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Abstract

In this paper we report on some mathematical investigations of the chemical
process for the hydrogenolysis of glycerol over a heterogeneous metal catalyst. The
main interest of this process is related to the fact that glycerol is produced as
a by-product in the production of biodiesel in huge amounts that are expected to
exceed the projected demands. This makes the sustainability of biodiesel production
depend on the conversion of the glycerol into useful products hence it is a desirable
goal to have effective conversion methods. A reaction model from literature is used
to derive a system of ordinary differential equations (ODE) which is then analysed
using methods from qualitative analysis of ODEs. Numerical solutions of the system
are simulated to try and find out the solution’s behaviour in the chemistry point
of view. It was found that all solutions of the model converge to some stable limit
point in a 2-dimensional plane in the positive cone of the R5 phase space, and the
limit point depends on the values of rate constants ki as well as on the hydrogen
to glycerol initial ratios. Even though the results are based on a specific kinetic
model, it is hoped that they may help in providing tools for better understanding
and description of the reaction.
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1 Introduction

The effects that climate change has on the environment cannot go unnoticed and as a

result, has attracted researchers to find ways to ensure the situation remains controllable.

Literature has shown that fossil fuels are one of the leading contributors to climate change

due to their massive production of carbon dioxide, a gas reported to contribute massively

to climate change [11]. There exists various approaches to minimize the destructions

caused by climate change which includes the use of biodiesel. This is a biofuel which

hopes to decrease the absolute dependence on crude oil, one of the major contributors to

climate change [4].

According to Zhao et al. [18], during the production of biodiesel, another chemical

called glycerol is produced in very large amounts and it is proposed that the production

of glycerol will exceed its market demands in the near future. Glycerol has got a lot of

applications as it is used in the food industry, pharmaceuticals etc. In some work reported

by Torres et al. [16], it is stated that even though the production of biodiesel has been

commercialized, the tenability of this process depends on the conversion of glycerol into its

useful chemical derivatives. Therefore, there has been on-going research on how to convert

the glycerol into suitable chemicals using different chemical methods and amongst those,

hydrogenolysis is one of them. However in the work of Pandhare et al. [11], it is reported

that not much research on the kinetics underlying these reactions has been done. As a

result, in this study we seek to mathematically investigate the kinetics of a model for

catalysed hydrogenolysis of glycerol using methods from the qualitative analysis of ODEs

in an attempt to provide tools to describe and understand the reaction better. Numerical

solutions to the model are simulated to try and understand the reaction’s behaviour

in the chemistry point of view as well as compare the model results to those obtained

experimentally.

As steps towards this goal, we consider a reaction model in a report by Shozi et al.

[14] for the hydrogenolysis of glycerol using Cu-Re/ZnO catalyst, from which we derive a

system of ODEs that governs the reaction. From the mathematical model we;

• analyse it using techniques from qualitative analysis of ODEs,

• perform numerical simulations of the model to compare with the experimental re-
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sults and investigate the factors that affects the reaction,

• derive some general result(s) from the analysis about the reaction.

2 Preliminaries

We first recall some existing kinetic models on the hydrogenolysis of glycerol. However,

for us to understand the mathematics behind the models, we first need to understand

the chemical background of the process that results in the production of glycerol and the

general result on the reaction for glycerol hydrogenolysis. We first look at the summary of

the biodiesel production process, which consequently leads to the production of glycerol.

2.1 Biodiesel production

Biodiesel is produced mainly from animal fats and vegetable oil through a process called

transesterification [18]. Figure 1 illustrates an outline of the processes involved in the

production of biodiesel.

Figure 1. The biodiesel production process.

In Figure 1 it can be seen that glycerin, commonly called glycerol is also produced.

According to Jin et al. [13], for every 10 kg of biodiesel produced, 1 kg of glycerol is

also formed as a by-product. Likewise, Zhao et al. [18] reported that in 2016 the global
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production of biodiesel was approximately 32.8 million tonnes along with 3.28 million

tonnes of glycerol as a by-product. This means that the sustainability and viability of

commercializing the production of biodiesel lies on the utilization of glycerol [16]. It is

therefore expected that with the increase in the production of biodiesel, more glycerol

will be produced up to a point where the market cannot accommodate the excess. Lahr

and Shanks [8] projects that by the year 2020, the production of glycerol will be 6 times

more than the market demand. This is a cause for concern. As a result, studies on how

to convert the glycerol into usable end products are of great interest [15].

The physical and chemical properties of glycerol allows it to be used in numerous

industrial applications [17]. It has, therefore a variety of chemical applications, such as

a blend in gasoline, coating in polymers, cosmetics, solvents, detergents, sweeteners and

so on. Researchers have been involved in studies on how the glycerol can be converted

effectively into its useful chemical derivatives. There are numerous methods used to

convert glycerol into other useful chemicals, and this includes the use of catalysts alongside

the accompanying reaction of interest such as etherification, esterification, fermentation,

dehydration, hydrogenolysis etc, depending on the desired chemical products [2]. For

the purposes of this study, we focused on the hydrogenolysis reaction, which is briefly

described in the next section.

2.2 General results on hydrogenolysis of glycerol

The hydrogenolysis of glycerol is a chemical reaction that involves the cleaving of chemical

bonds of glycerol by hydrogen in the presence of a metal catalyst [2] leadings to the pro-

duction of 1,2-propanediol (1,2-PD), 1,3-propanediol (1,3-PD) and ethlyene glycol (EG)

as main products, as well as other secondary products, such as ethanol, propanol and

methane, depending on the catalyst used [15]. The main products have a large number

of industrial applications such as being used as coolants, in manufacturing of fibre glass,

in cosmetics, as well as in ink production [18]. A general reaction scheme for the possible

products of catalytic glycerol hydrogenolysis is shown in Figure 2.
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Figure 2. Main products from hydrogenolysis of glycerol; Wang et al. [17]

We have looked at the chemical background of the entire process that leads to the

production of glycerol. We next present the chemical problem and the mathematical

model to be studied.

3 The chemical problem, mathematical model and

its basic properties

In this section we discuss the chemical problem in terms of its reaction mechanism and the

experimental results, then formulate the mathematical model using ordinary differential

equations. We use a scheme by Shozi et al. [14] to formulate the model since we have

the experimental data that accompanies the scheme, making it possible to compare the

model simulations with experimental results as well as estimate the reaction parameters.

We start with a brief summary of the reaction, focusing mainly on the mechanism and

the experimental results.

3.1 Reaction mechanism

Chemists have reported on the different reactions that have been studied for the catalytic

hydrogenolysis of glycerol, however for purposes of this study we consider one reaction

reported by Shozi et al. [14]. This reaction involves the use of a Cu-Re/ZnO catalyst,

hydrogen and glycerol as the main reactants and the reaction is carried at suitable tem-

peratures, around 2500C and hydrogen pressure of 60 bar [14].
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3.1.1 Adsorption

The reaction involves the use of a metal catalyst where glycerol and hydrogen get ad-

sorbed on the catalyst’s site. Then, the adsorbed species react forming the products

while regenerating the catalyst [11].

3.1.2 Reaction scheme

Since the reaction results into a complex network of parallel reactions, different gaseous

and liquid phase products are obtained. Shozi et al. [14] proposed a reaction mechanism

for possible pathways of glycerol hydrogenolysis. The reaction proceeds through the

initial formation of glyceraldehyde (Ge), glycolaldehyde (GO) and formic acid (F) as

intermediates through the removal of hydrogen from the glycerol. Further hydrogenolysis

then gives the products, mainly ethylene glycol, methanol and carbon monoxide depending

on the catalyst used. A scheme of the reaction network is presented in Figure 3.

Figure 3. Reaction pathway for the conversion of glycerol over Cu/ZnO catalysts
(Shozi et al. [14])

From the proposed mechanism, it is believed that retro-aldol conversion of glycer-

aldehyde is the main path for the formation of C1−2 molecules such as EG and methanol.

Also, the formed 1,2-PD can be decomposed further into EG using suitable experimental

conditions. At the end of the reaction they had 2 layers; an aqueous and an organic layer.

The organic layer was analysed for products using gas chromatography (GC). The gases

collected were also analysed using GC instruments and concentrations of products were

determined and recorded.
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However, due the Cu-Re/ZnO catalyst used in the experiment of Shozi et al. [14],

it was reported that the 1,3-PD and the carbon monoxide were produced in very small

amounts compared to the EG and 1,2-PD, and the methanol was around 25% of the EG.

It was also reported that increasing the amount of hydrogen results in an increase in

the production of EG over 1,2-PD. In a similar way, decreasing the amount of hydrogen

resulted in a decrease in EG produced over 1,2-PD.

It must be noted that, from the reaction given by (1), it is seen that the rate of

production of 1,3-PD could the same as that of 1,2-PD. However, experimentally this was

not the case: with the Cu-Re/ZnO catalyst used in the experiment of Shozi et al. [14]

it was reported that the 1,3-PD and the carbon monoxide were produced in very small

amounts compared to the EG and 1,2-PD, and the methanol was around 25% of the EG.

These evidence can point to some limitations of the model in [14]. It is believed that this

is due to the fact that the true reaction scheme has a large number of side reactions and,

as a consequence, getting the exact chemical model becomes a challenge.

3.2 Model development

To simplify the writing of the mathematical equations of the model, we introduce new

notation for each of the species involved in the reaction presented in Table refParameters.

In this notation we do not distinguish between 1,2-PD and 1,3-PD (as briefly discussed

below the last one is reported to have been produced in very small amounts) and denote

the their global concentratio by X5; we also assume from the start that at the beginning

of the process the concentrations of GO and F are equal (they are, in fact, equal to zero)

so that their amount at any later time will be equal and will be denoted by X3.

Table 1. Simplified notation for the chemicals.

Old notation New notation

G X1

Ge X2

GO = F X3

EG X4

PD X5

With this notation and taking into consideration the discussion above a more compact
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way of writing the chemical reactions network depicted in Fig 3 is the following

X5
k0←−− X1

k1 (−H2)−−−−−−⇀↽−−−−−−
k−1 (+H2)

X2

k2−−⇀↽−−
k−2

2X3

k3 (+H2)−−−−−→ X4 (1)

Assuming the validity of the mass action law, [5], a system of ordinary differential

equations for the time evolution of the concentration of the chemical species Xj, j =

1, . . . , 5, can be derived from the scheme 1 and takes the form:

dX1

dt
=− (k0 + k1)X1 + k−1H2X2

dX2

dt
=k1X1 − k−1H2X2 + k−2X

2
3 − k2X2

dX3

dt
=k2X2 − k−2X

2
3 − k3H2X

2
3

dX4

dt
=k3H2X

2
3

dX5

dt
=k0X1

(2)

where we use the notation Xj to also denote the concentrations of the molecule Xj

We now present some basic properties of the model together with a brief description

on how the parameters were estimated.

3.2.1 Basic assumptions

To investigate the kinetic model (2) we will assumed that the pressure of hydrogen and

the catalyst’s concentration are nonzero constants [12]

Aditionally, we will consider that at the initial time t = 0 the concentration of all

other species except for glycerol (and hydrogen) are zero, i.e.,

(X1, X2, X3, X4, X5)(0) = (X1(0), 0, 0, 0, 0) (3)

where X1(0) > 0.

3.2.2 Parameters

The rate constants of the model were determined using experimental data from the report

of Shozi et al. [13] and then compared using parameters in the report of [7]. In determining

the rate constants, first the turnover frequency (TOF) of the catalyst was determined with
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guidance from the report of Zhao et al. [18] and then using Arrhenius plots, the order

of the reaction was investigated by plotting the logarithm of TOF versus the inverse of

temperature.

Reports for these plots with different catalysts used have linear plots and this shows

that the reaction is first order [10]. Hence assuming the validity of the mass action law,

a plot of the logarithm of glycerol concentration against time is obtained. The slope of

this plot is the estimate of the rate constant. In Table 2 below we present their orders of

magnitude.

Table 2. Orders of magnitude for the reaction constants obtained using experimen-
tal data.

Parameter Experimental value

k0 ≤ 10−1

k1 ≤ 101

k−1 ≤ 101

k2 ≤ 103

k−2 ≤ 103

k3 ≤ 103

Having looked at the reaction scheme, at the experimental results, and having derived

the mathematical model, in the next section we use some techniques from the qualitative

theory of ODEs to analyse it.

4 Mathematical analysis

In this section we present some mathematical analysis of the model, mainly its equilibria,

properties of the solutions and their stabilities.

4.1 Existence, uniqueness, and boundedness of solutions

It is clear that initial value problems for Equation (2) have unique solutions: the rigt-hand

side of (2) is a polynomial vector field. Hence it is C∞ and, in particular, locally Lipschitz.

As a consequence, Picard-Lindelöf theorem guarantees the existence and uniqueness of

local solutions to Cauchy problems (see, e.g., Barreira and Valls [1]). In fact, it is easy to

see that all nonnegative solutions of (2) are globally defined in [0,+∞), as shown next:
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Proposition 1 Solutions to (2) with nonnegative initial data (Xj(0)) are nonegative,

bounded, and globally defined in a maximal interval containing [0,+∞).

Proof. The nonnegativity result is an easy consequence of the structure of (2): since for

every j = 1, . . . , 5 at every point of the coordinate half-hyperplanes {Xj = 0 ∧ Xi ≥
0 for i ̸= j} we have

dXj

dt
≥ 0, and hence Xj(t) ≥ 0 for t > 0. Denote by R5+ the

nonnegative cone of R5. It is also clear from (2) that

d

dt

5∑

k=1

Xk(t) = 0, (4)

and thus, for all initial conditions in R5+ it follows that
∑5

k=1Xk(t) =
∑5

k=1Xk(0) = C0,

where C0 is the constant for each initial condition. Therefore, by the nonnegativity of

solutions, 0 ≤ Xk(t) ≤ C0 for all t ≥ 0 and all k = 1, . . . , 5. From this boundeness result

and the fact that the vector field of (2) is polynomial (and hence bounded in bounded

sets) it immediately follows that local nonnegative solutions can be extended to a maximal

interval containing [0,+∞). This concludes the proof.

4.2 Equilibria

Proposition 2 The kinetic model defined by (2)–(3) has nonnegative equilibria which are

given by

(X∗
1 , X

∗
2 , X

∗
3 , X

∗
4 , X

∗
5 ) = (0, 0, 0, (X4)eq, (X5)eq) , (5)

where (X4)eq + (X5)eq = X1(0).

Proof. From the forth and fifth equation in (2) it follows that every equilibria must

satisfy X1 = 0 and X3 = 0. Using the first of these conditions in the first equation of

(2) we conclude that equilibria must also satisfy X2 = 0. The remaining equations of (2),

i.e., the second and third equations, do not provide any other aditional condition, so the

remaining two components of the equilibrium solution vector, namely X4 and X5, remain

free. This proves (5). The relation (X4)eq + (X5)eq = X1(0) follows immediately from (4)

and (3). Hence, the equilibria of (2) forms a 2-dimensional plane in the 4-dimensional

simplex
∑5

k=1Xk = C0 in the positive cone R5+ of the phase plane.
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4.3 On the stability of equilibria

4.3.1 Stability of the linearized system

We start the study of the stability of equilibria of (2) by analysing the linearized sta-

bility, i.e., the eigenvalues of the jacobian matrix of the right-hand side of (2) about an

equilibrium: rewriting equation (2) in vector form gives

X′ = F(X) (6)

where X′ = (X1, . . . , X5)
T and F(X) =




(−k0 − k1)X1 + k−1H2X2

k1X1 − (k2 + k−1H2)X2 + k−2X
2
3

k2X2 − (k−2 + k3H2)X
2
3

k3H2X
2
3

k0X1



. Hence, the

jacobian DF(X) at a point X is

DF(X) =




−k0 − k1 k−1H2 0 0 0
k1 −k2 − k−1H2 2k−2X3 0 0
0 k2 −2k−2X3 − 2k3H2X3 0 0
0 0 2k3H2X3 0 0
k0 0 0 0 0



. (7)

Taking X = Xeq given by (5) we have

DF(Xeq) =




−k0 − k1 k−1H2 0 0 0
k1 −k−1H2 − k2 0 0 0
0 k2 0 0 0
0 0 0 0 0
k0 0 0 0 0



.

It is easy to compute the characteristic polynomial of this matrix, obtaining

(
λ2 + (k0 + k1 + k2 + k−1H2)λ+ (k0k2 + k1k2 + k0k−1H2)

)
λ3 = 0. (8)

Thus, the eigenvalues of the jacobian DF(Xeq) about an equilibrium Xeq are λ0 = 0, with

algebraic multiplicity equal to 3, and

λ± =
−(k0 + k1 + k2 + k−1H2)

2
±
√
(k0 + k1 + k2 + k−1H2)2 − 4(k0k2 + k1k2 + k0k−1H2)

2
,

(9)

each with algebraic multiplicity 1. Clearly, due to the nonnegativity of the kinetic co-

efficients, we always have Re(λ±) < 0. It is also easy to conclude that the geometric

multiplicity of λ0 = 0 is equal to its algebraic multiplicity, and thus we can conclude

(see, e.g. [1, Theorem 3.10]) that the equilibria of the linear system u′ = DF(Xeq)u are

stable. However, since the jacobian DF(Xeq) is not hyperbolic, from this computation we
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cannot infer the stability of the equilibria for the nonlinear system (2), as the Grobman-

Hartman theorem [1, Theorem 4.7] is not applicable. Even if it were, the result we would

obtain would be just local, for initial conditions sufficiently close to the equilibrium under

analysis.

To overcome the above problems we will observe that system (2) is a compartmental

system and we use known properties of these systems to proceed with our analysis. We

start by briefly reviewing this concept.

4.3.2 Exploring the structure of (2) as a compartmental system

Consider the system

m′ = F(m) + I, (10)

where m = {mi}i∈{1,...,n} is the mass vector of the system’s components mi, F = F(m),

is the transfer matrix (which typically depends on m) and I is the flow of materials into

and out of the system from and to the environment. A compartment is a unit of the

system’s material that directly mixes with any inflowing material at all times, hence it an

homogeneous entity with mass mi, and the full system is described by the vector m.

Let us consider in Figure 4 the exchange of matter taking place in the ith compart-

ment of a n compartmental system, where mi represents the mass of the ith compartment,

Fpq = Fpq(m) ≥ 0, with p, q ∈ {1, . . . , n}, p ̸= q, is the flow of material from compart-

ment q to compartment p. The inflows and outflows are the flows into and out of the ith

compartment respectively.

Figure 4. A single compartment of a compartmental system and its flows [6].
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We can easily observe that (2) is of the form (10) (with m = X) with identically

zero inflows (I = 0) and outflows. It is also clear from (7) that the right-hand side of

the equation (2), F(X), can be written as (F(X))ij =
∑n

k=1(DF(X))ikXk. Let fij =

fij(X) := (DF(X))ij. Then, we conclude from (7) and from the nonnegativity of the rate

coefficients that, in R5+, the (X dependent) coefficients fij of the matrix DF(X) satisfy

fii < 0, fij ≥ 0 for i ̸= j, and
∑n

i=1 fij ≤ 0. This means that, for all X ∈ R5+, the jacobian

DF(X) is a compartmental matrix [6].

Now we recall the important result in [6, Theorem 5]:

Proposition 3 Let F = (Fi) : S → Rn be a C1 function on an open subset S of Rn.

Suppose that for all X ∈ S its jacobian DF(X) is a compartmental matrix. Then:

1. the function G(X) =
n∑

i=1

|Fi(X)| is a Lyapunov function for (6) (i.e., t 7→ G(X(t))

is a monotonically nonincreasing function, for every solution X(·) of (6));

2. each orbit of (6) is either unbounded or converges to the set of equilibria when

t→ +∞.

Given the bound (4) on nonnegative solutions to (2) and the conclusion above that,

for all X, the jacobian DF(X) is a compartmental matrix, we conclude that, for all

nonnegative initial condition, the positive semi-orbit is nonempty and compact and thus

its ω-limit is an equilibrium solution of (2). The determination of exactly which of the

equilibria is the ω-limit of the solution starting at a given initial condition (X1(0), 0, 0, 0, 0)

is a difficult problem that does not seem to be completely understood at present. The

limit point X∗, which always satisfies

X∗
4 +X∗

5 = X1(0),

depends on the values of ki, H2, andX1(0) as the simulations in the next section illustrates.

5 Results

In this section we present the experimental results as well as simulations from the model.

The simulations were done using a programming language called Julia which contains a

built in package, DifferentialEquations.jl for the simulations and uses the Runge–Kutta

fourth-order method. The experimental results were plotted using MS Excel where the
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equilibrium concentrations of the products are shown using bar plots. The results are

presented at different ratios of hydrogen to glycerol.

5.1 Experimental results

To obtain the results in Figure 5 below, the concentrations of the products were calculated

at the end of the reaction.

Figure 5. Equilibrium concentrations of EG and PD at different Hydrogen:Glycerol
ratios (Shozi et al. [14]). Units for concentration= au

The experimental results showed that when there is more glycerol than hydrogen,

the reaction favours the production of PD over EG. However, increasing the amount of

hydrogen over that of glycerol results in the production of more EG over .

In the next section we present the simulations from the model in an attempt to

compare them with the experimental results. We also present the model results on the

limit points for the solutions for each case.

5.2 Model simulations

The simulations were done at 3 different ratios of hydrogen to glycerol and they are

presented below. We start by comparing the model simulations using the given parameters

in Tables 3, 4, 5 with the experimental results shown in Figure 5.
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Hydrogen:Glycerol ratio of 1:2

Figure 6 shows the model simulations when the amount of initial glycerol was two

times more than that of hydrogen alongside the actual parameter values used.

Figure 6. Simulation at Hydrogen:Glycerol ratio of 1:2.
Units for concentration= au

Table 3. Corresponding parameter values

Parameter Value used

k0 55.0× 10−1

k1 = k−1 0.53× 101

k2 = k−2 0.53× 103

k3 0.53× 103

The simulations from the model showed that when the initial amount of glycerol

is more than that of hydrogen, and using the parameters given in Table 3 the reaction

favours the production of the PD over the EG, just like what is in the experimental results

. Also from the model, we see that the glycerol is converted slowly into the products when

the hydrogen is less than the glycerol compared to Figures 7 and 8.
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Hydrogen:Glycerol ratio of 1:1

For equal amounts of initial glycerol and hydrogen, the model results obtained are

shown in Figure 7 below alongside the parameter values used for the simulation.

Figure 7. Simulation at Hydrogen:Glycerol ratio of 1:1.
Units for concentration= au

Table 4. Corresponding parameter values

Parameter Value used

k0 55.0× 10−1

k1 = k−1 1.0× 101

k2 = k−2 1.0× 103

k3 1.0× 103

When we have equal initial amounts of glycerol and hydrogen, the model predicted

that more EG will be produced than PD, a result similar to the one obtained experimen-

tally. At this point, the glycerol is converted into products faster as we can see the curve

in Figure 7 for glycerol decays more fast than in Figure 6.
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Hydrogen:Glycerol ratio of 2:1

When the hydrogen used was two times more than the initial glycerol, the model

simulations obtained were as shown in Figure 8 below along side the parameter values

used for the simulation.

Figure 8. Simulation at Hydrogen:Glycerol ratio of 2:1.
Units for concentration= au

Table 5. Corresponding parameter values

Parameter Value used

k0 55.0× 10−1

k1 = k−1 2.0× 101

k2 = k−2 2.0× 103

k3 2.0× 103

The model showed that increasing the amount of hydrogen over that of glycerol still

promotes the production of EG over PD as shown by the experimental results. Also, the

glycerol is converted into products even much faster than the above two cases.

Having presented the model simulations, we then present the approximations of the

limit points for each case as illustrated below.
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5.2.1 Limit points

For the different ratios of hydrogen to glycerol the limit points were computed by X∗
i =

lim
t→∞

Xi(t), for i = 1, . . . , 5. These were well approximated by the values of Xi’s at large

values of t, say t∗, depending on the simulation.

Table 6 below shows the limit points, i.e (X∗
1 , X

∗
2 , X

∗
3 , X

∗
4 , X

∗
5 ), from the simulations

at the different ratios of hydrogen to glycerol, correct to 2 decimal places.

Table 6. Limit points at different H:G ratios at t∗ = 1.5

H : G X1(0) Limit point X∗
4 +X∗

5

1 : 2 2.00 (0.00, 0.00, 0.00, 0.97, 1.03) 2.00
1 : 1 1.00 (0.00, 0.00, 0.00, 0.64, 0.36) 1.00
2 : 1 1.00 (0.00, 0.00, 0.00, 0.78, 0.22) 1.00

Having presented the model simulations and compared them with the experimental

results, we then investigate the effects of the constants k1 and k−1 by fixing the the other

constants and the ratio of hydrogen to glycerol at 1:1.

Effects of k1, k−1 to the production of EG and 1,2-PD

When the ratio of hydrogen to glycerol was fixed at 1:1 as well as k0, k2, k−2, k3 and

only varying k1 and k−1 results were obtained and are given in the following figures.

Figure 9. Simulation at Hydrogen:Glycerol ratio of
1:1. Units for concentration= au
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Table 7. Corresponding parameter values

Parameter Value used

k0 1.0× 10−1

k1 = k−1 1.0
k2 = k−2 1.0× 102

k3 1.0× 102

Increasing the value of k1 = k−1 gave the following simulations.

Figure 10. Simulation at Hydrogen:Glycerol ratio of
1:1. Units for concentration= au

Table 8. Corresponding parameter values

Parameter Value used

k0 1.0× 10−1

k1 = k−1 10.0
k2 = k−2 1.0× 102

k3 1.0× 102

The results show that increasing the values of k1 and k−1 yields to an increase in the

amount of EG produced and the reaction reaches equilibrium faster as it seen the the
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Figures 9 and 10. Limit points were also approximated like in the above way (see Section

5.2.1) and they are presented in Table 9 below, correct to 2 decimal places.

Table 9. Limit points when varying k1, k−1 and fixing the other parameters at
t∗ = 5.0

Figure X1(0) Limit point X∗
4 +X∗

5

Fig. 9 1.00 (0.00, 0.00, 0.00, 0.91, 0.09) 1.00
Fig. 10 1.00 (0.00, 0.00, 0.00, 0.99, 0.01) 1.00

We have presented the findings from the experiment and the model simulations, in

the next section we then proceed by presenting the discussion of both the mathematical

results and the simulations.

6 Discussion and conclusion

In this section we present the analysis of the mathematical results and model simulations,

conclusions as well as future work. We start by presenting the discussion of the results

obtained from the mathematical analysis of the model.

6.1 Mathematical results analysis

The kinetic model consists of a 5-dimensional system of autonomous nonlinear ordinary

differential equations for the evolution of the concentrations Xj(t), j = 1, . . . , 5 of the

chemical species taking part in the chemical reaction scheme. The mathematical investi-

gations of the system showed that, for each nonnegative initial condition, the correspond-

ing solution is unique, defined for all positive times, bounded and lie on 2 dimensional

plane in a 4-dimensional simplex. We also concluded that it converges to some limit point

as t → +∞, which may depend on the initial condition. This is so because, due to the

above invariance and to the special structure of the vector field defining the model (a

system whose jacobian matrix is everywhere a compartmental matrix), each solution has

a nonempty ω-limit set which is an equilibrium (by Proposition 3).

We then look at the discussion of the simulations from the model.
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6.2 Model simulation analysis

The model and experimental results have almost similar outcomes in all the 3 different

ratios of hydrogen to glycerol. From Figure 6 where we have initial glycerol concentration

two times more than hydrogen, the model results showed that more PD is produced over

EG. This is because, according to [16] the Cu-Re/ZnO catalyst used have acidic sites

which favours the removal of a water molecule over that of hydrogen, hence more PD

is produced over EG. From Figures 7 and 8, an increase in the hydrogen to glycerol

ratio led to an increase in the production of EG over PD.This can be due to the further

hydrogenolysis of the PD into EG and other products, as reported in the report by [16].

The model results also showed that an increase in the hydrogen to glycerol ratio

resulted in the increase in the conversion of glycerol into the products. This is likely caused

by the increase in the catalyst’s activity in the presence of hydrogen, which promotes

mostly the removal of hydrogen gas from glycerol over the water molecule. Likewise,

the results showed that increasing the amount of hydrogen over that of glycerol does

not necessarily bring great change in the amount of EG produced since their equilibrium

concentrations do not differ much. If increasing the amount of hydrogen does not bring

much increase in EG production, it means that the hydrogenolysis process is cost-effective,

since the production of hydrogen is very costly [5].

When we fixed the ratio of hydrogen to glycerol at 1:1 as well as the other constants

while varying only k1, k−1, the model simulation showed that an increase in the value

of k1, k−1 results in an increase in the production of EG, as shown in Figure 10. This

is because, from system (1) we see that an increase in these constants means more gly-

colaldehyde will be formed which consequently means more glyceraldehyde is produced

hence the increase in the EG formed.

At higher k1, k−1, the reaction reaches equilibrium faster than at lower values as it is

shown by Figures 9 and 10. This might be due to that the intermediates are produced

at a higher rate and quickly utilized into products as shown by Figure 10, we have more

glycolaldehyde produced and quickly levels to 0 compared to Figure 9.
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6.3 Conclusion

The reaction for the hydrogenolysis of glycerol can be modelled using a system of ordinary

differential equations and the model simulations were aligned with how the reaction pro-

ceeds in the chemistry point of view. All solutions of the model converge to some stable

limit point in a 2 dimensional plane of a positive cone in the R5 space, and they depend

on the values of ki and hydrogen to glycerol ratio used. However, finding the exact limit

point to which the solutions converge to, is a problem that is not fully understood at the

moment, possibly due to the fact that our model is non-linear, hence other mathematical

tools needs to be used.

7 Future work

The work reported here is based on a specific chemical mechanism modelling the hy-

drogenolysis of glycerol published in the literature. Other models have also been pro-

posed in the literature and it would be interesting to study those ones using the tools of

mathematical analysis and simulations so that comparison with experimental results can

lead to a better understanding of this important complicated catalytic mechanism that

is, at present, not thoroughly understood. In fact, it is recognized that even the model

studied here needs some revision since the experimental molar ratio of produced ethy-

lene glycol:methanol is about 4:1 and not 1:1 as the kinetic scheme under consideration

predicts.

Notwithstanding the concrete model to be considered in the future, the tools used

in this work (mathematical analysis based on qualitative analysis tools and simulations

supported by numerical solutions of ODE) are bound to be crucial in that process. A

deeper understanding might also require other mathematical tools that have not been

studied or used here, such as methods from asymptotic analysis, and others.
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