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Abstract

A complex balanced kinetic system is absolutely complex balanced (ACB) if
every positive equilibrium is complex balanced. Two results on absolute complex
balancing were foundational for modern chemical reaction network theory (CRNT):
in 1972, M. Feinberg proved that any deficiency zero complex balanced system is
absolutely complex balanced. In the same year, F. Horn and R. Jackson showed
that the (full) converse of the result is not true: any complex balanced mass ac-
tion system, regardless of its deficiency, is absolutely complex balanced. In this
paper, we present initial results on the extension of the Horn and Jackson ACB
Theorem. In particular, we focus on other kinetic systems with positive deficiency
where complex balancing implies absolute complex balancing. While doing so, we
found out that complex balanced power law reactant determined kinetic systems
(PL-RDK) systems are not ACB. In our search for necessary and sufficient condi-
tions for complex balanced systems to be absolutely complex balanced, we came
across the so-called CLP systems (complex balanced systems with a desired ”log
parametrization” property). It is shown that complex balanced systems with bi-LP
property are absolutely complex balanced. For non-CLP systems, we discuss novel
methods for finding sufficient conditions for ACB in kinetic systems containing non-
CLP systems: decompositions, the Positive Function Factor (PFF) and the Coset
Intersection Count (CIC) and their application to poly-PL and Hill-type systems.
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1 Introduction

A positive equilibrium x∗ of a chemical kinetic system (N , K) is complex balanced if

and only if K(x∗) ∈ ker Ia, where Ia is the incidence map of N . If the kinetic system is

complex factorizable (CF), i.e., its species formation rate function f(x) = Y ◦Ak ◦ΨK(x),

where Ak is a Laplacian, or equivalently ΨK(x) ∈ kerAk. We denote the sets of positive

and complex balanced equilibria of (N , K) with E+(N , K) and Z+(N , K) respectively.

A kinetic system is complex balanced iff Z+(N , K) ̸= ∅. Since a network is weakly

reversible if and only if ker Ia contains a positive element, the underlying network of a

complex balanced system is necessarily weakly reversible.

A complex balanced system is absolutely complex balanced (ACB) if every positive

equilibrium is complex balanced, i.e., E+(N , K) = Z+(N , K). Although the term was

introduced only recently in [13], results on “absolute complex balancing” were founda-

tional for Chemical Reaction Network Theory (CRNT) in the 1970’s. In 1972, M. Feinberg

showed that if a kinetic system with zero deficiency has a positive equilibrium, then the

equilibrium is complex balanced. This implies that any deficiency zero complex balanced

system is absolutely complex balanced (we refer to this result as the Feinberg ACB The-

orem). F. Horn, on the other hand, proved that any weakly reversible, deficiency zero

mass action system is complex balanced, and hence also ACB. Furthermore, F. Horn and

R. Jackson in the same year demonstrated that any complex balanced mass action sys-

tem, regardless of deficiency, is absolutely complex balanced. We will call this result the

Horn-Jackson ACB Theorem.

The Horn-Jackson ACB Theorem is interesting because it has at least three possible

interpretations:

• the “Converse Counterexample” (CC) view: it shows that the full converse to the

Feinberg ACB Theorem is not true by providing a large set of ACB systems with

deficiency > 0,

• the “Partial Extension” (PE) view: it extends the Feinberg ACB Theorem to pos-

itive deficiency systems but for a restricted set of kinetics (i.e. mass action only),

and

• the “Log Parametrization” (LP) view: in his 1979 Wisconsin Lecture Notes, M. Fein-

berg showed that absolute complex balancing in a complex balanced mass action sys-
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tem is equivalent to its set of complex balanced equilibria being “log parametrized”

by S⊥, i.e., Z+(N , K) = {x ∈ RS
> | log x− log x∗| ∈ S⊥}, where S is the network’s

stoichiometric subspace and x∗ a given complex balanced equilibrium. We call a

complex balanced system with this “log parametrization” property a CLP system

with flux space S (and parameter space S⊥).

The PE view leads to the following question (which we call the Horn-Jackson ACB

Extension Problem or simply the Extension Problem): beyond mass action kinetics, which

necessary or sufficient conditions ensure absolute complex balancing in systems with pos-

itive deficiency? In particular, are there any kinetics sets other than mass action, where

any complex balanced system with positive deficiency is absolutely complex balanced? We

call this particular case the ”Strong Extension Problem”. This paper presents our initial

results on the Extension Problem, which also reveal interesting (and partly surprising)

connections to the CC and LP interpretations.

A natural candidate for extending the Horn-Jackson result is the complex balanced

subset of power law kinetic systems with reactant-determined kinetic orders (denoted by

PL-RDK), i.e., those where branching reactions of a reactant have identical rows in the

system’s kinetic order matrix. PL-RDK systems are precisely the complex factorizable

power law systems and correspond to a subset of the generalized mass action systems

(GMAS) introduced by S. Müller and G. Rebensburger in 2014 [22]. A kinetic complex

is the row in the kinetic order matrix of a reactant’s reaction and, in analogy to the

stoichiometric subspace, the kinetic order subspace S̃ is generated by the differences of the

kinetic complexes of the complexes of reactions. In particular, Müller and Regensburger

showed that any complex balanced PL-RDK system is a CLP system with flux space = S̃.

Thus, the Extension Problem for PL-RDK is the same as whether the equivalence of ACB

and CLP expressed in the LP view remains valid.

Our first important result is an example of a complex balanced PL-RDK system which

is not ACB, providing a negative answer to the Strong Extension Problem for PL-RDK.

While we provide a direct verification of ∅ ̸= E+(N , K) ̸= Z+(N , K), we note that

considerations related to the CC view actually led us to the example (a detailed discussion

is provided in Section 7).

Building on results of M. Feinberg in his Lecture Notes, we broadened our study of the

Extension Problem to the set of CLP systems. This approach also allowed us to address
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subsets of poly-PL and Hill-type systems with the CLP property studied in [21] and [17]

and have found applications, e.g., in evolutionary games with replicator dynamics [28].

Our second important result is a necessary and sufficient condition, the bi-LP property,

for ACB in CLP systems (Theorem 4). This result provides a complete resolution of the

Extension Problem in such systems, including all complex balanced PL-RDK systems.

Clearly, connecting the PE and LP views is the basis for the result.

As initial steps in addressing the Extension Problem in non-CLP systems, we describe

three methods for constructing ACB systems: (a) combinations of incidence independent

and independent decompositions, (b) the Positive Function Factor (PFF) method and (c)

the Coset Intersection Count (CIC) method. We illustrate with various kinetic systems

how these methods can generate sufficient conditions for a complex balanced system to

exhibit ACB. Furthermore, we derive a partial converse to the Feinberg ACB Theorem,

i.e., identified the set of kinetic systems with kernel spanning equilibria images (KSE

systems), which when absolutely complex balanced necessarily have zero deficiency. This

result leads, on the one hand, to a necessary condition for ACB in a kinetic system with

positive deficiency: it has to be non-KSE. On the other hand, it can be used to construct

(if possible) a complex balanced system with positive deficiency which is not ACB. We

illustrate the latter with how we originally found the example for PL-RDK systems.

In future work, we look to use these and other techniques to identify necessary and

sufficient conditions for ACB in subsets of non-CLP systems to resolve the Extension

Problem in those systems.

The paper is organized as follows: Section 2 collects the fundamental concepts and

results on chemical reaction networks and kinetic systems needed in the later sections. In

Section 3, after the Extension Problem for the Horn-Jackson ACB Theorem is introduced

and a counterexample for complex balanced PL-RDK systems is presented. Section 4

broadens the scope to CLP systems and presents the necessary and sufficient condition

resolving the Extension Problem for CLP systems. Sections 5 and 6 present the methods

for finding sufficient conditions for ACB in kinetic systems containing non-CLP systems:

decompositions, the Positive Function Factor (PFF) and the Coset Intersection Count

(CIC) and their application to poly-PL and Hill-type systems. In Section 7, a partial

converse to the Feinberg ACB Theorem is derived and its use as a necessary condition

and for constructing counterexamples for the Extension Problem is discussed. An overall



401

summary is provided in Section 8.

2 Fundamentals of chemical reaction networks and

kinetic systems

In a chemical reaction, a species is represented by a variable. We denote the nonempty

finite set of distinct species by S = {X1, X2, ..., Xm} with cardinality of S equals m. A

complex is a linear combination of the species with nonnegative integer coefficients. We

denote the nonempty finite set of complexes by C = {C1, C2, ..., Cn} where the cardinality

of C is equal to n. A reaction is an ordered pair of distinct complexes. Thus, if we denote

this nonempty finite set of reactions by R, we have R ⊂ C ×C . Let r be the cardinality

of R. Consider the reaction

αX1 + βX2 → γX3,

X1, X2 and X3 are the species. αX1 + βX2 and γX3 are the complexes. In particular,

αX1+βX2 is called the reactant (or source) complex and γX3 the product complex.

The nonnegative coefficients α, β and γ are called stoichiometric coefficients. Under

power law kinetics (PLK), the rate at which the reaction occurs is given by

K = kXa
1X

b
2

with rate constant k > 0 and a, b ∈ R. We call a and b as kinetic orders. Thus, the

reaction rate is a monomial in the reactant concentrations X1 and X2 with the exponents

a and b. Assuming mass action kinetics (MAK), (a subset of PLK), we have a = α and

b = β, that is, the stoichiometric coefficients of the reactant complexes are the kinetic

orders. PLK generalize MAK and has greater flexibility in modelling in biochemistry,

epidemics, etc. [25, 1]. Within a network involving additional species and reactions, the

above reaction contributes to the dynamics of the species concentrations as

Ẋ =




Ẋ1

Ẋ2

Ẋ3
...


 = kXa

1X
b
2




−α
−β
γ
...


+ . . .

This is known as the dynamical system or system of ordinary differential equations

(ODEs). See an example of PLK system below.
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Running Example 1 - Part 1.

Ẋ1 = −k1X2
1 + k2X1X2 − k3X1X2 + k4X3 − k5X

2
1 + k6X

2
3 − k7X

2
3 + k8X

−1
2 X−1

3

Ẋ2 = k1X
2
1 − k2X1X2 + k3X1X2 − k4X3

Ẋ3 = k5X
2
1 − k6X

2
3 + k7X

2
3 − k8X

−1
2 X−1

3

where ki’s are greater than 0.

Chemical reaction networks (CRNs) can be represented as a directed graph. The ver-

tices or nodes are the complexes and the reactions are the edges. The CRN is not unique

and might not have a physical interpretation. In Running Example 1, the CRN can be

the following:

2X1 X1 +X2 2X2

2X1 +X3 X1 + 2X3 3X3

k1

k2

k3

k4

k5

k6

k7

k8

The ki’s are called the reaction rate constants. We have m = 3 (species), n = 6

(complexes), nr = 6 (reactant complexes) and r = 8 (reactions). We can write

S = {X1, X2, X3} , C = {2X1, X1 +X2, 2X2, 2X1 +X3, X1 + 2X3, 3X3} .

On the other hand, the set of reaction R consists of the following:

R1 : 2X1 → X1 +X2

R2 : X1 +X2 → 2X1

R3 : X1 +X2 → 2X2

R4 : 2X2 → X1 +X2

R5 : 2X1 +X3 → X1 + 2X3

R6 : X1 + 2X3 → 2X1 +X3

R7 : X1 + 2X3 → 3X3

R8 : 3X3 → X1 + 2X3

We denote the CRN N as N = (S ,C ,R). The linkage classes of a CRN are

the subgraphs of a reaction graph where for any complexes Ci, Cj of the subgraph, there

is a path between them. Thus, the number of linkage classes, denoted as l, of Running

Example 1 is two (l = 2). The linkage classes are:

L1 = {R1, R2, R3, R4} , L2 = {R5, R6, R7, R8} .
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A subset of a linkage class where any two vertices are connected by a directed path in

each direction is said to be a strong linkage class. Considering Running Example 1,

there are two strong linkage classes whose number is denoted by sl. We also identify the

terminal strong linkage classes, the number denoted as t, to be the strong linkage

classes where there is no reaction from a complex in the strong linkage class to a complex

outside the same strong linkage class. The terminal strong linkage classes can be of two

kinds: cycles (not necessarily simple) and singletons (which we call “terminal points”).

We now define important CRN classes. A CRN is weakly reversible if every linkage

class is a strong linkage class. A CRN is t-minimal if t = l, i.e. each linkage class has

only one terminal strong linkage class. Let nr be the number of reactant complexes of a

CRN. Then n − nr is the number of terminal points. A CRN is called cycle-terminal

if and only if n − nr = 0, i.e., each complex is a reactant complex. Clearly, the CRN of

the Running Example 1 is t-minimal weakly reversible. The dynamical system f(x) (or

species formation rate function (SFRF)) of the Running Example 1 can be written as



Ẋ1

Ẋ2

Ẋ3


 =

R1 R2 R3 R4 R5 R6 R7 R8[ ]−1 1 −1 1 −1 1 −1 1
1 −1 1 −1 0 0 0 0
0 0 0 0 1 −1 1 −1




k1X
2
1

k2X1X2

k3X1X2

k4X3

k5X
2
1

k6X
2
3

k7X
2
3

k8X
−1
2 X−1

3




= NK(x).

N is called the stoichiometric matrix and K(x) is called the kinetic vector. With each

reaction y → y′, we associate a reaction vector obtained by subtracting the reactant

complex y from the product complex y′. The stoichiometric subspace S of a CRN is

the linear subspace of RS defined by

S := span
{
y′ − y ∈ RS | y → y′ ∈ R

}
.

The map of complexes Y : RC → RS
≥ maps the basis vector ωy to the complex

y ∈ C . The incidence map Ia : RR → RC is defined by mapping for each reaction

Ri : y → y′ ∈ R, the basis vector ωRi
(or simply ωi) to the vector ωy′ − ωy ∈ C . The

stoichiometric map N : RR → RS is defined as N = Y ◦ Ia.
In Running Example 1, the matrices Y and Ia are
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Y =

C1 C2 C3 C4 C5 C6[ ]2 1 0 2 1 0 X1

0 1 2 0 0 0 X2

0 0 0 1 2 3 X3

Ia =

R1 R2 R3 R4 R5 R6 R7 R8





−1 1 0 0 0 0 0 0 C1

1 −1 −1 1 0 0 0 0 C2

0 0 1 −1 0 0 0 0 C3

0 0 0 0 −1 1 0 0 C4

0 0 0 0 1 −1 −1 1 C5

0 0 0 0 0 0 1 −1 C6

.

Here, we denote the complexes by Ci, i = 1, . . . , 6.

The deficiency δ is defined as δ = n − l − dimS. This non-negative integer is, as

Shinar and Feinberg pointed out in [27], essentially a measure of the linear dependency

of the network’s reactions. In Running Example 1, the deficiency of the network is 2. It

is one of the important parameters in CRNT to establish claims regarding the existence,

multiplicity, finiteness and parametrization of the set of positive steady states, denoted

as E+. It is defined as E+(N , K) =
{
x ∈ RS

>

∣∣NK(x) = 0
}
.

A CRN N with the property δ = δ1 + δ2 + . . . + δl is called a network with in-

dependent linkage classes where δi is the deficiency of linkage class Li. Otherwise,

if δ ̸= δ1 + δ2 + . . . + δl it is called dependent linkage class network. A network

is called conservative if S⊥ contains a positive vector, where S⊥ is the orthogonal com-

plement of S. Horn and Jackson showed that a CRN is conservative if and only if S is

compact. In [19], Horn and Jackson introduced a subset of E+ called the set of complex

balanced of equilibria denoted as Z+. A kinetic system is complex balanced at a state

(i.e. a species composition) if for each complex, formation and degradation are at equilib-

rium. A positive vector c in RS is called complex balanced (CB) if K(c) is contained

in ker Ia. A kinetic system is called complex balanced if it has a complex balanced

equilibrium. The set of complex balanced equilibria of a kinetic system is defined as

Z+(N , K) =
{
x ∈ RS

+

∣∣IaK(x) = 0
}
.

We introduce absolutely complex balanced kinetic system:

Definition 1. A kinetic system (N , K) is absolutely complex balanced (ACB) if

Z+(N , K) ̸= ∅ and E+(N , K) = Z+(N , K),
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i.e., all positive equilibria are complex balanced.

In this paper, we focus on CRNs endowed with power law kinetics. They have the

form

Ki(x) = kiΠ
r
i=1x

Fij ∀i ∈ {1, . . . , r}

with ki ∈ R+ and Fij ∈ R. Power law kinetics is defined by an r ×m matrix F = [Fij],

called the kinetic order matrix, and vector k ∈ Rr, called the rate vector. In our

Running Example 1, the kinetic order matrix is

F =

X1 X2 X3





2 0 0 R1

1 1 0 R2

1 1 0 R3

0 0 1 R4

2 0 0 R5

0 0 2 R6

0 0 2 R7

0 −1 −1 R8

.

A PLK system has reactant-determined kinetics (of type PL-RDK) if for any

two reactions Ri, Rj ∈ R with identical reactant complexes, the corresponding rows

of kinetic orders in F are identical, i.e. Fih = Fjh for h ∈ {1, . . . ,m}. A kinetics

K is complex factorizable (CF) if we can decompose K = Ik ◦ ΨK and Ia ◦ K =

Ak ◦ΨK where Ak is the Laplacian Map, ΨK is the factor map, and Ik is the interaction

map. The kinetics of Running Example 1 is complex factorizable with factor map ΨK =
[
X2

1 X1X2 X3 X2
1 X2

3 X−1
2 X−1

3

]⊤
.

The concept of span surjectivity was introduced in [2] for any function f : V → W

between finite dimensional real vector spaces. We say f is span surjective ⇔ < Im f >=

W . The property is equivalent to the coordinate functions of f being linearly independent

(over R). The property occurs in various situations, e.g. if f is the ”core” species formation

rate function of a kinetics K, i.e. f = NK : Ω → S , where N is the stoichiometric

matrix and S = ImN is the stoichiometric subspace, then f is span surjective ⇔ the

kinetic subspace of K given by < Im f > is equal to S.

A complex factorizable (CF) kinetics K is factor span surjective (FS) if its factor map

ΨK : Ω → RC is span surjective. M. Feinberg and F. Horn proved in [11] that mass

action kinetics are factor span surjective. The property is often implicitly used in results

about mass action kinetics. For example, in the important result on the coincidence of
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the kinetic and stoichiometric subspaces for mass action systems [11], the main statement

says: if a network is t-minimal then the kinetic subspace coincides with the stoichiometric

subspace. As shown in [2], this result extends only to t-minimal networks with FS kinetics,

not to all CF kinetics.

Müller and Regensburger [22] introduced the m× n matrix Ỹ for cycle terminal net-

works (that is, every complex is a reactant complex). This concept was generalized into

arbitrary networks and was defined as follows.

(Ỹ )ij =

{
Fki, if j is a reactant complex of reaction k,

0, otherwise

where F is the kinetic order matrix.

In 2018, Talabis et al. [30] defined the T-matrix and the augmented T-matrix (T̂ ) as

follows:

Definition 2. The m×nr T-matrix is the truncated Ỹ where the non-reactant columns

are deleted and nr is the number of reactant complexes. The T-matrix defines a map

T : Rρ(R) → RS . The kinetic reactant subspace R̃ is the image of T . Its dimension is

called the kinetic reactant rank q̃.

Define the nr× l matrix L = [e1, e2, ..., el] where e
i is a characteristic vector for linkage

class L i. The block matrix T̂ ∈ R(m+l)×nr is defined as

T̂ =

[
T
L⊤

]
.

In [30], Talabis et al. defined the PL-TIK systems, a subclass of PL-RDK systems.

Definition 3. A PL-RDK kinetics is T̂ -rank maximal (of type PL-TIK) if its column

rank is maximal.

Definition 4. Let N be a network with nr reactant complexes andK a PL-RDK kinetics

with T-matrix T . If q̂ = rank(T̂ ), then the kinetic reactant deficiency δ̂ is defined as

δ̂ = nr − q̂.

The kinetic reactant deficiency (a non-negative integer) measures the degree of the

kinetic interactions of the PL-RDK system. The higher the kinetic reactant deficiency,

the lower the extent of linear independence of kinetic orders (kinetic interaction).

In our previous work [29], we proved a characterization of PL-TIK systems:
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Proposition 1. PL-TIK systems and the zero kinetic reactant deficiency systems are

equivalent.

Theorem 1 ([29]). Let (N , K) be a PL-TIK system. N is weakly reversible if and only

if Z+(N , K) ̸= ∅.

3 Complex balanced PL-RDK systems which are not

absolutely complex balanced

Two results on absolute complex balancing in 1972 were foundational for Chemical Re-

action Network Theory (CRNT). M. Feinberg showed that in a deficiency zero kinetic

system with a positive equilibrium, every positive equilibrium is complex balanced. This

implies the following:

Theorem 2 (Feinberg ACB Theorem, [10]). Any complex balanced system (N , K) with

zero deficiency is absolutely complex balanced.

F. Horn and R. Jackson obtained the following partial extension of the previous The-

orem:

Theorem 3 (Horn-Jackson ACB Theorem, [19]). Any complex balanced mass action

system is absolutely complex balanced.

The extension is partial because while valid for arbitrary deficiency, the set of kinetics

is restricted to mass action kinetics.

This partial extension view leads to the following question (which we call the Horn-

Jackson ACB Extension Problem or simply the Extension Problem): beyond mass action

kinetics, which necessary or sufficient conditions ensure absolute complex balancing in

system with positive deficiency? In particular, are there any kinetics sets other than mass

action, where any complex balanced system with positive deficiency is absolutely complex

balanced?

A natural candidate for extending the Horn-Jackson result is the complex balanced

subset of power law kinetic systems with reactant-determined kinetic orders (denoted

by PL-RDK), i.e., those where branching reactions of a reactant have identical rows in

the system’s kinetic order matrix. PL-RDK systems are precisely the CF power law

systems and correspond to a subset of the generalized mass action systems (GMAS)



408

introduced by S. Müller and G. Regensburger in 2014 [22]. Numerous results on mass

action systems have been extended to PL-RDK systems, including the Core Deficiency

Zero Theorem [23, 22], toric steady states [20], the Johnston-Siegel Linear Conjugacy

Criterion [3], Birch’s Theorem [5] and the Shinar-Feinberg ACR Theorem [13]. However,

our first main result is an example of a complex balanced PL-RDK system, which is

not absolutely complex balanced, showing that the analogue of the Horn-Jackson ACB

Theorem does not hold for PL-RDK systems in general.

Example 1. Consider the weakly reversible kinetic system (N , K) with three species

A1, A2 and A3 below.

2A1 + 2A2 + 2A3 3A2 + 3A3

6A1 4A1 + A2 + A3

k1

k2 k2

k3

k4 K(X) =




k1A
−1
2 A3

k2A
−1
1 A−1

2 A3

k2A
−1
1 A−1

2 A3

k3A
−2
2

k4A
−2
3




Computing T̂ , we have:

T̂ =




0 −1 0 0
−1 −1 −2 0
1 1 0 −2
1 1 1 1


 .

Hence, the system is both PL-RDK and PL-TIK since T̂ has maximal rank. Further-

more, δ̂ = 0. By Theorem 1, the system is complex balanced.

We verify that the system is not ACB by a direct computation of the equilibria sets.

E+(N , K) =







A1

A2

A3


 ∈ R3

+

∣∣∣∣∣∣
k1A

−1
2 A3 − 3k2A

−1
1 A−1

2 A3 − k3A
−2
2 + 2k4A

−2
3 = 0



 .

Z+(N , K) =







A1

A2

A3


 ∈ R3

+

∣∣∣∣∣∣∣∣

−k1A−1
2 A3 + k2A

−1
1 A−1

2 A3 + k4A
−2
3 = 0

k1A
−1
2 A3 − 2k2A

−1
1 A−1

2 A3 = 0
k2A

−1
1 A−1

2 A3 − k3A
−2
2 = 0

k3A
−2
2 − k4A

−2
3 = 0




.

Consider v ⊆ R3 where

v =







A1

A2

A3


 ∈ R3

+

∣∣∣∣∣∣

Ȧ1 = k1A
−1
2 A3 − k2A

−1
1 A−1

2 A3 = 0

Ȧ2 = k2A
−1
1 A−1

2 A3 − k3A
−2
2 = 0

Ȧ3 = −3k2A
−1
1 A−1

2 A3 + 2k4A
−2
3 = 0



 .
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It is easy to see that the solutions of the equations in v is a subset of the solutions of

the equation in E+ (i.e., adding the 3 equations in v will result to the equation in E+).

Furthermore, v∩Z+ = ∅ since the equations in v and Z+ will not yield positive solutions.

Now, to show v is non-empty, let k4 =
3
2
r4. The set v can be written as

v =







A1

A2

A3


 ∈ R3

+

∣∣∣∣∣∣∣∣




1 −1 0 0
0 1 −1 0
0 −3 0 3







k1A
−1
2 A3

k2A
−1
1 A−1

2 A3

k3A
−2
2

r4A
−2
3


 = 0





The CRN of the ODE above can be:

A2 A1 + A2

A1 + 3A3 A1 + A2 + 3A3

k1

k2 r4

k3

Since the network is weakly reversibly and PL-TIK, v is non-empty (Theorem 1).

Hence, the given kinetic system is complex balanced but not ACB.

Remark 1. Although we provide the simpler, direct proof of the example not being ACB,

we were actually led to it by considerations in connection with a partial converse to the

Feinberg ACB Theorem. This approach is presented in Section 7 as it provides a general

technique to finding necessary conditions for ACB systems with positive deficiency as well

as generating counterexamples.

4 A necessary and sufficient condition for absolute

complex balancing of kinetic systems of a CLP sys-

tem

In his 1979 Wisconsin Lecture Notes, M. Feinberg showed that ACB in a complex balanced

mass action system is equivalent to its set of complex balanced equilibria being “log

parametrized” by S⊥, i.e., Z+(N , K) = {x ∈ RS
> | log x − log x∗| ∈ S⊥}, where S is the

network’s stoichiometric subspace and x∗ a given complex balanced equilibrium. We call
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a complex balanced system with this “log parametrization” property a CLP system with

flux space S (and parameter space S⊥).

Thirty five years later, S. Müller and G. Regensburger extended the theory of toric

mass action systems of Craciun et al. [4] to show that any complex balanced PL-RDK

system of CLP type with flux space = S̃ (and parameter space S̃⊥), where the kinetic

order subspace S̃, the kinetic analogue of the stoichiometric subspace S, is generated by

the differences of kinetic complexes, which are the columns of the system’s T matrix, of

the product and reactant complexes of the system’s reactions. Hence, the example in

Section 3 also shows that the equivalence between ACB and CLP does not extend to

complex balanced PL-RDK systems.

In this section, we broaden the scope of our study to the set of CLP systems in

general, which include subsets of poly-PL and Hill-type systems. We provide a necessary

and sufficient condition for ACB in CLP systems, thus resolving the Extension Problem

for them. In view of the previously mentioned result of Müller and Regensburger, this

also resolves the Extension Problem for complex balanced PL-RDK systems. Building on

results of M. Feinberg in his 1979 Lectures, basic concepts and fundamental properties

of LP (both CLP and PLP) systems are discussed in Section 4.1. In Section 4.2, the

necessary and sufficient condition is derived and illustrated with various examples of

power law systems.

4.1 Fundamentals of LP sets and LP systems

We begin with the concept of an LP set of a chemical kinetic system (N , K) with reaction

network N = (S ,C ,R):

Definition 5. An LP set is a non-empty subset of RS
> of the form E(P, x∗) := where

P is a subspace of RS (called an LP set’s flux subspace) and x∗ a given element of RS
>

(called the LP set’s reference point). P⊥ is called an LP set’s parameter subspace and

the positive cosets of P are called LP set’s flux classes.

In [8], M. Feinberg derived the following important property of an LP set, based on

the work by F. Horn and R. Jackson:

Proposition 2. For any LP set E = E(P, x∗) and any of its flux class Q, |E ∩Q| = 1.

We reproduce the proof of Feinberg in a slightly more general form for the convenience

of the reader. We need the following lemma:
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Lemma 1. Let S be any finite set and let RS
> be the vector space generated by S . Let

S be a linear subspace of RS
> and let a and b be elements of RS

> . There exists a (unique)

vector µ ∈ S⊥ such that

aeµ − b

is an element of S.

Proof. We first show that |E ∩ Q| > 0. Let Q = p + S. According to the preceding

lemma, there is a unique vector µ ∈ S⊥ such that x∗eµ − p ∈ S. Set x = x∗eµ. Clearly,

x ∈ p + S = Q. On the other hand, ln x = lnx∗ + µ so that ln x lnx∗ ∈ S⊥. Hence

x ∈ E ∩Q. We now show that |E ∩Q| = 1.

Suppose x, x′ are in E ∩Q. Then

0 = (x′ − x) · (lnx′ − lnx) =
∑

S∈S

(x′S − xS)(lnx
′
S − lnxS). (4.1)

Since the function ln : S → R is strictly monotonically increasing, (4.1) can hold only if,

for all S ∈ S , x′S = xS, that is, only if x′ = x.

We now introduce the concepts relating LP sets and equilibria sets of kinetic systems.

Definition 6. A subset E of the positive equilibria set E+(N , K) of a chemical kinetic

system (N , K) is of LP type if E is an LP set, i.e., E = E(P, x∗) for a subspace P of RS

and an element x∗ in E. A chemical kinetic system is of PLP type if E+(N , K) ̸= ∅ and

of LP type for a subspace PZ of RS . An LP system is a PLP or CLP system. PE and PZ

are called LP system’s flux subspaces and the positive cosets in RS are the LP system’s

flux classes.

Remark 2. We note that the definition of an LP system does not depend on the given

equilibrium x∗. If x∗∗ is another equilibrium, then log x−log x∗∗ = log x−log x∗+(log x∗−
log x∗∗) is contained in the parameter space for any other equilibrium x.

The following proposition justified the term ”parameter subspace” for P⊥:

Proposition 3. Let (N , K) be a chemical kinetic system.

(i) If (N , K) is of type PLP with flux subspace PE and reference point x∗ in E+(N , K),

then the map Lx∗ : E+(N , K) → P⊥
E given by Lx∗(x) = log(x) − log(x∗) is a

bijection.
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(ii) If (N , K) is of type CLP with flux subspace PZ and reference point x∗ in Z+(N , K),

then the restriction to Z+(N , K) of Lx∗ : Z+(N , K) → P⊥
Z is a bijection.

Proof. For (i), observe that Lx∗(x1) = Lx∗(x2) if and only if log(x1) = log(x2) if and only

if x1 = x2, due to the injectivity of log : RS
> → RS . For p ∈ P⊥

E , due to the surjectivity

of log, there is an x ∈ RS
> with log(x) = p+ log(x∗). Hence log(x)− log(x∗) ∈ P⊥

E . Since

the kinetic system is PLP, then x ∈ E+(N , K). The proof for (ii) is analogous to that of

(i).

Example 2. Statements ii) and iii) of M. Feinberg’s formulation of the Horn-Jackson

ACB Theorem show that any complex balanced mass action system is a CLP system

with PZ = S.

Example 3. Any weakly reversible mass action systems satisfying the conditions of the

Deficiency One Theorem is of PLP type.

Example 4. S. Müller and G. Regebsburger in 2014 extended the work of Craciun et al

in 2007 on toric mass action systems to establish that any complex balanced generalized

mass action system (GMAS) is of CLP type. PL-RDK systems map bijectively into the set

of GMAS: the only additional property for them is that if the zero complex is a reactant,

then it is mapped to the zero kinetic complex. The property ensures consistency with

biochemical usage and the extension of the GMAS kinetic map (of sets) to a linear map

between their linear spans. For complex balanced PL-RDK systems, PZ = S̃, which is

called the kinetic order subspace.

4.2 A necessary and sufficient condition for absolute complex
balancing in a CLP system

The next two Propositions motivate our definition of a bi-LP system.

Proposition 4. Let (N , K) be a chemical kinetic system, which is both CLP and PLP

with flux subspaces PZ and PE respectively. Then PZ ⊂ PE. If the system is absolutely

complex balanced, then PZ = PE.

Proof. Let x∗ ∈ Z+(N , K). Since Z+(N , K) is contained in E+(N , K), the map L∗
x

on Z+(N , K) (from Proposition 3) is just the restriction of that on E+(N , K). Hence

its image PZ is contained in that of E+(N , K), that is, in PE. Clearly, if the definition

domains coincide, i.e. ACB holds, then PZ = PE.
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Furthermore, the following statements derive directly from applying Proposition 2 to

E = E+(N , K) with P = PE and E = Z+(N , K) with P = PZ .

Proposition 5. Let (N , K) be a chemical kinetic system.

(i) If (N , K) is a PLP system then |E+(N , K)∩Q| = 1 for any of its flux classes Q.

(ii) If (N , K) is a CLP system then |Z+(N , K)∩Q| = 1 for any of its flux classes Q.

Note that if (N , K) is both CLP and PLP with PZ = PE, then the coset intersection

counts can be compared.

Definition 7. A kinetic system (N , K) is bi-LP iff it is both CLP and PLP and their

flux spaces coincide, i.e. PZ = PE.

The following theorem is the criterion for absolute complex balancing of a CLP system:

Theorem 4. Let (N , K) be a CLP system with flux space PZ and reference point x∗.

Then (N , K) is absolutely complex balanced if and only if (N , K) is a bi-LP system.

Proof. Observe that the implication is straightforward since (N , K) is ACB implies it is

PLP with PZ = PE and x∗, hence bi-LP.

To show the converse, note that since the cosets of RS (P = PE = Pz) partition

RS , the positive cosets partition RS
> . Consequently, E+(N , K) and Z+(N , K) are

disjoint unions of their intersections with the positive cosets. Since E+(N , K) contains

Z+(N , K), E+(N , K)∩Q contains Z+(N , K)∩Q, the equal count assumption implies

that the equilibria sets coincide.

Example 5. Statements ii) to v) of Feinberg’s formulation implies that every complex

balanced mass action system is an absolutely complex balanced CLP system with PZ = S.

It follows from the criterion that such a system has a unique complex balanced equilibrium

in each stoichiometric class.

Example 6. Talabis et al. (2019) [31] showed that any weakly reversible PL-TIK is

unconditionally complex balanced, hence, being PL-RDK, of CLP type with PZ = S̃. A

weakly reversible PL-TIK system satisfying the conditions of the Deficiency One Theorem

for PL-TIK in addition is of PLP type with the same flux subspace, therefore bi-LP.
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5 Decompositions and absolutely complex balanced

systems

In this section and Section 6, we take the first steps in addressing the Extension Problem

in non-CLP systems. We develop several methods of constructing ACB systems with

positive deficiency and apply them to various kinetic sets to obtain sufficient conditions

for their occurrence for the various kinetic types. We begin with the method of combining

incidence independent and independent decompositions of the underlying network, whose

subnetworks share some interesting properties.

5.1 Decompositions and positive equilibria

We review some concepts and results in decomposition theory and refer to [6] for more

details.

Definition 8. Let N = (S ,C ,R) be a CRN. A covering of N is a collection of subsets

{R1,R2, . . . ,Rp} whose union is R. A covering is called a decomposition of N if the

sets Ri form a partition of R.

The definition implies that each Ri defines a subnetwork Ni of N , namely Ci con-

sisting of all complexes occurring in Ri and Si consisting of all the species occurring in

Ci. The following proposition shows the relationship of stoichiometric subspaces induced

by a covering.

Proposition 6 (Prop. 3., [6]). If {R1,R2, . . . ,Rp} is a network covering, then

(i) S = S1 + S2 + · · ·+ Sp;

(ii) s ≤ s1 + s2 + · · ·+ sp,

where s = dimS and si = dimSi for i ∈ 1, p.

Feinberg [9] defined an important class of decompositions called independent decom-

positions:

Definition 9. A decomposition is independent if S is the direct sum of the subnetworks’

stoichiometric subspaces Si or equivalently, s = s1 + s2 + · · ·+ sp.

Fortun et al. [14] derived a basic property of independent decompositions:
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Proposition 7 (Lemma 1, [14]). If N = N1 ∪ N2 ∪ · · · ∪ Np is an independent decom-

position, then δ ≤ δ1 + δ2 + · · ·+ δp, where δi represents the deficiency of the subnetwork

Ni.

In [9], Feinberg found the following relationship between the positive equilibria of the

“parent network” and those of the subnetworks of an independent decomposition.

Theorem 5 (Rem. 5.4, [9]). Let (N , K) be a chemical kinetic system with partition

{R1,R2, . . . ,Rp}. If N = N1 ∪N2 ∪ · · · ∪Np is the network decomposition generated by

the partition and E+(Ni, Ki) = {x ∈ RS
>0|NiKi(x) = 0}, then

(i)
⋂

i∈1,p
E+(Ni, Ki) ⊆ E+(N , K)

(ii) If the network decomposition is independent, then equality holds.

Farinas et al. [6] observed the following result which led them to introduce the concept

of an incidence independent decomposition.

Proposition 8 (Prop. 6, [6]). If {Ri} is a network covering, then

(i) Im Ia = Im Ia,1+Im Ia,2+ · · ·+Im Ia,p, where Ia,i denotes the incidence map of the

subnetwork Ni.

(ii) n−ℓ ≤ (n1−ℓ1)+(n2−ℓ2)+· · ·+(np−ℓp), where n−ℓ = dim Ia and ni−ℓi = dim Ia,i

for i ∈ 1, p.

An incidence independent decomposition was defined in [6] as follows:

Definition 10. A decomposition {N1,N2, . . . ,Np} of a CRN is incidence independent

if and only if the image of the incidence map Ia of N is the direct sum of the images of

the incidence maps of the subnetworks.

It follows from this definition that n − ℓ =
∑

(ni − ℓi). The linkage classes form

the primary example of an incidence independent decomposition, since n =
∑
ni and

ℓ =
∑
ℓi.

The following result is the analogue of Proposition 7 for incidence independent decom-

position.

Proposition 9 (Prop. 7, [6]). Let N = N1 ∪N2 ∪ · · · ∪Np be an incidence independent

decomposition. Then δ ≥ δ1 + δ2 + · · ·+ δp.
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A decomposition is bi-independent if it is both independent and incidence inde-

pendent. Independent linkage class decomposition is the best known example of bi-

independent decomposition.

Proposition 10 (Prop. 9, [6]). A decomposition N = N1∪N2∪· · ·∪Np is independent

or incidence independent and

p∑

i=1

δi = δ if and only if N = N1 ∪ N2 ∪ · · · ∪ Np is

bi-independent.

5.2 Complex balanced systems with decompositions into ACB
subnetworks

The main result for constructing ACB systems with positive deficiency via decompositions

is the following:

Theorem 6. Let (N , K) be a complex balanced system. If N = N1 ∪ · · · ∪ Nk is a bi-

independent decomposition into ACB subnetworks, then (N , K) is also absolutely complex

balanced.

Proof. For a bi-independent decomposition, it follows from the decomposition theorems

of the previous section that E+(N , K) = ∩E+(Ni, Ki) and Z+(N , K) = ∩Z+(Ni, Ki).

Note that since (N , K) is complex balanced, all these sets are non-empty. Since the

corresponding sets in the intersections are equal, the claim follows. Note also that, since

in a bi-independent decomposition, δ = δ1 + · · · + δk, a positive subnetwork deficiency

implies a positive network deficiency, too.

The previous theorem leads in a special case to a corollary of the following recent

result of L. Fontanil and E. Mendoza [12]:

Theorem 7. Let (N , K) be a weaky reversible power law system with a complex balanced

PL-RDK decomposition D : N = N1 ∪ · · · ∪ Nk with PZ,i = S̃i. If D is incidence

independent and the induced covering D̃ is independent, then (N , K) is a weakly reversible

CLP system with PZ =
∑
S̃i.

Corollary 1. Let (N , K) satisfy the assumptions of Theorem 7. In addition, let the

decomposition be independent and its PL-RDK subnetworks be ACB. Then (N , K) is

bi-LP with flux space sum
∑
S̃i.
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Proof. By Theorem 7, (N , K) is CLP with flux space
∑
S̃ii, hence it is necessarily

complex balanced. Applying Theorem 6, it follows that it is ACB. Theorem 4 then

implies the claim.

Remark 3. The Corollary also follows from combining Theorem 7. with a recent result

of B. Hernandez and E. Mendoza [17] after applying Theorem 4 to the subnetworks with

flux spaces S̃i.

For the general case, i.e., arbitrary kinetics, in the previous theorem, we need the

strong hypothesis of bi-independence for the decomposition. We next present a special

construction for a class of power law systems derived from poly-PL kinetics, which needs

only the weaker property of incidence independence.

5.3 A brief review of poly-PL systems and the STAR-MSC
transformation

Poly-PL kinetic systems (denoted as PYK systems) were introduced by Talabis et al.

[28] and applied to reaction network models of evolutionary games as proposed by [32].

PL-representations were used to show that a subset of weakly reversible CF poly-PL

systems denoted as PY-TIK systems possessed unconditional complex balancing (UCB),

i.e., the existence of a complex balanced equilibrium for any set of rate constants. The

STAR-MSC transformation from a poly-PL system to a dynamically equivalent PL system

was first studied in Magpantay et al [21] and used to provide a computational approach

to determining whether a poly-PL system had the capacity for multistationarity, i.e.

the occurrence of two or more positive equilibria in a stoichiometric class for some rate

constants.

Definition 11. A poly-PL kinetics is a kinetics K : Ω → RR such that for each reaction

q

Kq(x) = kq(aq,1x
Fq,1 + · · ·+ aq,hqx

Fq,hq )

with kj > 0, aq,j > 0, Fq,j ∈ RS and j = 1, · · · , hq. If h = maxhj, we normalize the

length of each kinetics to h by replacing aq,hqx
Fq,hq with (h− hj + 1) terms each equal to

1
(h−hj+1)

aq,hq . We call h the length of the poly-PL kinetics. The set of poly-PL kinetics of

length h is denoted by PY Kh and PY K = ∪PY Kh.
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By subsuming the coefficients aq,j into new rate constants kq,j := kqaq,j, we can write

Kq(x) = Kq,1 + · · · +Kq,h. This relationship defines a PL-representation of the poly-PL

kinetics K = K1 + · · · + Kh, with Kj = kjx
Fj being PLK and the rows of Fj are the

Fq,j. It is sometimes convenient to rearrange the kinetics into lexicographic order before

normalizing the length. In that case, we call the resulting representation the canonical

PL- representation of the poly-PL kinetics.

Running Example 2 - Part 1. Consider a reversible Michaelis-Menten kinetics from

Enzyme biology and the network with set of biochemical species S = {S1, S2, S3, S4}, set
of complexes {S1 + S2, S1 + S3, S4}, and reactions:

S1 + S2 S4 S1 + S3

κ1

κ2

κ3

κ4

This network assumes the Michaelis-Menten enzyme mechanism, in which a substrate S2

is modified into a substrate S3 through the formation of an intermediate S4. The reaction

is catalyzed by an enzyme S1. To study Z+(N , K) and E+(N , K), Fortun et al. [15]

consider the poly-PL kinetics K(x) with the canonical form:

K(x) =




k1(S1S2 + k3S1S
2
2 + k4S1S2S4)

k2(S3 + k3S2S3 + k4S3S4)
k1(

1
3
S2 +

1
3
S2 +

1
3
S2)

k2(
1
3
S4 +

1
3
S4 +

1
3
S4)


 .

K1(x), K2(x) and K3(x) are

K1(x) =




k1S1S2

k2S3
k1
3
S2

k2
3
S4


 K2(x) =




k1k3S1S
2
2

k2k3S2S3
k1
3
S2

k2
3
S4


 K3(x) =




k1k4S1S2S4

k2k4S3S4
k1
3
S2

k2
3
S4


 ,

respectively.

The following proposition is easy to verify:

Proposition 11. A poly-PL kinetics K is complex factorizable ⇔ for any two reactions

q, q′ with the same reactant complex, its canonical PL-representation K = K1 + · · ·+Kj,

the (N , Kj) are PL-RDK and for its positive coefficients aq,j = aq′,j, for j = 1, · · · , k.

Proof. The interaction functions IK,q and IK,q′ are equal ⇔ the corresponding power law

exponents and positive coefficients coincide.
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Corollary 2. A poly-PL kinetics K is non-complex factorizable (NF) iff for at least one

j, (N , Kj) is PL-NDK.

We introduce the PYK subset needed for the construction:

Definition 12. A poly-PL system (N , K) is PL-equilibrated (PL-complex bal-

anced) if E+(N , K) = E+,PLE(N , K) (Z+(N , K) = Z+,PLC(N , K)) where

E+,PLE(N , K) =
⋂

j∈1,h

E+(N , Kj)


Z+,PLC(N , K) =

⋂

j∈1,h

Z+(N , Kj)


 .

The examples of PL-equilibrated (PL-complex balanced) poly-PL systems are PL-

independent (PL-incidence independent) systems (s. [15] for details).

The S-invariant termwise addition of reactions via maximal stoichiometric coefficients

(STAR-MSC) method is based on the idea to use the maximal stoichiometric coefficient

(MSC) among the complexes in the CRN to construct reactions whose reactant complexes

and product complexes are different from existing ones. This is done by uniform transla-

tion of the reactants and products to create a “replica” of N . The method creates h− 1

replicas of the original network and hence its transform, N ∗ becomes the union (in the

sense of [16]) of the replicas and the original CRN.

We now describe the STAR-MSC transformation. Since the domain of definition of

a poly-PL kinetics is RS
> , all x = (X1, X2, · · · , Xm) are positive vectors. Let M =

1 + max {yi|y ∈ C }, where the second summand is the maximal (positive integer) stoi-

chiometric coefficient.

For any positive integer z, define the vector z to be the vector (z, z, · · · , z) ∈ RS . For

each complex y ∈ C , form the (h− 1) complexes

y +M, y + 2M, · · · , y + (h− 1)M.

Each of these complexes are different from all existing complexes and each other as

shown in the following proposition:

Proposition 12. Let N ∗ = (S ,C ∗,R∗) be the STAR-MSC transform of N = (S ,C ,R),

N ∗
1 := N and N ∗

j is the subnetwork defined by R∗
j−1 for j ∈ 2, h. Then |C ∗| = h ·n and

|R∗| = h · r.
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5.4 STAR-MSC transformation of weakly reversible deficiency
zero poly-PL systems

The last proposition in the previous section immediately implies the following result:

Proposition 13. The deficiency of (N ∗, K∗) is

δ∗ = δ + (n− l)(h− 1).

Proof. δ∗ = n∗ − l∗ − s∗ = nh− lh− s = (n− l− s) + (n− l)(h− 1) = δ + (n− l)(h− 1).

The following result shows the claimed properties of the constructed class:

Theorem 8. The STAR-MSC transform (N ∗, K∗) of a weakly reversible, deficiency zero,

PL-complex balanced PY-RDK system of length h ≥ 2 has positive deficiency, is non-PL-

FSK and absolutely complex balanced.

Proof. By STAR-MSC construction, N ∗ is weakly reversible. From the previous Propo-

sition, δ∗ = 0 + (n− l)(h− 1) > 1(2− 1) = 1, since n− l > 1. The kinetic order matrix

of K∗ consists of at least two stacked copies of F1 implies that K∗ is not factor span

surjective. As shown in [15], Z+(N ∗, K∗) = Z+,PLC(N , K), since (N , K) is PL-complex

balanced, Z+,PLC(N , K) = Z+(N , K). N has a CB equilibrium by assumption and

zero deficiency yielding Z+(N , K) = E+(N , K). Therefore, (N ∗, K∗) is dynamically

equivalent to (N , K), E+(N , K) = E+(N ∗, K∗), which proves the claim.

5.5 The decomposition N ∗ = N ∗
1 ∪ · · · ∪ N ∗

h

By assumption, N is complex balanced and PL-complex balanced. Hence, the Nj are

complex balanced. Since the N ∗
j are replicas of N and have the same kinetics as Nj,

they are also complex balanced and have zero deficiency, hence, they are ACB. The

decomposition above is the linkage class decomposition of N ∗, hence N ∗ is complex

balanced. The decomposition is incidence independent , but not bi-independent (because

δ∗ > 0 = sum of subnetwork deficiencies). Therefore, N ∗ is an example of a complex

balanced PLK system which has a decomposition into ACB subnetworks, though only

incidence independent, is nevertheless ACB. If any of the (Nj, Kj) is PL-NDK, then

(N ∗, K∗) is also PL-NDK.
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6 Absolutely complex balanced Hill-type and weakly

monotonic kinetic systems

In this section, we continue our description of methods for constructing ACB systems of

positive deficiency for sets of kinetics which may be non-CLP. Section 6.1 introduces the

Positive Function Factor (PFF) method which in Section 6.2 is applied to the study of

ACB in Hill type systems. In Section 6.3 currently known results about ACB in poly-PL

systems are presented. Section 6.4 introduces the Coset Intersection Count (CIC) method

and applies it in Section 6.5 to complex balanced weakly monotonic kinetic systems on

conservative and concordant networks.

6.1 The Positive Function Factor (PFF) Method

Let (S ,C ,R) be a CRN and KΩ(N ) be the set of kinetics on N and definition domain

Ω. KΩ(N ) is a commutative semi-ring with respect to component wise addition and

multiplication. We introduce the following equivalence relation in KΩ(N ):

Definition 13. Two kinetics K,K ′ in KΩ(N ) are positive function factor equivalent

(PPF-equivalent) if for all x ∈ RS
> and every reaction q,

Kq(x)

K ′
q(x)

is a positive function

of x only, i.e. independent of q.

It is easy to see that this relation is indeed an equivalence relation in KΩ(N ). A key

property of PFF-equivalence is expressed in the following Proposition:

Proposition 14. If K, K ′ are PPF, then

i. Z+(N , K) = Z+(N , K ′)

ii. E+(N , K) = E+(N , K ′)

iii. (N , K) has ACB (i.e. absolutely complex balanced) ⇔ (N , K ′) has ACB.

Proof. For a reaction q : yq → y′q, we denote the characteristic functions of the reac-

tant and product complexes by ωq and ω′
q, respectively. To show (i), consider K(x)’s

CFRF (complex formation rate function) and we have g(x) =
∑

q∈R kqKq(x)(ω
′
q − ωq) =

∑
q∈R kqU(x)K

′
q(x)(ω

′
q − ωq) = U(x)

∑
q∈R kqKq(x)(ω

′
q − ωq), where U(x) is the positive

function factor. Hence g(x) = U(x)g′(x), and since U(x) > 0 for x > 0, g(x) = 0 if and

only if g′(x) = 0 for such x, which shows i). A similar argument shows ii). Clearly, iii)

follows from i) and ii).
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Remark 4. 1. If the function U(x) is constant, i.e. U(x) = a, then PFF-equivalence

leads to linear conjugacy with conjugacy vector (a, ..., a).

2. The types of the kinetics K, K ′ can determine the type of the function U(x). For

example, if both K, K ′ are power law kinetics, then U(x) is also a power law

function.

3. In Section 6.2, we discuss PFF-equivalence of Hill type and various enzymatic ki-

netics with sums of power law kinetics.

Statements i) and ii) suggest the following further relation in KΩ(N ):

Definition 14. Two kinetics K, K ′ in KΩ(N ) are equilibria sets coincident (ESC)

iff Z+(N , K) = Z+(N , K ′) and E+(N , K) = E+(N , K ′).

As already observed above, for equilibria sets coincident K, K ′, (N , K) is ACB ⇔
(N , K ′) is ACB. In the next Section, we extend the relation to kinetic systems (N , K)

and (N ∗, K∗) where N and N ∗ have the same set of species, but different sets of

complexes and reactions. The ESC relation also is not induced by positive function factor

relationship.

6.2 Absolute complex balancing in Hill type kinetic systems

In [34], Wiuf and Feliu introduced the set of Hill type kinetics (HTK) as follows:

Definition 15. A Hill-type kinetics assigns to each qth reaction, with q = 1, 2, . . . , r,

a function Kq : RS
≥ → R of the form

Kq(x) = kq

∏m
i=1 x

Fqi

i∏m
i=1(dqi + x

Fqi

i )

for i = 1, . . . ,m, where the rate constant kq > 0, F := (Fqi) and D := (dqi) are r×m real

and nonnegative real matrices called the kinetic order matrix and dissociation constant

matrix, respectively. Furthermore, suppDq = suppFq to ensure normalization of zero

entries to 1.

Rate functions of this type studied by A. Hill in 1910 for the case of one species (i.e.,

m = 1) and non-negative integer exponents [18]. Several years later, L. Michaelis and

M. Menten focused their investigations in 1913 on functions with exponent 1 [24]. Re-

finements and extensions of the Michaelis-Menten model were widely applied to enzyme
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kinetics [26] and also found their way into models of complex biochemical networks in

Systems Biology.

In [17], Hernandez and Mendoza defined for any Hill type kinetic system (N , K) an

associated poly-PL kinetic system (N , KPY ) with the following key property:

Theorem 9. For any HTK system (N , K) we have:

(i) Z+(N , K) = Z+(N , KPY )

(ii) E+(N , K) = E+(N , KPY )

(iii) Like K, KPY is defined on the whole non-negative orthant.

The following Corollary follows directly from the equations in statements (i) and (ii):

Corollary 3. (N , K) is absolutely complex balanced ⇐⇒ (N , KPY ) is absolutely complex

balanced.

Running Example 2 - Part 2. Fortun et al. [15] also consider the associated rational

type kinetics KQ(X) of Running Example 1, it is given by

KQ(X) =




k1S1S2

k2S3

k1
S2

1+k3S2+S4

k2
S4

1+k3S2+S4


 .

Since (N , K) is absolutely complex balanced, so is (N , KQ).

Hence, the study of absolute complex balancing in poly-PL kinetic systems will also

yield results for the property in Hill type kinetic systems. In Section 6 of [17], the authors

show that an analogous association of a poly-PL system also holds for a proper superset

of Hill type kinetic systems, which includes many other rate functions used in enzymatic

systems. Since the equations of statements (i) and (ii) also hold, then the equivalence of

ACB in such systems to that in the associated poly-PL systems is also valid.

6.3 Absolute complex balancing in PL-complex balanced PYK
kinetic systems

As an initial result on absolute complex balancing in poly-PL systems, we provide a char-

acterization of the property in PL-complex balanced systems. We begin with a concept
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naturally suggested by the containment of

Z+,PLC(N , K) in E+,PLE(N , K) where E+,PLE(N , K) and Z+,PLC(N , K) are defined

as

E+,PLE(N , K) =
⋂

j∈1,h

E+(N , Kj) and Z+,PLC(N , K) =
⋂

j∈1,h

Z+(N , Kj).

Definition 16. A weakly reversible poly-PL system (N , K) is absolutely PL-complex

balanced iff Z+,PLC(N , K) ̸= ∅ implies Z+,PLC(N , K) = E+,PLE(N , K).

We have the following characterization of absolute complex balancing in a weakly

reversible PL-complex balanced system:

Theorem 10. Let (N , K) be a weakly reversible, PL-complex balanced poly-PL system.

Then the following statements are equivalent:

(i) (N , K) is absolutely complex balanced.

(ii) (N ∗, K∗) is absolutely complex balanced.

(iii) (N , K) is PL equilibrated and is absolutely PL complex balanced.

Proof. For (i) ⇐⇒ (ii). Since N ∗
j is a replica of N and K∗

j = Kj on the corresponding

reactions, we have Z+(N , Kj) = Z+(N ∗
j , K

∗
j ) and hence

Z+,PLC(N , K) = Z+(N
∗, K∗).

Since the system is PL-complex balanced, Z+(N , K) = Z+(N ∗, K∗) and since STAR-

MSC is a dynamic equivalence, E+(N , K) = E+(N ∗, K∗). ACB of (N , K) is equality

of the LHS, ACB of (N ∗, K∗) equality of the RHS.

For (i) ⇐⇒ (iii). Note that we have the following “rectangle” of containments.

(I) Z+,PLC(N , K) ⊂ E+,PLE(N , K)

(II) Z+,PLC(N , K) ⊂ Z+(N , K)

(III) E+,PLE(N , K) ⊂ E+(N , K)

(IV) Z+(N , K) ⊂ E+(N , K)



425

Equality in (I) (PL-ACB) and (III) (PL-equilibrated) imply the equality of

Z+,PLC(N , K) = E+(N , K). (6.1)

Since Z+(N , K) lies between both sets, we obtain (N , K) is PL-complex balanced

and ACB. (⇐=), Equality in II (PL-complex balanced) and IV (ACB) imply Equation

6.1, too. Since E+,PLE(N , K) lies in between, we obtain (N , K) PL-equilibrated and

PL-ACB.

We also obtain a sufficient condition for absolute complex balancing in a weakly re-

versible PL equilibrated poly-PL system:

Corollary 4. Let K be a weakly reversible PL equilibrated system. If all the terms in a

PL representation K = K1+. . .+Kh are absolutely complex balanced, then K is absolutely

complex balanced.

Proof. Since Z+(N , Kj) ̸= ∅ ⇒ Z+(N , Kj) = E+(N , Kj) for each j = 1, . . . , h,

Z+,PLC(N , K) ̸= ∅ ⇒ Z+,PLC(N , Kj) = E+,PLE(N , K), or the systems is PL-ACB.

Since K is PL-equilibrated, the last term is equal to E+(N , K). This implies that the

system is PL complex balanced, and according to the Theorem, absolutely complex bal-

anced.

6.4 The Coset intersectiom count (CIC) method

For a subspace W of RS , an element Q of the quotient space RS /W is called a positive

coset if Q∩RS
≥ ̸= ∅. The Coset Intersection Count (CIC) method is based on the following

Proposition:

Proposition 15. Let (N , K) be a kinetic system. If 0 < |E+(N , K)∩Q| = |Z+(N , K)∩
Q| <∞ for every positive coset of a subspaceW of RS , then (N , K) is absolutely complex

balanced.

Proof. Since the cosets in RS /W partition RS , the positive cosets partition RS
≥ . Con-

sequently, E+(N , K) and Z+(N , K) are disjoint unions of their intersections with the

positive cosets. Since E+(N , K)∩Q contains Z+(N , K)∩Q, the equal count assumption

implies that the equilibria sets coincide.
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Most “coset intersection count” results in the CRNT literature involve uniqueness of

the element in the intersection. The best known are those for weakly reversible mass

systems with low deficiency (δ = 0 or 1) with respect to W = S (stoichiometric subspace

of the CRN). Our example below also originates from corresponding “low deficiency”

results for a class of power law systems.

The CIC method can be formulated as follows: given a set of kinetic systems with a

known count for |E+(N , K)∩Q| or |Z+(N , K)∩Q| for positive cosets of a subspace W ,

the method attempts to identify a subset with the complementary intersection count, and

verify equality for each Q. Inequality for at least one Q of course implies that the system

is not ACB.

6.5 Absolute complex balancing in weakly monotonic kinetic
systems

We begin by identifying an interesting subset of complex balanced systems:

Definition 17. A complex balanced system (N , K) is stoichiometrically complex bal-

anced (SCB) iff Z+(N , K) has a non-empty intersection with each stoichiometric class.

SCB systems include: i) any open complex balanced system, ii) any complex balanced

mass action system, which has a unique complex balanced equilibrium in each stoichio-

metric class and PL-RDK systems satisfying the conditions of the following Theorem of

Craciun et al [4]:

Theorem 11. Let (N , K) be a complex balanced PL-RDK system with dimS = dim S̃

and for the sign spaces of S and S̃, σ(S) ⊆ σ(S̃). Then |Z+(N , K) ∩ Q| = 1 for each

positive stoichiometric class Q.

Let L : RS → S be the map defined by

Lα =
∑

y→y′∈R

αy→y′(y
′ − y).

Definition 18. The reaction network N = (S ,C ,R) is concordant if there do not

exist an α ∈ kerL and a nonzero σ ∈ S having the following properties:

(i) For each y → y′ ∈ R such that αy→y′ ̸= 0, supp y contains a species s for which sgn

σs = sgn αy→y′ .
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(ii) For each y → y′ ∈ R such that αy→y′ = 0, either σs = 0 for all s ∈ supp y or else

supp y contains species s and s′ for which sgn σs = − sgn σ′
s both not zero.

A network that is not concordant is discordant.

The concordance of a network is closely related to the following set of kinetics on it:

Definition 19. A kineticsK for reaction network N = (S ,C ,R) isweakly monotonic

if, for each pair of compositions c∗ and c∗∗, the following implications hold for each reaction

y → y′ ∈ R such that supp y ⊂ supp c∗ and supp y ⊂ supp c∗∗:

(i) Ky→y′(c
∗∗) > Ky→y′(c

∗) implies there is a species s ∈ supp y with c∗∗s > c∗s;

(ii) Ky→y′(c
∗∗) = Ky→y′(c

∗) implies c∗∗s = c∗s for all s ∈ supp y or else there are species

s, s′ ∈ supp y with c∗∗s > c∗s and c∗∗s′ < c∗s′ .

For example, the set of non-inhibitory kinetics PL-NIK, i.e. those whose kinetic orders

are all non-negative, constitute the weakly monotonic subset of power law kinetics.

Recall that a network is said to have injectivity in a set of kinetics if every kinetics

from the set is injective, i.e. the SFRF is an injective map. We have the following

characterization of concordance in terms of the set of weakly monotonic kinetics on it:

Theorem 12. A reaction network has injectivity in all weakly monotonic kinetic systems

derived from it if and only if the network is concordant.

The following result of Shinar and Feinberg derives the existence and uniqueness of

equilibria (“the dull behavior”) for a large class of kinetics on a large class of concordant

networks:

Theorem 13. If K is a continuous kinetics for a conservative reaction network N =

(S ,C ,R), then the kinetic system (N , K) has an equilibrium within each stoichiometric

compatibility class. If the network is weakly reversible and concordant, then within each

nontrivial stoichiometric compatibility class there is a positive equilibrium. If, in addition,

the kinetics is weakly monotonic, then that positive equilibrium is the only equilibrium in

the stoichiometric compatibility class containing it.

For example, in the context of the Coset Intersection Count method, the last state-

ment of the Theorem can be expressed as follows: for a PL-NIK element on a weakly
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reversible, conservative and concordant network and any positive stoichiometric class Q,

|E+(N , K) ∩Q| = 1.

The result above does not guarantee that, even if the system is complex balanced,

that there is a complex balanced equilibrium in every positive stoichiometric class.

If in the Theorem of Shinar and Feinberg above, the weakly monotonic kinetics is

stoichiometrically complex balanced, then the CIC allows the conclusion that the system

is absolutely complex balanced.

7 A partial converse to Feinberg’s deficiency zero

ACB theorem

The Horn-Jackson ACB Theorem can be viewed as providing a class of counterexamples

to the full converse of the Feinberg ACB Theorem. In this section, we derive a partial

converse by identifying the set of KSE kinetics. This result leads to a necessary condition

for the occurrence of an ACB system with positive deficiency (for any kinetics) as well

as a technique for generating complex balanced but non-ACB systems (if possible) for a

particular set of kinetics. We illustrate the latter with how we discovered the example in

Section 3. We begin with a brief discussion of POR kinetics, which provide a convenient

way of computing dimensions in the context of KSE systems.

7.1 Positive orthant restricted (POR) kinetics

In CRNT, a general kinetics has usually been defined on the whole nonnegative orthant

(s. [7], Def. 3.2.1). However, for power law kinetics, which have been extensively used

in modeling biochemical systems (e.g. see [33]), it is essential to exclude zero values for

species involved in an inhibitory interaction, i.e. have negative kinetic orders. Accordingly,

Wiuf and Feliu [34] introduced kinetics defined on subsets Ω of RS
≥ containing the positive

orthant RS
> . Subsets of power law kinetics though can be defined for proper supersets of

RS
> . We introduce a concept to describe this property:

Definition 20. The maximal definition domain Ωmax of a kinetics K : Ω → RR is the

largest superset of Ω in RS
≥ on which K is definable. A kinetics K : Ω → RR is positive

orthant restricted if Ωmax = RS
> .

Clearly, a power law kinetics is POR if and only if there is at least one negative value in

each column of its kinetic order matrix. Non-POR power law kinetics include the subset of
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non-inhibitory kinetics (denoted by PL-NIK) with only nonnegative values in the kinetic

order matrix. Other examples of non-POR kinetics are mass action kinetics and Hill-type

kinetics. For the latter, for each negative exponent µ, one can write xµ

d+xµ = 1
dx|µ|+1

, which

then enables zero values for the species.

7.2 KSE kinetics, a partial converse and a necessary condition

We introduce the key property for our considerations:

Definition 21. A kinetic system (N , K) has kernel spanning equilibria images

(KSE kinetics) if ⟨K(E+(N , K))⟩ = kerN .

Since ⟨K(E+(N , K))⟩ ⊂ kerN , an equivalent condition is dim ⟨K(E+(N , K))⟩ =

r−s, where s is the dimS or dim(ImN). For POR kinetics, we have a simpler relationship:

Proposition 16. For a POR kinetics, K(E+N , K) = kerN ∩ ImK.

Proof. As mentioned above, for any kinetics, K(E+(N , K)) ⊂ kerN ∩ ImK ⊂
kerN . For z ∈ kerN ∩ ImK, z = K(x), and since K is POR, x > 0. Together with

N(z) = N(K(x)) = 0, this implies that x ∈ E+(N , K), and hence z ∈ E+(N , K).

Remark 5. The above implies that for POR kinetics, we have ⟨K(E+(N , K))⟩ =

⟨kerN ∩ ImK⟩. Hence to show that the kinetics is also KSE, we need only to construct

a basis of kerN which is contained in ImK.

The partial converse is the following result:

Theorem 14. Let N be a weakly reversible CRN with a KSE kinetics K. If (N , K) is

absolutely complex balanced, then δ = 0.

Proof. For any kinetic system, K(Z+(N , K)) ⊂ ker Ia ∩ ImK ⊂ ker Ia. Similarly,

K(E+(N , K)) ⊂ kerN ∩ ImK ⊂ kerN . It follows that ⟨K(E+(N , K))⟩ ⊂ kerN . If K

has the KSE property, then equality holds. On the other hand, (N , K) absolutely com-

plex balanced implies that K(Z+(N , K)) = K(E+(N , K)), so that ⟨K(Z+(N , K))⟩ =
⟨K(E+(N , K))⟩ = kerN . Combining this with ⟨K(Z+(N , K))⟩ ⊂ ker Ia ⊂ kerN implies

ker Ia = kerN . Since dimkerN = dimker Ia + δ, it follows that δ = 0.

We obtain the following necessary condition for the occurrence of an ACB system with

positive deficiency:
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Corollary 5. If an ACB system has positive deficiency, then it is not a KSE system.

Remark 6. A more modular version of the necessary condition is the following:

i. If a kinetic system is ACB, then dim⟨K(E+(N , K))⟩ ≤ dimker Ia = r − n+ l.

ii. If a CRN has positive deficiency, then dimker Ia < dimkerN = r − s.

Hence, an ACB system with positive deficiency has dim dim⟨K(E+(N , K))⟩ < r− s,

i.e. is not KSE. To identify ACB systems with positive deficiency for a given set of

kinetics, we only need to consider non-KSE systems.

7.3 A technique for finding counterexamples to ACB

Another reformulation of the partial converse is clearly: if a kinetic system has positive

deficiency and is KSE, then it is not ACB. This enables the construction of non-ACB

systems (if possible) for any given set of kinetics. We illustrate this with how we found

the Example 1 in Section 3.

To show that this a non-ACB system, we use the KSE definition. Note that K(x) is

POR. By definition, we conclude the kinetics is KSE. Note that r − s = 5 − 1 = 4 =

dim⟨K(E+(N , K))⟩ = 4 (K2 = K3).

Using the contrapositive of Theorem 14, since δ = 2 ̸= 0, then (N , K) is not ACB.

8 Summary

To conclude, we summarize our main results.

1. We revived the study on absolute complex balanced (ACB) systems by recalling

results of Feinberg on zero deficiency systems (Feinberg ACB Theorem) and of

Horn and Jackson on mass action systems (Horn and Jackson ACB Theorem). We

tried to extend the latter problem by formulating necessary and sufficient conditions

that ensure absolute complex balancing in systems with positive deficiency (beyond

those with mass action kinetics).

2. We showed an example of a complex balanced PL-RDK system which is not ACB

leading to the non-extension of the ACB problem to PL-RDK systems.
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3. We established a necessary and sufficient condition for absolute complex balancing

in CLP systems.

4. For non-CLP systems, we constructed and illustrated new classes of complex bal-

anced systems that are absolutely complex balanced and with positive deficiency.

The techniques used are known as the Positive Function Factor (PFF) method and

the Coset Intersection Count (CIC) method. We also combine incidence indepen-

dent and independent decompositions.

5. We formulated a partial converse to the Feinberg ACB Theorem by identifying the

set of KSE systems. Absolutely complex balanced KSE systems have zero deficiency.

This enables us to construct a non-ACB system, that is, a KSE system with positive

deficiency.
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A Notations and Acronyms

We denote by R and Z the set of real numbers and integers, respectively. For integers a

and b, let a, b = {j ∈ Z|a ≤ j ≤ b}. We denote the non-negative real numbers by R≥0,

and the positive real numbers by R>0. The sets Rn
≥0 and Rn

>0 are called the non-negative

and positive orthants of Rn, respectively. For x ∈ Rn, the ith coordinate of x is denoted

by xi, where i ∈ 1, n. We denote the vector space generated by vectors y′s as ⟨y′s⟩.

Table A.1. List of symbols

Meaning Symbol

augmented T matrix T̂
deficiency of a CRN δ
factor map of a kinetics K ψK

incidence matrix of a CRN Ia
k− Laplacian matrix Ak

kinetic flux subpace S̃
kinetic order matrix F

kinetic order subspace S̃

kinetic reactant flux subspace S̃R

kinetics of a CRN K

kinetic reactant deficiency δ̂
matrix of complexes Y
set of positive equilibria of a system E+(N , K)
set of complex balanced equilibria of a system Z+(N , K)
stoichiometric matrix N
stoichiometric subspace of a CRN S
T matrix T
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Table A.2. List of abbreviations

Abbreviation Meaning
ACB absolutely complex balanced
ACR absolute concentration robustness
BCR balanced concentration robustness
BIU Bi-Independent Union
CRN chemical reaction network
CIC Coset Intersection Count
GMAK generalized mass action kinetics
KSE kernel spanning equilibria images
MAK mass action kinetics
PFF Positive Function Factor method
POR positive orthant restricted
PLK power-law kinetics
PL-FSK power-law factor span surjective kinetics
PL-NIK power law non-inhibitory kinetics
PL-RDK power-law reactant determined kinetics

PL-TIK T̂ -rank maximal PL-RDK kinetics
PYK Poly-PL kinetic systems
STAR-MSC S-invariant Transformation by Adding Reactions

via Maximal Stoichiometric Coefficients
SFRF species formation rate function
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