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Abstract

Establishing dynamical models to characterize the relation of different chemical
compositions is an important topic in chemistry and mathematics. However, a lot of
dynamical models are merely concerned with the integer-order dynamical models.
The report on fractional-order chemical dynamical systems is quite few. In this
current article, based on the earlier publications, we establish a new fractional-order
coupled Oregonator model incorporating time delay. A set of sufficient conditions
which ensure the stability and the onset of Hopf bifurcation of fractional-order
coupled Oregonator model incorporating time delay are derived by regarding the
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time delay as bifurcation parameter. The exploration manifests that time delay has
a vital influence on stabilizing system and controlling bifurcation of the investigated
fractional-order coupled Oregonator model. At last, Matlab simulation results are
adequately displayed to corroborate the derived theoretical achievements.

1 Introduction

Time delay plays a vital role in describing the dynamical peculiarity in many biological
systems, chemical reaction, physical science, neural networks and so on [1-3]. Usually, time
delay will make the system lose its stability, display periodic oscillation, generate chaos
and so on. In particular, in a lot of chemical reaction systems, time delayed feedback has
a very important effect on their dynamics. Thus the study on the impact of time delayed
feedback on dynamical behavior of chemical reaction systems has attracted great attention
from numerous scholars. Oregonator model, which is nonlinear differential system, is a
vital model describing the Belousov Zhabotinsky (BZ) chemical reaction and attracts
great interest from many researchers [4-6]. In 1999, Zhang et al. [7] established the

following coupled Oregonator model:

dw (t wy — v
. dlt( ) =wi(l—w)— gwgwi o + A(ws — wy),
d’LUQ(t)
= Wi — Wy,
dgji,(t) w3 — v 1)
e~ = ws3(1 —ws) — guuw3 T + A(wy — wy),
dw4(t)
= w3 —w
a 3 4,

where wq, w3 represents the concentrations of HBrQOs, wsy,w, represent the concentra-
tions of Ce(IV), €, A,v are all non-negative constants and ¢ represents a controllable
coefficient.

Considering the impact of electric current, then Ce(IV) will be perturbed. To better
depict the phenomenon, Wu and Zhang [8] set up the following coupled Oregonator model

with the two perturbation terms Ywy(t — ) and Jwy(t — 7):

dw (t w; — v
e]dlt() =wi(1—w)— ngwj 0 + A(ws — wy),
lwo (T
G Ui;t( ) =w; — Wy + ﬁwQ(t — ')/)7 (2)
edu:;t(t) = ws3(1 —w3) — gw, Zz jr Z + A(wy — ws),
d’UJ4(t)

= W W + Jwy(t — 7),
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where v stands for a time delay and ¥ is a governable coefficient. By applying the stability
theorem and bifurcation theory of delayed differential equation, Wu and Zhang [8] set up
a delay-independent condition to ensure the stability and the existence of Hopf bifurcation
for integer-order delayed system (2).

In the past for a long time, many works on differential equation are only concerned
with the integer-order case. The study on fractional-order differential systems is very few
since the shortage of fundamental theory of fractional calculus and its own complexity.
Only in recent decades, the work on fractional-order differential systems has attracted
a great deal of interest from many scholars in mathematics and engineering due to its
owned extensive application in numerous areas such as neural networks, biotechnology,
chemical engineering, finance and monetary, viscoelasticity and all kinds of physical waves
and so on [8-11]. Many scholars point out that in many case, it is more appropriate for
us to depict the subsistent phenomenon in objective world by fractional-order differential
model than by integer-order differential model since fractional calculus owns the memory
and hereditary peculiarity of all sorts of materials and physical change processes [12].
Nowadays a number of scholars devote great effort to the investigation on various dynamics
of fractional-order differential systems and fruitful results are constantly emerging. One
can refer to [13-15]. In particular, the delay-induced Hopf bifurcation is a key topic in
fractional-order differential equation. What is the influence of delay on Hopf bifurcation
for the involved fractional-order systems? In order to explain this problem, some works on
this aspect have been carried out and abundant fruits have been reported. For example,
Huang et al. [16] discussed the Hopf bifurcation for fractional-order BAM neural networks
involving multiple time delays; Xiao et al. [17] reported the fractional-order PD control
technique of Hopf bifurcation for fractional-order small-world networks with time delays;
Xu et al. [18] dealt with the Hopf bifurcation of fractional-order BAM neural networks
concerning multiple time delays; In details, one can see [18-23].

Here it is worth pointing out that all the mentioned publications on Hopf bifurcation
of fractional-order differential models are mainly concerned with biological population and
neural network areas. By far, only very few works focus on chemical reaction systems.
In order to display the application of fractional-order dynamical system in chemistry, we
think that it is of importance to explore the Hopf bifurcation caused by time dealy for

the fractional-order coupled Oregonator model. Stimulated by the analysis above and on
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the basis of work of Wu and Zhang [8], we modify coupled Oregonator model (2) as the

following fractional-order coupled Oregonator model:

dw? (t W —v
(g;g ) =wi(1 —w;) — gws ! T + A(wz —wy),
dws(t
ucjlia(; ) = wy — wy + Jwy(t — ), (3)
3
dws(t w3 — v
€ é;t( ) =ws3(1 —ws3) — gw4w:, g + A(wr — ws),
dw3(t
dig ) = wy — wy + Jwy(t — ),

where 0 < ¢ < 1 and all the coefficients have the same meaning as those in coupled
Oregonator model (2). In details, one can see [8].

The key aim of this work can be stated as follows: (I) Explore the stability and onset of
Hopf bifurcation of the fractional-order coupled Oregonator model (3); (2) Fully reveal
the role of delay in Hopf bifurcation of fractional-order coupled Oregonator model (3).
The primary highlights of the current research are given as follows:

(@ On the basis of the earlier works, a new fractional-order coupled Oregonator model is
established to better portray the memory and hereditary property of the concentrations

of chemical composition HBrOy and Ce(IV).

® A new sufficient condition to ensure the stability and the onset of Hopf bifurcation for
fractional-order coupled Oregonator model is set up. The role of delay of the fractional-
order coupled Oregonator model is adequately embodied.

(© Until now, the study on Hopf bifurcation of fractional-order coupled Oregonator
model is rare.

The current study is planned as follows. Segment 2 lists some needful principle on
fractional-order differential equation. Segment 3 establishes a delay-independent criterion
guaranteeing the stability and the emergence of Hopf bifurcation of fractional-order de-
layed Oregonator model. Furthermore, the role of delay in the stability and bifurcation
behavior for fractional-order coupled Oregonator model (3) is displayed. Segment 4 exe-
cutes software simulation to verify the derived analysis results. Segment 4 completes this

study.
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2 Preliminaries

In this part, several essential definitions and lemmas on fractional-order differential equa-

tion are prepared.
Definition 2.1. [24] The fractional-type integral of order o for the function g({) is given

by

?ﬂﬂzﬁ@L}»@rw@w

where T > 19,0 > 0, and T'(s) = fooo 75"le~Tdr stands for Gamma function.

Definition 2.2. [24] Suppose that g(7) € C([79,00), R). Define the Caputo fractional-
order derivative of order o of g(o) as follows:

T (m)s
Deg(() = / g (5)

M=) J,, T o™

where T > 19 and m presents a positive integer that satisfies m —1 < o < 1. In particular,

When 0 < 0 < 1, then
1 T g(s)
De(1) = /
= =g/, G-

Definition 2.3. [25] Consider the fractional-order system:

Du;(t) = filui(t)),i=1,2,--- ,h, 4)

where 0 € (0,1],4(t) = (wi(t),u2(t), -, un(t)), fit) = (fi(t), fo(t), -+, fu(?)). Then
(ui, uj, -+ ,up) is the equilibrium point if fi(u}) = 0.

Lemma 2.1. [26] For the fractional-order model D?w = Quw,w(0) = wy where
0<po<1l,we R"Q e R Denote \(i = 1,2,--- ,h) the root of the characteristic
equation of D?w = Quw. Then system Dw = Qu 1is asymptotically stable < |arg(\;)| >
E(l=1,2,---,h). Moreover, this system is stable < |arg(\)| > & (I =1,2,--- ,h) and
those critical eigenvalues which satisfy |arg(N)| = & (I = 1,2,--- ,h) possess geometric
multiplicity one.

Lemma 2.2. [27] For the fractional-order model D%u(t) = Quu(t) + Qou(t — ), where
ult) = wt),t € [-7,0l,0 € (0,1],u € R",Q1,Qy € R™™ o € R*™™ . Then the
characteristic equation of the model can be expressed as the form: det [s¢Z—Q1—Qqe™| =
0. Then the zero solution of the model is asymptotically stable if all roots of the equation

det |27 — Q) — Qae*7| = 0 possess negative real Toots.
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3 Bifurcation study of model (3)

In this part, we are to explore the influence of time delay on Hopf bifurcation for fractional-

order coupled Oregonator model (3).

Let (wix, Wax, Wy, wax) be the equilibrium point of the coupled Oregonator model (3),

then
wi(1 — wii) — gw wl*_”—Q—A(w' —wy) =0
1% 1% 2% Wie + v 3% 1% )
W1x — Way + Jwa, = 0,
W3s — (5)

Wi (1 — W3s) — GW4 + Awry — wsy) =0,

W3y + 0
W3y — Wyy + Vwyy = 0.
Then system (3) has three equilibrium point W, (0,0,0,0), Wa(wW1at, Wost, Wkt Want ),

WB(wl*—7 Wox—y W3g—, ’LU4*_), where

1—ﬁ—z’+\/ +4v(1 =)
Wisy = s
_1—% +41;(1+%19)
W4 = 2(1 719) y (6)
1— L —ut4/(1 ﬁ )’ + 4o (14 %)
W3y =
y _1—1319 +4U(1 ﬁ)
e (1—19)
and
lfﬁfvf\/(lfﬁfv)2+4v(l+ﬁ)
Wix— = 2 )
L1t 0=/ — 1% — ) +4v(1+190)
) =
e 2(1— ) o
1—L—’U—\/(1—L—U)2+4v(1+i)
1—9 1—9 1-9
W3g— = )
- —v—y/(1- )2+ 4w (1+ L)
e = 2(1—19) '

It is not difficult to obtain that if the following inequality

(@) v<1

holds, then system (3) possesses the positive equilibrium point Wi (w1, Wast, Wakt, Wit )-

Considering the practical implication of model (3) in chemistry, we only deal with the
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positive equilibrium point. Let

let; = wlgt; — Wik,
Wy (t) = wa(t) — Wauy,
Wy (t) = wy(t) — Waes,

then system (3) can be rewritten as

d’lf)g(t) 1 — _ _ (’lDl -+ W1 ) —v
d;é’ == [(wl + Wit ) (1 — (01 + wiay)) — g2 + /11)2*+)m
A + wer) = (1 + w1.1))]
dwi(t
dié(i ) :wl_wz‘f"ﬂwz(t_'}/)v (9)
du}3( ) [ _ _ (wg + w3*+) —v
) X 1 - 3 3k - * - — N .
dt (g + wser)( (s F wsus)) = 904 + i) (03 + wgey) + v
+ A((@1 + wiay) — (W3 + w3*+))} ;
dw?(t
djﬂ(? ) = W3 — Wy + ’197134(15 — ’y).
The linear system of Eq. (9) at (0,0,0,0) takes the following form:
dw?(t
(]}ZE ) = W7 + w9 + 043('1213 — 11}1)7
dwy(t
dié(’ ) =Wy — W + VWt — ), (10)
dws
s(t) _ = 13 + oy + () — T3),
clwﬁ}6 (t)
= Wy — Wy + Vw4t — 7).
dte 3 4
where
1 1—9 20gW3sy
o =— |1 -2wyy — ———
T T (04 iy )?
o = 20 (1)
€(v 4 wiey
A
Qg = —
€
W denote w;(i = 1,2,3,4) by w; in (10), then system (10) becomes
dwi(t
dlé(’ ) = aqw; + aws + az(ws — wy),
dwzg(t)
= w; — wy + Yws(t — ),
dte (12)
dws(t)
o s + apwy + az(w — ws),
dwff(t) + Jwn(t— )
= w3 — wy + Ywy(t — 7).
dte 3 4 4 v
The characteristic equation of system (12) owns the expression:
s — (o — ) —ay —as 0
-1 §¢41—e= 0 0
det o 0 @ — (o — an) o =0, (13)

0 0 -1 s+ 1— e
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which leads to
$ 4 8157+ Bys® + B35+ B+ (6187 + 6252 + 6352+ 6a)e T + (0182 + ) > =0, (14)

where

Br=2[1 — (a1 — a3)],

Bo=1—as—4(a1 — as) + (a1 — a3)® — af — ag,

63 = 2(0(1 - 0(3)2 - 2(0(1 — 063)70(2 -+ 20@(&1 — 063) — 2&% — (g,
Bs = s — as) + (a1 — a3)" a3 + o,

G = —27,

G = =20+ 4(oy — ag) — 20(oy — )2, (15)
63 = 49(ay — az) + 20(a; — a3)? + 20902 + apd) — axd(a; — ag),
¢ = Yag(ar — ag),

(51 = 2192(Ck1 - OZJ) — 192,

(52 = *’192(051 - a3)2.

The following necessary hypothesis is prepared:

Ay =B +¢ >0,

b1+ 1
Ay = det Bsts+d1 Bot >0,
(Q2) b1+ 1 0
Ag=det | B3+ + B2+ <2 B+ >0,
0 ,/3)4+§4+(52 ﬁ3+§3+(51

Ay = (Ba+ 4+ d2)A3 > 0.
Lemma 3.1. Assume that (Q1) and (Q2) hold true, then the positive equilibrium point
Wi (W1at, Wony, Wasy, Wasy) @8 locally asymptotically stable.
Proof By (Q:), we know that system (3) possesses the positive equilibrium point

Wi (W1st, Wost, Wast, Wasy ). When v = 0. Then (14) becomes
X (B4 )N + (B2 + )N + (B + 63+ 01)A + Ba+ca+ 0, = 0. (16)

In view of (@), we derive that each root A; of (14) satisfies [arg(A)| > & (I = 1,2,3,4). It
follows from Lemma 3.1 that Ws(wysy, Wasy, Wasy, Wawy ) is locally asymptotically stable.

The proof finishes. |

It follows from (14) that
(5194 B15%¢ + Bos22 + B35 + By) e + (615%¢ + 69522 4 6352 +¢4) + (0152 4+ 82)e ™Y = 0, (17)

Let s =ip =p(cosZ +isinZ) be a root of (14). Then

aj cos py + ag sin py = as, (18)
by cos py + by sin py = bs,
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where

According to (18), we get

It follows from (20) that

In (19), we let

3om om
as = —¢1p% cos -5 = 62?2 cos o — G3p° cos 5 T

. 3
by = p*¢sin 20w + B1p% sin 2on + Bop®@sin o + (B3 + 61)p° sin %7

3om O
ar = p' cos 20m + B1p™ cos 2o + Bop®® cos o + (B + 61)p cos % + By + 02,

A m 2
ay = —p*¢sin 20m — B1p* sin % — Bap®sin o — (S35 — 61)p? sin %7

. 3om u
by = —glp‘gy sin % — §2p2" sin o — ¢3p? sin %

(19)
by = P4e cos 20t + ﬁlpag €os % + 52%72@ cos o + (3 — 61)p® cos % + B4 — 02,
(L3b2 - a2b3
OB PY = by — by
a — a0y
. a;bf — arbs (20)
sin py = ———.
o a1b2 — CLle
(agbg — (12173)2 + (agbl — (11173)2 = (a1b2 — azbl)z. (21)
€1 = Cos 20T,
3
ey = [ cos $7
e3 = [35 cos o,
us
eg = (B3 +01) cos %7
es = B4 + 0,
eg = —sin 20,
3
er = — [ sin %,
eg = — [Py sin o,

. oTm 22
€9 — *(63*(51)8111?, ( )
e190 = —G1 COS 3ﬂ

10 = —61 9
€11 = —G2COS O,
o
€12 = —G3CO8 o
€13 = —S4,

e14 = sin 2pm,

3
e15 = P sin %7

e16 = B sin o,
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and ot
err = (Bs + 01) sin —,

€18 = (ﬁ?, - 51) COs ?ﬂ-v

e1g = B4 — 02,
. dom (23)
€20 = —C1 81 —/—,
2
€21 = —Gsin om,
. o7
€29 = —G3S1 —,

2
then (19) can be rewritten as

a1 = e1p*® + exp® + e3p” + eap® + €5,

ay = egp™ + erp® + esp™ + egp?,

az = e10p® + e11p°% + e12p° + €13, (24)
b = e1p™® + €150 + e16p”° + €17’

by = e1p™ + e2p™ + e3p™ + e15p° + €19,

by = €20p°° + €219°% + €0p°.

By virtue of (21) and (24), one gets
€199 + €919 + £3pM2 + 249" + 25120 + g4p'12

+e7p"% + 59" + £9p + £10p™ + £119% + 2129
+e13p™ + e14p® + €159 + €16p% + €17 = 0, (25)

where

2 2
& = (61 - 66614) )
2
g2 = 2(ef — ege14) (26162 — €ge15 — eré14),
—9(e? _ 2 -
€3 = (6’1 86614)(6163 + €y +eje3 €6€16
2
— ere1s — egeny) + (26162 — egers — ere1y)
2 2
- (610614 —e1ey)” — (61610 - 66620) )
=2(e? — 2 -
Eq4 = (61 66814)(61618 + 2eqe3 + e1e4 €617
— €7€16 — €8€15 — 69@14) + 2(26162 — €6€15 — 67614)
2
X (6163 + (& + €13 — €g€1g — €7€15 — 68614)
- 2(61610 - 66620)(62610 + e1e11 — e1e91 — 67620)
- 2(610614 - 61620)(610615 + e11€14 — €161 — 62620)7
_ 2 2
€y = (6163 + 62 -+ €1€3 — €6€16 — €7€15 — 68614)
2 2
+ 2(ef — egers)(e1e19 + e2e15 + €5 + eseq + ee;

— ere17r — ege1s — €geis) + 2(2e1e2 — eseis — ereia)



381

X (e1e15 + 2eze3 + €164 — ege17 — €7€16 — €221 — €7€30)
— 2(e0e14 — €1€20)(€10€16 + €11€15 + €12€14 — €a€a1 — €3€30)
— 2(e10e14 — €1620)(€10€16 + €11€15 + €12€14 — €261 — €3€20)
—2(ere10 — egean)(eser0 + 2611 + €1€12 — €622 — e7€a1 — €5€22),
=9 2 _ _
g6 = 2(e] — ee14)(e2e19 + 3618 + €364 + €265 — €3€17 — €9€16)
+2(2eqe9 — - )(ere10 + + €5 + esey —
€1€2 — €6€15 — €7€14)(€1€19 T €2€18 T €3 T €2€4 — €7€17
2
— egeig — ege1s) + 2(eres + €3 + eres — ege1s — €7€15 — €g€14)
X (ere1s + 2eze3 + €164 — ege17 — €761 — €8€15 — €9C1s)
— 2(ere10 — egeaon)(er0e1s + €3€11 + eze12 + €1613 — €72
— €8€21 — 69620) - 2(62610 + e1e11 —e1ea — 67620)(63610
+ €e2e11 + €112 — g€ — €7€21 — 68622) - 2(610614 - 61620)
X (erpe17 + e11e16 + e12€15 + €13€14 — €222 — €321 — €4€30)
— 2(e1oe15 + 11614 — €191 — €2ex0)(€10€16 + €11€15 + €12€14
— egeg1 — egeqp),
2
e7 = (e1€18 + 2e0e3 + €164 — €ge17 — €7€16 — €3€15 — €9€14)
+2(e? — )( + + ese3 — ) +2(2
€1 — €6€14)(€3€19 T €4€18 T €5€3 — €9C17 €1€2
— egers — erers)(eaerg + ezeis + ezeq + eaes — egerr
_ 2 2 — — _
ege1g) + 2(e1e3 + €5 + e1e3 — egeig — €715 — €s€1a)
2
X (ere19 + eze18 + €5 + €ae4 — ere17 — €s3€16 — €9€15)
2
— (e10€16 + €11615 + €12€14 — €261 — €3€30)
2
- (63610 + ege11 + e1€12 — €gear — 7€) — 68622)
— 2(e10€14 — €1€90)(€11€17 + €12€16 + €13€15 — €3€22
— €4€21 — 65620) - 2(610615 + en1€14 — €161 — e2620)
X (erpe17 + e11e16 + e12€15 + €13€14 — €222 — €3€21
— eqez) — 2(e1e10 — es€20)(e10e19 + €11€18 + €3€12
+ ese13 — egean — €g€a1) — 2(e2e10 + €111 — €1€21 — €7€90)
X (e1pe19 + eze1r + eze12 + €1613 — 7€y — €g€a1 — €9en),
2
s = 2(e7 — ege1a)(€ae1g + ese1s) + 2(2e1e0 — €ge1s — €7€14)

2
X (ese1g + ese1s + €53 — egerr) + 2(eres + €3 + ere;
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— egerg — erers — eges)(eaerg + eseis + ezeq + ezes

— ege1r — egerg) + (e1e18 + 2eae3 + e1e4 — egerr — ereip
— ege15 — egerq)(ererg + esers + 6% + eseq — ererr

— €8€16 — e9615) (610614 - 61620)(612617 + e13€16

—2
— eqe — esez1) — 2(e10€15 + €11€14 — €161 — €aey)
X (e11€17 + €12€16 + €13€15 — €322 — €4€a1 — €5€20)
— 2(er0e16 + €11€15 + €12€14 — €2€91 — €3€90)(€10€17
+ er1e16 + e12€15 + e13€14 — €2€22 — €321 — €4€30)
— 2(e1e10 — egeap)(e11€19 + €12€18 + 3613 — €9eaz)
— 2(eze10 + €111 — €191 — €7€g)
X (e1pe19 + €11€18 + €3€12 + €2e13 — €gean — e9eay)
— 2(ege10 + €ze11 + €1€12 — €622 — €7€21 — €g€x)
X (e1pe1s + eze11 + eae1s + €1€13 — €7€2n — €5€21 — €g€x)
&9 = 265619(€§ - 66614) + 2(26162 — €6€15 — 67614)(84619 + 65618)
+ 2(6163 + Eig + €1€3 — €6€16 — €7€15 — 68614)(83619 -+ €4€18
+ eses — egerr) + 2(erers + 2exe3 + e1eq — egerr — ererg
— ege1s — eges)(eaerg + esers + eseq + eges — egerr — egerg)
- 2(61610 - 66620)(612619 - 613618) - 2(62610 + ei1e11 — e1€
— ereg)(er1e19 + e12e18 + 3613 — egeaz) — 2(ese1o + ezenn
+ ere12 — egeas — erea1 — egeaz)(er0e19 + er1e1s + ezes
+ ege13 — egear — egear) — (er0e17 + e11€16 + e12€15 + e13€14
— €262 — €3€21 — 84620)2 - 2(6106‘14 - 61620)(613@17 — €1€21
— ese2) — 2(€e10€15 + €11€14 — €1€21 — €a€x9)(€12€17 + €316
— eq2 — e5€a1) — 2(€10€16 + €11€15 + €12€14 — €261 — €3€00)
(er1€17 + e12€16 + €13€15 — €3€22 — €421 — €5€90),
€10 = 2(2e1e2 — egers — erers)esery + 2(eres + f’% + ere3
— ege16 — erers — ese1a) + 2(ef — egera)(esero + €5€13)
+ 2(63619 + €4€18 + €563 — (39617) + 2(81619 + €9€18

2
+ e11€14 + €3 + eseq — ererr — e — €gers)(€ae1y
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+ ezeis + ezeq + eae5 — €se1r — €geig) — 2(erpe1s — erea
- 62620)(613617 — €1621 — 65622) - 2(310616 +enes
+ €19€14 — €261 — €3€90)(€12€17 + €13€16 — C4€22
ese21) — 2(er0e17 + er1e16 + e1ze15 + er3eis
— ege99 — €3e91 — e4e30)(e11€17 + e12€16 + €13€15
— €362 — €491 — €5€29) — 2€13€19(€1€10 — €6E20)
— 2(ege90 + 1611 — €2€91 — €7€21)(€12€19 + €15€13)
— 2(ese10 + 2611 + €161z — egeaz — e7€a1 — €gaz)
X (e11e19 + e1ze1s + e3e13 — egeaz) + 2(e10€19 + €11618
+ ese19 + €se13 — €320 — €g9€a1) — 2(e10€18 + €3€11 + €2e12
+ ere13 — €72y — €g€a1 — €gea)(e10€19 + €11€18 + €3€12
+ ege13 — esez — €9ea1),

e11 = (ea€19 + €3e158 + €364 + €265 — €17 — 69616)2
+2(ere19 + ese15 + €§ + e2eq4 — €7€17 — €g€16
— egeqs)(eserg + esers — egerr) + 2(eserg + esers)
X (e1e18 + 2e2e3 + €164 — €s€17 — €7€16 — €s€15
- 69614)65619 — 2e13e19(eze1p + e1e11 — e1eg — 67620)
— 2(e12e19 + €13€18)(e3€10 + €2€11 + €1€12 — €gean
— erea1 — eseaz) — 2(er0e18 + es€11 + €212 + €r€13
— ereag — €sea1 — Egeap)(e10e19 + er1e18 + e3e12 + eze13
— egegy — €gea1) — (e11€17 + e12€16 + 1315 — €3€20
— €4€21 — 65820)2 — 2(e10€16 + €11€15 + €12€14 — €2€91
- 63620)(613617 — €1€621 — 65622) - 2(612617 + e13€16
— €4€23 — 65621)7

€12 = 2(e1e18 + 2e9e3 + €164 — €ge17 — €7€16 — €3€15 — €9€14)€5€19
+2(ere19 + €2615 + €5 + €264 — €7617 — €5€16 — €9€15)
X (64619 -+ 65818) + 2(63619 -+ €4€18 + €5€3 — 69617)
X (62619 + €3€18 + €3€4 + €9€5 — €8€17 — 69616)

— (e10€17 + €11€16 + €12€15 + €13€14 — €2€20 — €3€21 — €4€90)
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x (e1ze17 — e1€1 — esen) + 2(e1ze17 — e1ea1 — e5a2)
X (eneir + e1seig + €13€15 — €3e2 — €4€1 — €5€a0)
— 2e13e19(e3e10 + 2611 + €1€12 — €eean — €7€21 — Cge2a)
— 2(ewoes + eze11 + eaeiz + €113 — €762 — €521 — €9a0)
x (erze19 + e1ze18) — 2(e11€10 + €12€18 + €3€13 — €9C22)
X (e10e19 + e11€18 + €3€12 + €2€13 — €gen — €gent),

£13 = 2eseig(ere1g + exe1s + €3 + exeq — ere17 — eseqg
— eger5) + (eze19 + €415 — 69617)2 + 2(eqe19 + €5€18)
X (ege19 + €318 + €364 + €265 — €ge17 — €9€15)
— (e11€19 + €12e18 + €313 — 69622)2 — 2(erp€19 + 11618
+ ese1z + eze13 — egeay — egear)(e12e19 + €13€18)
- (612617 + €e13€16 — €422 — e5821)2 - 2(610617
+ e11€16 + €12€15 + €13€14 — €2€20 — €321 — €4€90)
X (613617 — e1eg1 — e5ea),

€14 = 2e5e19(eze19 + e3e1s + €364 + €265 — €317 — €9e16)
+ 2(eqe19 + es€18)(€11€19 + €12€18 + €3€13 — €9€22)
- 2(612617 + e13e16 — €4€22 — 65621)(613617 — €1621 — 65622)
— 2(e10€19 + €11€18 + €312 + €2€13 — €g€22 — €9€21)€13E19
— 2e13€19 + €13€18)(€11€19 + €12€18 + 3613 — €9€22),

15 = (es€19 + @5618)2 + 2ese19(esery + ese1s — egerr)
— (er2e19 + 613618)2 — 2ey3e19(er1e19 + e12e1s + €3€13
- 69622) - (613617 — €1€21 — 65621)27

€16 = 2es5€19(eae19 + €5€18) — 2213€19(€12€19 + €13€138),

g1 = egefg - 6336%9

Let
H(,O) — Elplﬁg + 52p159 + €3p149 + €4p13g + E5/)12,(_7 + Eapllg

+ 67/7109 + 58/79@ + 89/789 + €1op7g + 611/)69 + 812/)5g

+e13p" + £14p°% + €159 + €16P° + €17 (26)
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Assume that

22 2 2
(@3) esely < erseiy-

By (Q3), we get £17 < 0. Since ) - o v p > 0, then Eq.(25) has at least one positive

dp

real root. So Eq.(17) has at least one pair of purely roots.

Suppose Eq.(26) has 16 real roots denoted by p; > 0(j = 1,2,---,16). By virtue of (15),

one gets

where [ =0,1,2,--

1 3by — a9bs
’Yj- =— {arccos (7% i J) +217T} ;
Py arby — asb,

c,j=1,2,---,16. Let

— 3 0 —
o= _min {55} 00 = plh—ss-

Now the following assumption is needed:

(Q4) 8121+ 8225

S]Z

82:

> 0, where

401 30— 1
4opy”" cos to—lm , 30Bipy? " cos M

2

_ 20— 1)m _ o— )

+20Bap5? 1003% + 0Bspf ! COS% €OS P70
40—1 3 3o0—1

— {4gpggflsin 7( 2 3 ) +3951p8971 sin 7( 2 5 )

(20-1)

1. m 1. — | .
+20B2007 " sin + 0B3p§ ' sin %} sin pyo

+ 306105¢ ! cos Be-bm + 20602 " cos %

(o= 1) €1
(e—Dm

+ 053p8 " cos + 010p2 ' cos

sin po7o,

4o—1 3o0—1
{4@;}397] cos % + 30B1p3¢ " cos M

20—1 (20-1) (0— 1)”}
2

+ 810p% 'sin

+2002p" " cos Tﬂ + 0B3pg " cos sin poyo
* [49,03‘“ sin B2 DT 4 g0, et sin P2 1T

205" s @ + 0Byl sin (QQI)Wl €0 P00
+30q1p5° ' sin Be—Dr 0602 L sin (20-D)m

7r
2
-1 -1
o= m %T — 010p% ' cos o= Dr 5 I sin poyo
(o—)m

+ dr0pf ™ sin === cos po,

+ 03pg " sin

(27)
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3om oT .
Z = (Pég cos 2pm + 5lﬂgg cos -~ + ﬁzﬁgg COS o7 + ,53/’57 + 54) YoPo SIN PoYo
. 30 - 397r . us
- (ng sin 207 + By pg¢ sin 5 + Bapp sin or + 53/’57) Y00 COS PoYo,

: 3om T
Zy=— (Pég cos 2o + 51#39 €08 % + 52,0(2)@ COS o7 + Bsﬂg% + 54) “YoPo COS PoYo

. . 3om R o .
+ (Péﬂ’ sin 207 + B1pg? sin SN + Bapr®sin o + ﬁspg?) YoPo S10 PoYo-

(30)
Lemma 3.2. If s(7) = a1(7) +iaa(y) is the root of (17) near v = ~yo such that ay (o) =
0, a2(70) = po, then Re [j—;] > 0.
=70:p=p0
Proof By virtue of (17), one derives
. . ds
(40s*7t 4 30B,5%07 + 208,527 + Qﬁgsg’l)e“/d—é
s [ 5 4o 30 20 0
+e H’YJFS (8 + B157 + Bas™ + B3s° + Ba)
30—1 20—1 _1yds i ds _
+ (3051877 + 206877 + 05382 )— + §108° " —e™
dy dy
5 5) (G18%+85) = 0 (31)
—|—7+s s ) = 0.
dy / 1 2
It follows from (31) that
ds o S_1 (32)
dry Sz s
where
S = ¢ (40s" ! + 306157 + 200,5" " + 0Bss )
+ (30618%07 + 20625271 + 063597) 4 61059 e, (33)
Z = 7’}/68’)’8(549 -+ [7)] S3g + ﬁ232g -+ [7)38'9 -+ ﬁ4) -+ 8(61 s -+ (52)
Then . .
ds\ S\
= = — 4
Re ((m) Re (Z) (34)
Thus .
ds\ S121+ 852,
|(7) ] R o
Y=0,p=p0
Applying (G4), we have
ds\ ™
R — > 0. 36
‘ (dv) } (36)
Y=70,P=P0
The proof of Lemma 3.2 finishes. ]

Utilizing the investigation above, the following assertion is derived.

Theorem 3.1. Under the assumptions (G1)-(G4), the positive equilibrium point Wi (w1,

Wt , Wast, Wast) Of system (3) is locally asymptotically stable if v falls into the range
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[0,70) and a Hopf bifurcation will take place near Ws(wiat, Wawt, Waks, Wawy) if 7 passes
the critical value 7.

Remark 3.1. In 2013, Wu and Zhang [8] probed deeply into the bifurcation issue for
integer-order delayed coupled Oregonator model, they are not concerned with the fractional-
order situation. In this current study, we build a new fractional-order delayed coupled
Oregonator model which can effectively characterize memory peculiarity and hereditary
influence for diverse chemical compositions. A novel delay-independent stability and Hopf
bifurcation condition is set up via laplace transform, stability and Hopf bifurcation theory,
which are different from that in integer-order version in [8]. Based on this viewpoint,
We strongly believe that the established results of this study on the stability and Hopf
bifurcation problem for the fractional-order delayed coupled Oregonator model completely

innovative and complement the research of [8] to some extent.

4 Matlab simulation results

Consider the following fractional-order coupled Oregonator model:

dw?(t w —v
€ cgl;g ) =w (1 —wy) — gws : T + A(ws — wy),
dws(t
i};i ) = w; — wg + Jws(t — ),
dws(t) a ) WUy ) (37)
€ gﬁ = W3 w3 gw4w3 T wy — ws),
dw3(t
d;g ) = wy — wy + Jwy(t — ),

where € = 0.01,¢9 = 0.8,v = 0.0007, 9 = 2.4. One can easily derive that the coupled Oreg-
onator model (37) possesses the unique positive equilibrium point (0.7651,0.2250,0.7651,
0.2250). Fix o = 0.56. Utilizing Matlab, one can derive py = 0.8875 and vy = 0.12.
The assumptions (Q1)-(Q4) of Theorem 3.1 are fulfilled. In order to verify the stabil-
ity of the positive equilibrium point (0.7651,0.2250,0.7651,0.2250) and bifurcation phe-
nomenon for the coupled Oregonator model (37), we give both unequal delay numbers.
Let v = 0.10 < 79 = 0.12, we obtain the matlab simulation results which are displayed
in Figure 1. From Figure 1, one can clearly see that the positive equilibrium point
(0.7651,0.2250,0.7651, 0.2250) keeps locally asymptotically stable level. Figure 1 con-
tains 16 subfigures. Subfigure 1 in Figure 1 implies that with the increase of time ¢, the
variable w; — 0.7651. Subfigures 2-4 in Figure 1 imply that with the increase of time ¢,

the variables wy — 0.2250, w3 — 0.7651, wy — 0.2250. Subfigures 5-8 in Figure 1 reveal
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the quantitative relation of w; and we, wy and wy, we and ws, wz and wy, respectively.
Subfigures 9-12 in Figure 1 display the change relation of t-w;-ws, t-wi-wy, t-we-ws and
t-ws-wy, respectively. Subfigures 13-16 in Figure 1 shows the change relation of wy-wy-ws,
Wi-Wa-wy, wi-ws-wy and wo-ws-wy, respectively. Let v = 0.21 > 79 = 0.12, we obtain
the matlab simulation results which are displayed in Figure 2. From Figure 2, one can
clearly see that Hopf bifurcation occurs in the vicinity of the positive equilibrium point
(0.7651,0.2250,0.7651, 0.2250). Figure 2 contains 16 subfigures. Subfigure 1 in Figure 2
implies that with the increase of time ¢, the variable w; will remain a periodic oscilla-
tion around the value 0.7651. Subfigures 2-4 in Figure 2 imply that with the increase
of time ¢, the variables ws, w3, w, will remain a periodic oscillation around the values
0.2250,0.7651,0.2250, respectively. Subfigures 5-8 in Figure 2 reveal the quantitative re-
lation of wy and wy, wy and wy, wy and ws, ws and wy, respectively. Subfigures 9-12 in
Figure 2 display the change relation of t-wq-ws, t-w1-wy, t-we-w3 and t-ws-wy, respectively.
Subfigures 13-16 in Figure 2 shows the change relation of wi-ws-ws, wi-we-wy, wi-ws-wy
and wy-ws-wy, respectively. The relation of g, pg and 7 is presented. Additionally, the

bifurcation diagrams are presented to verify the bifurcation value is 0.12 (see Figures 3-6).
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Table 1. The magnitude relation for g, pg and 7y of coupled Oregonator model (37).

Q Po "0
0.12 1.4033 0.006
0.23 1.2356 0.008
0.32 1.1209 0.009
0.45 0.9123 0.010
0.56 0.8875 0.120
0.64 0.7534 0.140
0.76 0.6901 0.152
0.82 0.5823 0.167
0.91 0.4805 0.213

0.767
0.7665

0.766 -

0.765
0.7645
0.764

0.7635
0

Figure 3. Bifurcation diagram for coupled Oregonator model (37): y-w;.

0.226

0.2258

0.2256 -

0.2251
0.2248

0.2246
0

Figure 4. Bifurcation diagram for coupled Oregonator model (37): ~y-ws.
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0.767

0.7665

0.766 -

0.765

0.7645

0.764

0.7635
0

Figure 5. Bifurcation diagram for coupled Oregonator model (37): v-ws.

0.226

0.2258 -

0.2256 -

0.35

Figure 6. Bifurcation diagram for coupled Oregonator model (37): ~y-wj.

5 Conclusions

Fractional-order differential equation has displayed tremendous application prospect in
chemistry. Based on the previous studies, we establish a new fractional-order coupled
Oregonator model. By virtue of laplace transform, the characteristic equation of the
established fractional-order coupled Oregonator model is derived. Taking advantage of
the stability criteria and bifurcation knowledge on fractional-order dynamical system, a
new sufficient condition that ensures the stability and the emergence of Hopf bifurcation
for the established fractional-order coupled Oregonator model is presented. The research
shows that time delay acts as a significant role in describing the stability and bifurcation
behavior in the involved fractional-order coupled Oregonator model. The research fruits

tell us that we can control the time delay in a suitable range of value to remain the stability
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of the coupled Oregonator system. By adjusting the value of time delay, we can postpone
or advance the onset of Hopf bifurcation for the coupled Oregonator system. The obtained
results can be applied to control the concentrations of the chemical compositions H BrOs

and Ce(IV).
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