
MATCH
Communications in Mathematical

and in Computer Chemistry

MATCH Commun. Math. Comput. Chem. 88 (2022) 461–470

ISSN: 0340–6253

doi: 10.46793/match.88-2.461D

Wiener Index of Families of Unicyclic

Graphs Obtained From a Tree

Andrey A. Dobrynin

Sobolev Institute of Mathematics, Siberian Branch of the Russian

Academy of Sciences, Novosibirsk, 630090, Russia

dobr@math.nsc.ru

(Received April 1, 2022)

Abstract

The Wiener index W (G) of a graph G is the sum of distances be-
tween all vertices of G. The Wiener index of a family G of connected
graphs is defined as the sum of the Wiener indices of its members,
W (G) =

∑
G∈G W (G). Let Ue be a unicyclic graph obtained by

replacing an edge e of a tree T with a fixed length cycle. A simple
relation between Wiener indices of the family {Ue | e ∈ E(T )} and
a tree T is presented for certain positions of the cycle.

1 Introduction

In this article, all graphs are undirected, connected, without loops or mul-

tiple edges. The vertex and edge sets of a graph G are denoted by V (G)

and E(G), respectively. The cardinality of V (G) is called the order of the

graph G and is denoted by nG. The distance dG(u, v) between vertices

u and v of G is the number of edges in a shortest path connecting them.

The distance of a vertex v of a graph G is the sum of distances from v to

all vertices of the graph, dG(v) =
∑

u∈V (G) dG(v, u). The Wiener index of

a graph G is a distance-based topological index introduced as structural
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descriptor for acyclic organic molecules [20]:

W (G) =
∑

u,v∈V (G)

d(u, v) =
1

2

∑
v∈V (G)

dG(v).

It has found numerous applications in organic chemistry and related fields

(see selected books [1, 14,16,17,19] and reviews [2, 9, 11,15,18]).

In this paper, we study the Wiener index of families of graphs which

may arise as the result of structural transformations of a given graph. For

example, attaching a cycle to tree vertices generates a family of unicyclic

graphs. The Wiener index of a family G = {G1, G2, . . . , Gr} of connected

graphs is defined as the sum of the Wiener indices of its members,

W (G) = W (G1) +W (G2) + · · ·+W (Gr).

In this case, values of W (G) depend on the structures of several graphs.

It is clear that if all graphs of a family G are isomorphic to the simple path

or the complete graph of order n, then W (G) takes extremal values among

all families of cardinality r with n-vertex graphs. Properties of the Wiener

index for some families of acyclic structures and benzenoid graphs were

studied in [3–8,10].

Denote by Pn and Cn the simple path and the simple cycle of order n,

respectively. In is known that W (Pn) = n(n2 − 1)/6, dCn
(v) = n2/4 and

W (Cn) = n3/8 for even n, dCn
(v) = (n2 − 1)/4 and W (Cn) = n(n2 − 1)/8

for odd n [13]. The edge k-subdivision of an edge e ∈ E(G) is the graph

Ge constructed by replacing e with path Pk+2 = (v1, v2, . . . , vk) in a graph

G. Vertices vi, i = 1, 2, . . . k, are called the subdivision vertices of e.

Let Ue be a unicyclic graph obtained by replacing edge e = (u, v) of a

tree T of order n with a cycle of length c and let Uc = {Ue | e ∈ E(T )}. In
general case, the calculating formula for the Wiener index W (Ue) should

include the distance of vertices u and v in T . It is shown that the Wiener

index of the family Uc can be expressed in terms of W (T ) for certain

positions of the cycle. This also allows the finding the average value of the

Wiener index of graphs in Uc.
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2 Main result

Let Te,k and Te,m be trees obtained by k- and m-subdivision an edge e

of a tree T , respectively. Then the process of replacing the edge e with

cycle Ck+m+2 can be represented as a join of Te,k and Te,m as shown in

Fig. 1. Namely, the corresponding vertices of the trees are identified with

the exception of the subdivision vertices. We calculate the Wiener index

of the resulting graph Ue through distance characteristics of Te,k and Te,m.
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Figure 1. Replacing an edge e of a tree T with cycle Ck+m+2.

The following two lemmas are useful for computing the Wiener index

of families of trees obtained by edge subdivisions [6].

Lemma 1. For k-subdivisions Te1 , Te2 , . . . , Ten−1
of edges e1, e2, . . . , en−1

of a tree T of order n,

W (Te1) +W (Te2) + · · ·+W (Ten−1
) =

= (3k + n− 1)W (T ) + (n− 1)

(
k + 1

3

)
+ 2

(
k

2

)(
n

2

)
.

The next result shows that the distances of all subdivision vertices can

be expressed through the Wiener index of the initial tree.

Lemma 2. For subdivision vertices v1, v2, . . . , vk of k-subdivision of edges

e1, e2, . . . , en−1 of an n-vertex tree T ,

n−1∑
i=1

(
dTei

(v1) + · · ·+ dTei
(vk)

)
= 2kW (T )+

1

6
k(k−1)(n−1)(2k+3n+2).

Let the family Uk+m+2 = {Ue | e ∈ E(T )} be obtained from an arbi-

trary tree T as described above. Then there is a simple relation between

quantities W (Uk+m+2) and W (T ) for certain positions of cycle Ck+m+2.
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Theorem 1. For the Wiener index of the family Uk+m+2, k ≤ m ≤ k+2,

W (Uk+m+2) = (n+ 2k + 3m− 1)W (T ) +

+
1

8
(n− 1)

[
4n [ k(k − 1) +m(m− 1) ] + (k +m)2(k +m+ 2) + ϕ

]
,

where ϕ = 4(k−m) if k+m is even, and ϕ = 3k− 5m+2 if k+m is odd.

Proof. Consider an arbitrary tree T of order n. Let Ue be a unicyclic graph

obtained by replacing an edge e = (x, y) of T with cycle Ck+m+2, where

k ≥ 0 and m ≥ k. To apply Lemmas 1 and 2, graph Ue is constructed

as follows. First, k- and m-subdivisions are applied to the edge e in two

copies of the tree T . Further, the corresponding vertices of the resulting

trees Te,k and Te,m are identified as depicted in Fig. 1. Since k ≤ m, it is

obvious that dUe
(v) = dTe,k

(v) for all v ∈ V (Ue) \ {u1, u2, . . . , um}. Since

m ≤ k+2, the length of path (u1, u2, . . . , um, y) does not exceed the length

of path (u1, x, v1, v2, . . . , vk, y) and, therefore, dUe
(ui) = dTe,m

(ui) for all

i = 1, 2, . . . ,m. Then

W (Ue) = W (Te,k) +

m∑
i=1

dUe
(ui)−W (Pm) +

m∑
i=1

k∑
j=1

dUe
(ui, vj)

= W (Te,k) +

m∑
i=1

dTe,m
(ui)−W (Pm) +

m∑
i=1

k∑
j=1

dUe
(ui, vj). (1)

The last term of equation (1) can be easily calculated through the

Wiener index of cycle Ck+m+2 as follows:

m∑
i=1

k∑
j=1

dUe(ui, vj) = W (Ck+m+2)−
m∑
i<j

dPm(ui, uj)−
k∑

i<j

dPk
(vi, vj)

− dCk+m+2
(x)− dCk+m+2

(y) + dUe
(x, y)

= W (Ck+m+2)−W (Pm)−W (Pk)

− dCk+m+2
(x)− dCk+m+2

(y) + (k + 1).



465

Summing equation (1) for all edges e ∈ E(T ), we have

W (Uk+m+2) =
∑

e∈E(T )

W (Ue) =
∑

e∈E(T )

W (Te,k) +
∑

e∈E(T )

m∑
i=1

dTe,m
(ui)

− (n− 1)W (Pm) + (n− 1) [W (Ck+m+2)−W (Pm)

− W (Pk)− 2dCk+m+2
(x) + (k + 1) ].

Substitution expressions from Lemmas 1 and 2 into this equality completes

the proof.

Graphs of the family Uk+m+2 are relevant to chemical unicyclic struc-

tures when m and k are both small. Examples of such graphs will be

considered in the subsequent sections.

Denote by Wavr(U) the average value of the Wiener index of unicyclic

graphs in a family U , i.e. Wavr(U) = W (U)/| U |. Theorem 1 shows that

Wavr(U) can be calculated in terms of the characteristics of the initial tree

and parameters of a given cycle. In general case, quantity Wavr(U) may be

a fractional number or the realization of integer Wavr(U) by graphs may

not exists. Obviously, a family U obtained from the star contains graphs

G with W (G) = Wavr(U).

3 Odd cycles

If edges of a tree are replaced by an odd cycle (k+m is odd), thenm = k+1,

k ≥ 0. Since Te,0 coincides with T , triangles arise in unicyclic graphs when

k = 0. We have only one suitable way of inserting an odd cycle.

Corollary 1. Let a family of unicyclic graphs U2k+3 be obtained from a

tree T of order n by replacing its edges with odd cycle C2k+3, k ≥ 0. Then

W (U2k+3) = (5k + n+ 1)W (T ) +
1

2
(n− 1)k(2nk + 2k2 + 5k + 3),

and the average value of the Wiener index of graphs of the family is

Wavr(U2k+3) =

(
1 +

5k + 2

n− 1

)
W (T ) +

1

2
k(2nk + 2k2 + 5k + 3).



466

The last equation may be useful for estimating how the Wiener index

changes on average under such edge cyclization. Quantity Wavr(U2k+3) is

integer if W (T ) or 5k+2 are divisible by n−1. For instance, Wavr(U2k+3)

is integer if a tree T has order 8 and cycles have length 5. For small cycles,

expressions of Corollary 1 have a simple form.

Corollary 2. For the families of unicyclic graphs with 3-, 5- or 7-membered

cycles,

W (U3) = (n+ 1)W (T ),

W (U5) = (n+ 6)W (T ) + (n− 1)(n+ 5),

W (U7) = (n+ 11)W (T ) + (n− 1)(4n+ 21),

and the average values of the Wiener index of unicyclic graphs are

Wavr(U3) =

(
1 +

2

n− 1

)
W (T ),

Wavr(U5) =

(
1 +

7

n− 1

)
W (T ) + n+ 5,

Wavr(U7) =

(
1 +

12

n− 1

)
W (T ) + 4n+ 21.

For unicyclic graphs with triangles, Wavr(U3) → W (T ) if n → ∞. As

an illustration, consider families of unicyclic graphs with cycles of length 3,

5, and 7 shown in Fig. 2. Wiener indices are indicated near graph diagrams.

By Corollary 2, W (U3) = 7 · 32 = 224, W (U5) = 12 · 32 + 55 = 439, and

W (U7) = 17 · 32 + 225 = 769. All average values are fractional.

4 Even cycles

If edges of a tree are replaced by an even cycle (k + m is even), then k

and m are both even or odd, k ≥ 0. Therefore, even cycles can be suitably

inserted when m ∈ {k, k + 2}.

Corollary 3. Let a family of unicyclic graphs Uk+m+2 be obtained from

a tree T of order n by replacing its edges with even cycle Cm+k+2.
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32
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Figure 2. Families of graphs with 3-, 5- and 7-membered cycles.

Then for m = k ≥ 1,

W (U2k+2) = (n+ 5k − 1)W (T ) + (n− 1)k [n(k − 1) + k(k + 1) ],

and for m = k + 2 ≥ 0,

W (U2k+4) = (n+ 5k + 5)W (T )+

+ (n− 1)[n(k2 + k + 1) + (k + 1)2(k + 2)− 1 ],

and the average values of the Wiener index of unicyclic graphs are

Wavr(U2k+2) =

(
1 +

5k

n− 1

)
W (T ) + k [n(k − 1) + k(k + 1) ],

Wavr(U2k+4) =

(
1 +

5k + 6

n− 1

)
W (T ) + n(k2 + k + 1)+(k + 1)2(k + 2)−1.

If m = k, then cycles have length 4, 6, 8, etc. If m = k + 2, then odd

k gives cycles of length 6, 10, 14, etc., while even k gives cycles of length

4, 8, 12, etc.
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Figure 3. Families of unicyclic graphs with 4- and 6-membered cycles.

Corollary 4. For the families of unicyclic graphs with cycles of length 4

and 6, we have

W (U4) =

(n+ 4)W (T ) + 2(n− 1), if m = k = 1,

(n+ 5)W (T ) + (n− 1)(n+ 1), if m = 2, k = 0,

W (U6) =


(n+ 9)W (T ) + 2(n− 1)(n+ 6), if m = k = 2,

(n+ 10)W (T ) + (n− 1)(3n+ 11), if m = 3, k = 1,

and the average values of the Wiener index of unicyclic graphs are

Wavr(U4) =


(
1 + 5

n−1

)
W (T ) + 2, if m = k = 1,(

1 + 6
n−1

)
W (T ) + n+ 1, if m = 2, k = 0,

Wavr(U6) =


(
1 + 10

n−1

)
W (T ) + 2(n+ 6), if m = k = 2,(

1 + 11
n−1

)
W (T ) + 3n+ 11 if m = 3, k = 1.
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As an example, consider families of unicyclic graphs with cycles of

length 4 and 6 shown in Fig. 3. By Corollary 4, W (U4) = 10 ·32+10 = 330

(the first row, m = k = 1), W (U4) = 9 · 32 + 35 = 323 (the second row,

m = 2, k = 0), W (U6) = 15 · 32 + 120 = 600 (the third row, m = k = 2),

and W (U6) = 14 · 32 + 145 = 593 (the last row, m = 3, k = 1). Graphs

of the families in the first and the third rows contain unicyclic graphs U

with “average” structure. Namely, W (U) = Wavr(U4) = 66 and W (U) =

Wavr(U6) = 120.
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