclic graphs with cycles of length 4 and 6 , we have

$$
\begin{gathered}
W\left(\mathcal{U}_{4}\right)= \begin{cases}(n+4) W(T)+2(n-1), & \text { if } m=k=1, \\
(n+5) W(T)+(n-1)(n+1), & \text { if } m=2, k=0,\end{cases} \\
W\left(\mathcal{U}_{6}\right)= \begin{cases}(n+9) W(T)+2(n-1)(n+6), & \text { if } m=k=2, \\
(n+10) W(T)+(n-1)(3 n+11), & \text { if } m=3, k=1,\end{cases}
\end{gathered}
$$

and the average values of the Wiener index of unicyclic graphs are

$$
\begin{gathered}
W_{\mathrm{avr}}\left(\mathcal{U}_{4}\right)= \begin{cases}\left(1+\frac{5}{n-1}\right) W(T)+2, & \text { if } m=k=1, \\
\left(1+\frac{6}{n-1}\right) W(T)+n+1, & \text { if } m=2, k=0,\end{cases} \\
W_{\mathrm{avr}}\left(\mathcal{U}_{6}\right)= \begin{cases}\left(1+\frac{10}{n-1}\right) W(T)+2(n+6), & \text { if } m=k=2, \\
\left(1+\frac{11}{n-1}\right) W(T)+3 n+11 & \text { if } m=3, k=1 .\end{cases}
\end{gathered}
$$

As an example, consider families of unicyclic graphs with cycles of length 4 and 6 shown in Fig. 3. By Corollary 4, $W\left(\mathcal{U}_{4}\right)=10 \cdot 32+10=330$ (the first row, $m=k=1$), $W\left(\mathcal{U}_{4}\right)=9 \cdot 32+35=323$ (the second row, $m=2, k=0$), $W\left(\mathcal{U}_{6}\right)=15 \cdot 32+120=600$ (the third row, $m=k=2$), and $W\left(\mathcal{U}_{6}\right)=14 \cdot 32+145=593$ (the last row, $m=3, k=1$). Graphs of the families in the first and the third rows contain unicyclic graphs U with "average" structure. Namely, $W(U)=W_{\text {avr }}\left(\mathcal{U}_{4}\right)=66$ and $W(U)=$ $W_{\text {avr }}\left(\mathcal{U}_{6}\right)=120$.

Acknowledgment: The study was carried out within the framework of the state contract of the Sobolev Institute of Mathematics (project number FWNF-2022-0017).

References

[1] D. Bonchev, D. H. Rouvray (Eds.), Chemical Graph Theory - Introduction and Fundamentals, Gordon \& Breach, New York, 1991.
[2] D. Bonchev, The Wiener number - some applications and new developments, in: D. H. Rouvray, R. B. King (Eds.), Topology in Chemistry. Discrete Mathematics of Molecules, Horwood, Chichester, 2002, pp. 58-88.
[3] A. A. Dobrynin, On the Wiener index of fibonacenes, MATCH Commun. Math. Comput. Chem. 64 (2010) 707-726.
[4] A. A. Dobrynin, On the Wiener index of certain families of fibonacenes, MATCH Commun. Math. Comput. Chem. 70 (2013) 565574.
[5] A. A. Dobrynin, Wiener index of hexagonal chains with segments of equal length, in: M. Dehmer, F. Emmert-Streib (Eds.), Quantitative Graph Theory: Mathematical Foundations and Applications, Chapman and Hall/CRC, New York, 2014, pp. 81-109.
[6] A. A. Dobrynin, Wiener index of subdivisions of a tree, Siberian El. Math. Rep. 16 (2019) 1581-1586.
[7] A. A. Dobrynin, On the Wiener index of the forest induced by contraction of edges in a tree, MATCH Commun. Math. Comput. Chem. 86 (2020) 321-326.
[8] A. A. Dobrynin, On the Wiener index of two families generated by joining a graph to a tree, Discr. Math. Lett. 9 (2022) 44-48.
[9] A. A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: theory and applications, Acta Appl. Math. 66 (2001) 211-249.
[10] A. A. Dobrynin, E. Estaji, Wiener index of certain families of hexagonal chains, J. Appl. Math. Comput. 59 (2019) 245-256.
[11] A. A. Dobrynin, I. Gutman, S. Klavžar, P. Žigert, Wiener index of hexagonal systems, Acta Appl. Math. 72 (2002) 247-294.
[12] R. C. Entringer, Distance in graphs: trees, J. Comb. Math. Comb. Comput. 24 (1976) 65-84.
[13] R. C. Entringer, D. E. Jackson, D. A. Snyder, Distance in graphs, Czech. Math. J. 26 (1976) 283-296.
[14] I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer-Verlag, Berlin, 1986.
[15] M. Knor, R. Škrekovski, A. Tepeh, Mathematical aspects of Wiener index, Ars Math. Contemp. 11 (2016) 327-352.
[16] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.
[17] N. Trinajstić, Chemical Graph Theory, CRC Press, Boca Raton, 1982.
[18] S. Nikolić, N. Trinajstić, Z. Mihalić, The Wiener index: developments and applications, Croat. Chem. Acta 68 (1995) 105-129.
[19] S. Wagner, H. Wang, Introduction to Chemical Graph Theory, Chapman\& Hall/CRC, Boca Raton, 2018.
[20] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1947) 17-20.

