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Abstract 

Taking into account an ideal mixture and a well-stirred reactor, some dynamical 

aspects for a 3-dimensional chaotic system are carried out. Positivity and 

boundedness of solutions are discussed.  Equilibria are investigated and method of 

linearization is implemented for asymptotic behavior of system about these 

equilibria. Lyapunov function is constructed to prove the global stability of positive 

equilibrium point. Moreover, it is proved that system undergoes Hopf bifurcation 

about its interior (positive) equilibrium. An explicit criterion of Hopf bifurcation 

without finding the eigenvalues is used for the existence of Hopf bifurcation. 

Numerical simulation is presented for the illustration of theoretical discussion. 

Lyapunov dimension is approximated and maximum Lyapunov characteristic 

exponents are plotted to ensure the chaotic behavior of the model. 

 

1 Introduction 

There is an increasing concern in the microscopic theoretical investigation and numerical 

simulation of fluctuating behavior originating in the nonlinear dynamical systems operating in 

the situations far from equilibrium. In addition to the basic appeal of how coordinated 

macroscopic behavior can be generated by molecular motion at the molecular level, such 

approaches provide the possibility to test theoretical hypotheses on phenomenological 

equations, and even direct experimental studies to deal with accessible situations. 

The chemical dynamics in a well-ignited reactor provides the clearest example of a complex 

imbalance, as it can lead to deterministic chaos with internal dynamics rather than local degrees 
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of freedom. Since this form of chaos is acceptable for a small number of macro variables, one 

can reasonably expect it to form an ideal case of study and to understand the transition from 

microscopic to macroscopic behavior [1]. 

In order to investigate some dynamical behavior for the microscopic aspects of a system 

demonstrating chaotic and bifurcating nature at the macroscopic level, it is necessary to take 

into account model systems in which the balance equations are transformable to an explicit 

chemical mechanism possessing an accurately stated microscopic counterpart. In the systems 

related to chemical reactions such requirements can be achieved by considering the chemical 

reactions obeying mass action kinetics. For this, the following chemical reactions model is 

considered [1-2]: 

 

A� + X          ���⎯⎯⎯

���   �⎯⎯⎯      2 X, X + Y          ���⎯⎯⎯


���   �⎯⎯⎯      2 Y, 
                                           A� + Y          ���⎯⎯⎯


���   �⎯⎯⎯      A� , X + Z          ���⎯⎯⎯

���   �⎯⎯⎯      A�,                                       (1) 

A� + Z         ���⎯⎯

���   �⎯      2Z . 

In model (1) two autocatalytic steps concerning ingredients �  and � are linked via three other 

steps consisting of � and �, and the third ingredient �. On the other hand, the initial product 

concentrations, that is, A�, A� and A� and the final product concentrations, that is, A� and A� 

are kept fixed. Moreover, �±�, �±�, �±�, �±� and �±� are rate constants. Taking into account 

the simplicity of model (1), one may assume that �!� = �!� = �!� = 0. Furthermore, we 

assume that A� and A� are continuously eliminated from the reactor. Next, taking into account 

a well-stirred reactor and an ideal mixture, the rate equations for model (1) are given as follows: 

                                            

⎩⎪⎨
⎪⎧ ()(* = +, − . ,�  − ,/ − ,0, (1(* = , / − 2 /,                       (3(* = 4 0 − , 0 − 5 0�,                                                               (2) 

where + = ��6A�7, . = �!�, 2 = ��6A�7, 4 = ��6A�7, and 5 = �!�. Moreover, it is also 

assumed that �� = �� = 1. All parametric values related to system (2) are positive, and the 

initial conditions associated to system (2) are given as follows: 

                                                     9,:0; = ,< > 0,/:0; = /< > 0,0:0; = 0< > 0.                                                                 (3) 
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Huang [2] studied chaotic behavior of system with some numerical simulation. Furthermore, it 

is also interesting to discuss stability, bifurcation analysis, discretization, and chaos control for 

such chemical reaction models.  Din et al. [3] considered the 2-dimensional rate equations 

related to chlorine dioxide– iodine–malonic acid reaction system, and studied discretization, 

stability, various types of bifurcation, and chaos control. In [4], taking into account two discrete 

versions of glycolysis model, bifurcating and chaotic behaviors have been discussed. An 

exponential type chaos control methodology was proposed in [5] for discrete-time Brusselator 

models. Din and Haider [6] studied discretization, stability, flip bifurcation, Hopf bifurcation, 

and chaos control for Schnakenberg model. Kol’tsov [7] reported a four-step chemical reaction 

model. Moreover, chaotic behavior of the model is confirmed through numerical simulation. 

Vikhansky and Cox [8] investigated two chemical reduced models in a laminar chaotic flow. 

Numerical methods are implemented to explore the chaotic dynamics of the models. Bodale 

and Oancea [9] studied synchronization and chaos control for Willamowski–Rössler type 

chemical reaction model. Poland [10] studied catalysis and chaos for a cooperative chemical 

reaction model for the Lorenz equations. Monwanou et al. [11] discussed reactions between 

four molecules for an amplitude-modulated excitation on the nonlinear dynamics. Furthermore, 

analysis of steady-states, Hopf bifurcation and routes to chaos have been studied. Cramer and 

Booksh [12] reviewed some concepts of chaos theory in chemometrics and chemistry. Kim and 

Chang [13] reported a chaotic model incorporating measurable state variables less than the 

degrees of freedom of the model and the system was identified with the artificial neural 

networks. 

Taking into account previous investigation related to system (2), it is worthwhile to point out 

that in [1] the master rate equations were presented. Moreover, chaotic behavior of proposed 

model was illustrated through numerical simulation. On the other hand, entropy method and 

numerical simulation were carried out in [2] to ensure the chaotic behavior of system (2). 

According to the best of our knowledge, global stability of system (2) and parametric conditions 

for the occurrence of Hopf bifurcation about its coexistence is remaining a topic for further 

investigation.  

The novelty of present manuscript is emphasized as follows: 

 The positivity and boundedness of solutions for system (2) are carried out. Existence of 

constant solutions (equilibria) is studied, and local asymptotic behavior of system (2) is 

investigated about these equilibria. 

 Lyapunov function is constructed to show that system (2) is globally asymptotically 

stable about its coexistence. 
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 An efficient and explicit criterion is implemented to show that system (2) undergoes 

Hopf bifurcation around its unique positive steady-state. 

 Theoretical investigation is well illustrated through numerical simulation including 

bifurcation diagrams, phase portraits, computation of Lyapunov dimension, depiction 

of Lyapunov characteristic exponents, and validation of global stability of positive 

equilibrium. 

 

The rest of the discussion for this paper is summarized as follows. The positivity of solutions 

for system (2) and their boundedness are discussed in Section 2.  In Section 3, we explore 

existence of steady-states for system (2), and local asymptotic stability analysis of system about 

these equilibria is also carried out. In Section 4, global stability of positive equilibrium point is 

carried out. In Section 5, bifurcation theory is used to study the Hopf bifurcation for the system 

(2) about its interior (positive) equilibrium. Some numerical simulation is presented in Section 

6 for the illustration of theoretical discussion. 

 

2 Positivity and boundedness of solutions 

In this section, we discuss positivity of solutions and boundedness of the solutions for system 

(2). Taking into account system (2), we consider 

� = >,/0?, @:�; = A+, − . ,�  − ,/ − ,0, / − 2 /4 0 − , 0 − 5 0� B. 

Then, it is easy to see that @ has continuous partial derivatives on ℝ�, and therefore it is locally 

Lipschitz in ℝ�. Consequently, system (2) has unique solution. Next, considering first equation 

of the system (2) and assume that (3) holds true, then it follows that: 

,:D; = ,:0; E,F GH:+ − . ,:I; − /:I; − 0:I;;4I*
< J > 0. 

Similarly, from second and third equations of the system (2), and (3), it follows that: 

/:D; = /:0; E,F GH: ,:I; − 2;4I*
< J > 0, 

and 

0:D; = 0:0; E,F GH:4 − ,:I; −  5 0:I;;4I*
< J > 0. 
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Therefore, assuming that the initial conditions satisfy ,:0; > 0, /:0; > 0 and 0:0; > 0, one 

has ,:D; > 0, /:D; > 0 and 0:D; > 0 for all D > 0, where :,:D;, /:D;, 0:D;; ≡:,:D, ,<;, /:D, /<;, 0:D, 0<;; be any arbitrary solution of system (2) subject to initial conditions 

given in (3). 

Next, the following Theorem shows that any arbitrary solution :,:D;, /:D;, 0:D;; with initial 

conditions (3) is ultimately bounded. 

Theorem 1. Assume that (3) holds true, then every positive solution of system (2) is ultimately 

bounded. 

Proof. Keeping in mind the positivity of solutions and considering the first equation of the 

system (2), we have 
()(* = +, − . ,�  − ,/ − ,0 ≤ + , −  . ,�. Then, standard comparison 

principle yields that lim*→Q IRF ,:D; ≤ S�, where S�: = U+, V,<, WXY. Similarly, it follows from 

third equation of the system (2) that 
(3(* = 4 0 − , 0 − 5 0� ≤ 4 0 − 5 0�, and again standard 

comparison result gives that lim*→Q IRF 0:D; ≤ S�, where S�: = U+, V0<, (ZY. Next, we define 

[:D;: = ,:D; + /:D; + 0:D;, then it follows that:  4[4D = 4,4D + 4/4D + 404D 

                                                    = +, − . ,�  − 2 ,0 − 2 / + 4 0 − 5 0�           ≤ + , − 2/ + 4 0 

                                                                 = −+ , − 2 / − 4 0 + 2+, + 240 

                                                                 ≤ −\:, + / + 0; + S, 

where \: = U]^_+, 2, 4` and S: = 2+ S� + 2 4 S�. Consequently, the differential inequality (a(* + \ [ ≤ S yields that [:D; ≤ S/\ +  [:0; E!c *. Thus, one has lim*→Q IRF [:D; ≤ S/\, 

and consequently [:D; = :, + / + 0;:D; is bounded. Therefore, ,:D;, /:D; and 0:D; are 

ultimately bounded, and all solutions of the system (2) enter the region Ω defined by: Ω: = _:,:D;, /:D;, 0:D;; ∈ ℝf� : ,:D; + /:D; + 0:D; ≤ S/\`. 
 

3 Existence of equilibria and stability 

In this section, we start our discussion with the existence of equilibria for system (2). For this, 

the equilibria of system (2) solve the following system: 

                                       g +, − . ,�  − ,/ − ,0 = 0, , / − 2 / = 0,                       4 0 − , 0 − 5 0� = 0.                                                                      (4) 
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Then, it is easy to see that non-negative solutions of system (4) or equivalently equilibria of 

system (2) are given as follows: h = :0,0,0; a trivial equilibrium, i1 = j0,0, (Zk, i2 =
jWX , 0,0k, i3 = :2, + − .2, 0;, and i4 = j(!WZ�!XZ , 0, W!X(�!XZk  are semi-trivial equilibria, and n =
j2, + − .2 + o!(Z , (!oZ k be interior equilibrium. Moreover, i3 exists if + > .2, i4 exists if 0 <
. < �Z , + 5 < 4 < WX or . > �Z , WX < 4 < + 5. On the other hand, n is unique positive 

equilibrium of system if 2 < 4, and 4 + 5 . 2 < 5 + + 2. 

Moreover, for :+, ., 2; ∈ 60,10  7�, 4 = 8, and 5 = 5.5 the 3-dimensional existence region for 

positive equilibrium of system (2) is shown in Fig. 1. 

 

Figure 1: Coexistence region for system (2). 

 

To see the qualitative behaviors of system (2) about its trivial and semi-trivial equilibria, the 

Jacobian matrices about these equilibria are given as follows: 

s:h; = A+ 0 00 −. 00 0 4B, s:i1; = t+ − (Z 0 00 −2 0− (Z 0 −4u, J(E2)= ⎣⎢
⎢⎡−+ − WX − WX0 WX − 2 00 0 4 − WX⎦⎥

⎥⎤, 

s:i3; = A −.2 −2 −2+ − .2 0 00 0 4 − 2B, and s:i4; =
⎣⎢⎢
⎢⎡X:(!WZ;XZ!� (!WZXZ!� (!WZXZ!�0 (!WZ�!XZ − 2 0W!X(XZ!� 0 :W!X(;ZXZ!� ⎦⎥⎥

⎥⎤
. 

Then, it is easy to see that +, −. and 4 are eigenvalues of s:h;, and thus trivial equilibrium is 

unstable. Similarly, + − (Z, −2 and −4 are eigenvalues of s:i1;, which shows that i1 is a sink 

if 5 + < 4 and it is unstable if 5 + > 4. On the other hand, −+, W!XoX , X (!WX  are eigenvalues for 
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Jacobian s:i2;, and consequently i2 is a sink if . 4 < + < . 2. Moreover, i2 is unstable if + > . 2 or . 4 > +. Furthermore, the characteristic polynomial for s:i3; is given as follows: n:|; = :| − 4 + 2;:|� + . 2 | + + 2 − .2�;, 
showing that i3 is a sink if  4 < 2 and it is unstable if 4 > 2. Similarly, the characteristic 

polynomial for s:i4; is given as follows: 

}:|; = ~| + 2 − 4 − +51 − .5� ~|� − ~.4 + +5 − .:+ + 4;5.5 − 1 �  | + :+ − .4;:4 − +5;.5 − 1 �. 
Then, i4 is a sink if  

(!WZ�!XZ < 2, and it is unstable if  
(!WZ�!XZ > 2. 

Next, we assume that 2 < 4 and 4 + 5 . 2 < 5 + + 2, then Jacobian matrix of system (2) about 

unique positive equilibrium n is given by: 

s:n; =
⎣⎢⎢
⎢⎡ −.2 −2 −2+ − .2 + 2 − 45 0 02 − 45 0 2 − 4⎦⎥⎥

⎥⎤. 
Simple computation yields the following characteristic polynomial for the Jacobian matrix s:n;: 

         @:|; = |� + :2:. − 1; + 4;|� + jo��o!�(fWZfZX:(!�o;�Z k | + o:o!(;:(!WZfo:XZ!�;;Z .   (5) 

Taking into account the Routh-Hurwitz criterion [14], positive equilibrium of system (2) is 

asymptotically stable if the following conditions are satisfied: 

�2 < . 2 + 4,                                              2:4 + . 2; < + 5 + 22 + . 4,   :4 − 2;:2 :2 . − 1; + 4; < 5 .:2:+ + 2 − 2.2; + 2 4:. − 2; + 4�;.                               (6) 

In order to visualize the 3-dimensional stability region (feasible region of (6)) of system (2) 

about its positive equilibrium Fig. 2 is presented. 

 

Figure 2: Stability region of (2) about n at 4 = 9.5, 5 = 7.8 
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4 Global stability analysis 

In this section, we investigate global stability analysis of system (2) about its positive 

equilibrium n:,∗, /∗, 0∗; = j2, + − .2 + o!(Z , (!oZ k. For this, we assume that 2 < 4, and 4 +5 . 2 < 5 + + 2. Moreover, we consider the following Lyapunov function: 

�:,, /, 0; = j, − ,∗ − �^ ,,∗k + ~/ − /∗ − �^ //∗� + j0 − 0∗ − �^ 00∗k. 
Then, it is easy to see that �:,∗, /∗, 0∗; = 0, and �:,, /, 0; > 0 for all  :,, /, 0; ∈ Ω = _:,, /, 0; ∈ ℝf� : ,:D; + /:D; + 0:D; ≤ S/\`. 
Taking into account system (2), and differentiation of � with respect to D yields that 

 4 �4 D = ~, − ,∗, � 4 ,4 D + ~/ − /∗/ � 4 /4 D + ~0 − 0∗0 � 4 04 D                                          
                         = :, − ,∗;:+ − . , − / − 0; + :/ − /∗;:, − ,∗; + :0 − 0∗;:4 −  , − 5 0;. 

After some simple calculation and simplification, one has that: :+ − . , − / − 0; = :/∗ − / − .:, − ,∗; + 0∗ − 0;, 
and 

:4 −  , − 5 0; = 5 ~0∗ − 0 − , − ,∗5 �. 
Consequently, we have the following expression for 

( �( * : 4 �4 D = :, − ,∗;:/∗ − / − .:, − ,∗; + 0∗ − 0; + :/ − /∗;:, − ,∗;
+ :0 − 0∗;5 ~0∗ − 0 − , − ,∗5 � 

= −.�, − ,∗�2 − 5�0 − 0∗�2 − 2�, − ,∗��0 − 0∗�. 
Then, it follows that 

( �( * < 0 in the region � defined by: � = _:,, /, 0; ∈ ℝf� : , > ,∗ +^4 0 > 0∗ �� , < ,∗ +^4 0 < 0∗ `. 
Next, the following Theorem gives the conditions for global asymptotic stability of system (2) 

about its positive equilibrium point. 

Theorem 2. Assume that 2 < 4,  4 + 5 . 2 < 5 + + 2, and conditions (6) hold true, then 

positive equilibrium n is globally asymptotically stable in the region S defined by: � = _:,, /, 0; ∈ ℝf� : , > ,∗ +^4 0 > 0∗ �� , < ,∗ +^4 0 < 0∗ `. 
 



359

5 Explicit criterion of Hopf bifurcation 

In this section, we investigate that system (2) undergoes Hopf bifurcation around its positive 

equilibrium. For this, an explicit criterion for existence of Hopf bifurcation without finding the 

eigenvalues of Jacobian matrix is implemented. First, we need the following Theorem [15]: 

Theorem 3. Considering the following ^-dimensional autonomous system of differential 

equations: 

                                    
( �( * = @:�, �;,                                                                                       (7) 

where , ∈ ℝ�, � ∈ ℝ, and @ ∈ �Q. Moreover, assume that :�∗, �∗; be an equilibrium point 

for system (7), and n:|, �; is characteristic polynomial of the Jacobian matrix of system (7) 

given as follows: 

                              n:|, �; = +�:�; |� + +�!�:�; |�!� + ⋯ + +�:�; | + +<:�; .                   (8)                               

Then, system (7) undergoes Hopf bifurcation about :�∗, �∗; if the following conditions hold 

true: 

(i) +<:�∗; > 0, ��:�∗; > 0, ⋯, ��!�:�∗; > 0, ��!�:�∗; = 0, 

(ii) 
( ����:�∗;( � ≠ 0, 

where 

��:�; = 4ED � +�:�; ⋯ 0⋮ ⋱ ⋮+��!�:�; ⋯ +�:�; �. 
Lemma 1. For ^ = 3, conditions (i) and (ii) reduce to the following: +<:�∗; > 0, ��:�∗; = +�:�∗; > 0, ��:�∗; = +�:�∗; +�:�∗; − +<:�∗; = 0, 

and 4 ��:�∗;4 � ≠ 0. 
Taking into account system (2) and its characteristic polynomial (5), one may take 5 as 

bifurcation parameter, then a simple application of Lemma 1 gives the following result related 

to existence of Hopf bifurcation in system (2) about its positive equilibrium. 

Lemma 2. Assume that 2 < 4 and 4 + 5 . 2 < 5 + + 2, then system (2) undergoes Hopf 

bifurcation about its positive equilibrium j2, + − .2 + o!(Z , (!oZ k as 5 varies in a small 

neighborhood of 5∗ = �f ��������:�������;�:����;�����X , if the following hold true: 
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           �2 < . 2 + 4,                                              2:4 + . 2; < + 5 + 22 + . 4,   :4 − 2;:2 :2 . − 1; + 4; = 5 .:2:+ + 2 − 2.2; + 2 4:. − 2; + 4�;.                         (9)       

and 

                                      
X�o:o:Wfo!�Xo;f:!�fX;o(f(�;�:o!(;::!�f�X;of(; ≠ 0.                                                    (10) 

 

6 Numerical simulation and discussion 

This section is dedicated to verification of our theoretical discussion. For this some parametric 

values are chosen for the system (2) for illustration of its dynamical and chaotic behavior. 

Mainly, we discuss stability analysis and bifurcating behavior of system (2) about its positive 

equilibrium. Mathematica packages are used for various plots, phase portraits, bifurcation 

diagrams, Lyapunov dimension and maximum Lyapunov characteristic exponents related to 

system (2). 

First, we select the parametric values for the system (2) as follows: + = 2.2, . = 0.3, 2 = 1.3, 4 = 3.2, and 5 = 2.65, then system (2) has unique positive equilibrium given by :1.3, 1.093, 0.71698;. Moreover, system (2) is asymptotically stable about this equilibrium, 

and plots of state variables and 3-dimensional phase portrait are depicted in Fig. 3, Fig. 4, Fig. 

5, and Fig. 6. 

 

 

Figure 3: Plot of ,:D; for system (2) 
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Figure 4: Plot of /:D; for system (2) 

 

 

 

Figure 5: Plot for 0:D; of system (2) 

 

Figure 6: Phase portrait for system (2) 
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In order to see the bifurcating behavior of system (2), we take  + = 2.2, . = 0.3, 2 = 1.3, and 4 = 3.2. Considering 5 as bifurcation parameter such that 5 ∈ 62, 37, then system (2) 

undergoes Hopf bifurcation about 5∗ = 2.53182. On the other hand, for the parametric values   + = 2.2, . = 0.3, 2 = 1.3, 4 = 3.2, and 5 = 2.53182, the positive equilibrium of system (2) 

is given by :1.3, 1.05955, 0.750448;. For these parametric values, conditions (9) and (10) are 

satisfied as follows: 1.3 = 2 < .2 + 4 = 3.59, 7.18 = 2:4 + . 2; < + 5 + 22 + . 4 =9.13008, 5.09694 = :4 − 2;:2 :2 . − 1; + 4; = 5 .:2:+ + 2 − 2.2; + 2 4:. − 2; +
4�; = 5.09694, and 

X�o:o:Wfo!�Xo;f:!�fX;o(f(�;�:o!(;::!�f�X;of(; = 1.032679315003928 ≠ 0.  

On the other hand, bifurcation diagrams for system (2) are depicted in Fig. 7, Fig. 8 and Fig. 9. 

 

 

Figure 7: Bifurcation diagram of ,:D; for system (2) 

 

Figure 8: Bifurcation diagram of /:D; for system (2) 
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Figure 9: Bifurcation diagram of 0:D; for system (2) 

In order to see the chaotic behavior of the system (2) in the chaotic region 62, 2.531827, some 

phase portraits of this system must be depicted in chaotic region. For this, some 3-dimensional 

phase portraits of system (2) are shown in Fig. 10, Fig. 11, Fig. 12, and Fig. 13. 

 

Figure 10: Phase portrait at 5 = 2.53182 

 

 

Figure 11: Phase portrait at 5 = 2.4 
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Figure 12: Phase portrait at 5 = 2.2 

 

Figure 13: Phase portrait at 5 = 2 

Next, we investigate Lyapunov dimension for the system (2). The concept of Lyapunov 

dimension was first presented by Kaplan and Yorke [16]. The Lyapunov dimension is an 

approximation for Hausdorff dimension of strange attractors. Furthermore, it must be noted 

that an attractor with non-integer Hausdorff dimension is known as a strange attractor [17]. The 

numerical computation of Hausdorff dimension is a complex task and alternatively Lyapunov 

dimension is used widely for its approximation. Moreover, Lyapunov dimension is an upper 

bound for Hausdorff dimension. For an ^ dimensional autonomous dynamical system ,′ =¡:,;, the formula of Lyapunov dimension is given as follows: 

¢( = I + ∑ ¤¥¦¥§�|¤¦f�| , 



365

 where ¤¥ are Lyapunov exponents, and I is the largest value of ] for which ∑ ¤¥¦¥§� > 0. 

For the computation of Lyapunov dimension related to system (2), we take + = 2.2, . = 0.3, 2 = 1.3, 4 = 3.2, and 5 = 2 in system (2). For these parametric values, a 3-dimensional 

attractor of system (2) is depicted in Fig. 13. Moreover, applying Mathematica package we 

have the following Lyapunov exponents: ¤� = 0.0560005, ¤� = −0.044475 and ¤� =−2.310523399. Moreover, ¤� + ¤� = 0.01152535 > 0 implies that I = 2, therefore ¢( =2.004988. 

Moreover, the Lyapunov characteristic exponents (LCEs) related to these parametric values are 

depicted in Fig. 14. 

 

Figure 14: LCEs for system (2) at + = 2.2, . = 0.3, 2 = 1.3, 4 = 3.2, and 5 = 2. 
Finally, we check validity of global asymptotic stability of system (2) about its positive 

equilibrium by implementing numerical simulation. For this, we choose + = 2.2, . = 0.3, 2 =1.3, 4 = 3.2, and 5 = 3.1 in system (2). For these parametric values, system (2) has unique 

positive equilibrium given by n = :1.3, 1.1971, 0.6129;. Moreover, Jacobian matrix of system 

(2) has the following multipliers: ¤� = −0.0373934 + 1.1547228041], ¤� =−0.0373934 − 1.1547228041] and ¤� = −2.215213252492716 satisfying ©E :¤¥; < 0 for ] = 1,2,3. Therefore, n = :1.3, 1.1971, 0.6129; is locally asymptotically stable. In order to 

verify global stability of system (2) about n = :1.3, 1.1971, 0.6129;, initial conditions are kept 

away from the neighborhood of this equilibrium point. Indeed, in first case initial conditions 

are taken as :,< , /<, 0< ; = :40, 50, 60;, secondly initial conditions are taken as :,< , /<, 0< ; =:45, 55, 65;, thirdly we have taken :,< , /<, 0< ; = :50, 60, 70;, and fourthly these initial 

conditions are chosen as :,< , /<, 0< ; = :60, 70, 80;. In all these cases, the 3-dimensional 
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phase portraits of system (2) are depicted in Fig. 15. All four trajectories starting from different 

initial conditions far away from neighborhood of equilibrium point are eventually converging 

to equilibrium solution of the system. Furthermore, the first portrait in first row is starting with :,< , /<, 0< ; = :40, 50, 60;, the second phase portrait in first row is starting with :,< , /<, 0< ; = :45, 55, 65;, the first phase portrait in second row is starting with :,< , /<, 0< ; = :50, 60, 70;, and the second phase portrait in second row is starting with initial 

conditions :,< , /<, 0< ; = :60, 70, 80;. Consequently, Fig. 15 shows that positive equilibrium 

is globally asymptotically stable.   

 

 

Figure 15: Phase portraits of system (2) with + = 2.2, . = 0.3, 2 = 1.3, 4 = 3.2, 5 = 3.1 

and various initial conditions for 40 ≤ D ≤ 200. 
 

Conclusion 

Some dynamical aspects for a 3-dimesional autonomous chemical reaction system are studied. 

It is proved that system has six chemically feasible equilibria including a unique positive 

equilibrium. Local dynamical behavior of the system about these steady states is discussed. 

Particularly, Routh-Hurwitz criterion is implemented to obtain the parametric conditions for 

asymptotic stability of the system about its positive equilibrium. Moreover, an efficient 

criterion without using the eigenvalue is applied for existence of Hopf bifurcation in the 
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chemical reaction model about is positive equilibrium. Taking into account 5 as bifurcation 

parameter, the following Hopf bifurcation curve is obtained: _: α, a, b, c, d; ∈ ℝf� : 2 < . 2 + 4, 2:4 + . 2; < + 5 + 22 + . 4, �� = 0, �� ≠ 0 `, 
where �� = :4 − 2;:2 :2 . − 1; + 4; − 5 .:2:+ + 2 − 2.2; + 2 4:. − 2; + 4�;, 
and 

�� = .�2:2:+ + 2 − 2.2; + :−2 + .;24 + 4�;�:2 − 4;::−1 + 2.;2 + 4; . 
Moreover, under the conditions of asymptotic stability n is globally asymptotically stable in 

the region S defined by: � = _:,, /, 0; ∈ ℝf� : , > ,∗ +^4 0 > 0∗ �� , < ,∗ +^4 0 < 0∗ `. 
Bifurcation diagrams related to Hopf bifurcation are depicted for illustration of theoretical 

discussion (cf. Fig. 7, Fig. 8 and Fig. 9). Chaotic behavior of the system is explored by 

computing Lyapunov dimension and depicting the maximum Lyapunov characteristic 

exponents. Arguing as in [1], such chemical reactions mainly take place in thermodynamics 

where chaotic behavior can be observed up to certain volume size of system. Furthermore, our 

investigation reveals that chaotic and fluctuating behaviors can be observed up to certain range 

of parametric values, and on the other hand, global stability is also observed for such 

microscopic chemical reactions. This topic certainly deserves more attention in the future, 

especially in the context of dealing with spatiotemporal chaotic behavior and the evolution of 

turbulence [1]. 

Further rich dynamical behavior and chaos control can be discussed with implementation of 

some appropriate discretization of the system. Keeping in mind some recent dynamical study 

of discrete time models (cf. [18-23]), our future work will be focused on dynamical study of 

some discrete counterpart of this chemical reaction system.  

For some other recent chemical reaction-based systems, neural network models, Hopf 

bifurcation and chaos control, we refer to [24-29] and references are therein. 

 

References 

[1] P. Geysermans, G. Nicolis, Thermodynamic fluctuations and chemical chaos in a well-

stirred reactor: A master equation analysis, J. Chem. Phys. 99 (1993) 8964–8969. 

[2] Y. Huang, Chaoticity of some chemical attractors: a computer assisted proof, J. Math. 

Chem. 38 (2005) 107–117.  



368

[3] Q. Din, T. Donchev, D. Kolev, Stability, bifurcation analysis and chaos control in 

chlorine dioxide– iodine–malonic acid reaction, MATCH Commun. Math. Comput. 

Chem. 79 (2018) 577–606. 

[4] Q. Din, Bifurcation analysis and chaos control in discrete-time glycolysis models, J. 

Math. Chem. 56 (2018) 904–931. 

[5] Q. Din, A novel chaos control strategy for discrete-time Brusselator models, J. Math. 

Chem. 56 (2018) 3045–3075. 

[6] Q. Din, K. Haider, Discretization, bifurcation analysis and chaos control for 

Schnakenberg model, J. Math. Chem. 58 (2020) 1615–1649. 

[7] N. I. Kol’tsov, Chaotic oscillations in four-step chemical reaction, Russ. J. Phys. Chem. 

B 11 (2017) 1047–1048. 

[8] A. Vikhansky, S. M. Cox, Reduced models of chemical reaction in chaotic flows, Phys. 

Fluids 18 (2006) #037102. 

[9] I. Bodale, V. A. Oancea, Chaos control for Willamowski–Rössler model of chemical 

reactions, Chaos Soliton Fract. 78 (2015) 1–9. 

[10] D. Poland, Cooperative catalysis and chemical chaos: a chemical model for the Lorenz 

equations, Physica D 65 (1993) 86–99. 

[11] A. V. Monwanou, A. A. Koukpemedji, C. Ainamon, P. R. Nwagoum Tuwa, C. H. 

Miwadinou, J. B. Chabi Orou, Nonlinear dynamics in a chemical reaction under an 

amplitude-modulated excitation: hysteresis, vibrational resonance, multistability, and 

chaos, Complexity 2020 (2020) #8823458.  

[12] J. A. Cramer, K. S. Booksh, Chaos theory in chemistry and chemometrics: a review, J. 

Chemometrics 20 (2006) 447–454. 

[13] H. J. Kim, K. S. Chang, A method of model validation for chaotic chemical reaction 

systems based on neural network, Korean J. Chem. Eng. 18 (2001) 623–629. 

[14] W. G. Kelley, A. C. Peterson, The Theory of Differential Equations: Classical and 

Qualitative, Springer, New York, 2010.  

[15] W. M. Liu, Criterion of Hopf bifurcations without using eigenvalues, J. Math. Anal. 

Appl. 182 (1994) 250–256. 

[16] J. Kaplan, J. Yorke, Functional Differential Equations and Approximations of Fixed 

Points, Springer, Berlin, 1979. 

[17] D. Ruelle, F. Takens, On the nature of turbulence, Commun. Math. Phys. 20 (1971) 167–

192. 

[18] Q. Din, M. I. Khan, A discrete-time model for consumer-resource interaction with 

stability, bifurcation and chaos control, Qual. Theory Dyn. Syst. 20 (2021) 1–35. 



369

[19] Q. Din, W. Ishaque, M. A. Iqbal, U. Saeed, Modification of Nicholson-Bailey model 

under refuge effects with stability, bifurcation and chaos control, J. Vib. Control, in 

press, doi:10.1177/10775463211034021 . 

[20] S. S. Zhou, H. Jahanshahi, Q. Din, S. Bekiros, R. Alcaraz, M. O. Alassafi, F. E. Alsaadi, 

Y. M. Chu, Discrete-time macroeconomic system: Bifurcation analysis and 

synchronization using fuzzy-based activation feedback control, Chaos Soliton Fract. 

142 (2021) #110378. 

[21] Q. Din, N. Saleem, M. S. Shabbir, A class of discrete predator-prey interaction with 

bifurcation analysis and chaos control, Math. Model. Nat. Phenom. 15 (2020) #60. 

[22] Q. Din, Stability, bifurcation analysis and chaos control for a predator-prey system, J. 

Vib. Control 25 (2019) 612–626. 

[23] Q. Din, Complexity and chaos control in a discrete-time prey-predator model, Commun. 

Nonlin. Sci. Numer. Simul. 49 (2017) 113–134. 

[24] C. Xu, Y. Wu, Bifurcation and control of chaos in a chemical system, Appl. Math. 

Model. 39 (2015) 2295–2310. 

[25] C. Xu, Z. Liu, M. Liao, P. Li, Q. Xiao, S. Yuan, Fractional-order bidirectional associate 

memory (BAM) neural networks with multiple delays: The case of Hopf bifurcation, 

Math. Comput. Simul. 182 (2021) 471–494. 

[26] C. Xu, Z. Liu, L. Yao, C. Aouiti, Further exploration on bifurcation of fractional-order 

six-neuron bi-directional associative memory neural networks with multi-delays, Appl. 

Math. Comput. 410 (2021) #126458. 

[27] C. Xu, M. Liao, P. Li, S. Yuan, Impact of leakage delay on bifurcation in fractional-

order complex-valued neural networks, Chaos Soliton Fract. 142 (2021) #110535. 

[28] M. S. Khan, Bifurcation analysis of a discrete-time four-dimensional cubic autocatalator 

chemical reaction model with coupling through uncatalysed reactant, MATCH Commun. 

Math. Comput. Chem. 87 (2022) 415–439. 

[29] Q. Din, M. S. Shabir, M. A. Khan, A cubic autocatalator chemical reaction model with 

limit cycle analysis and consistency preserving discretization, MATCH Commun. Math. 

Comput. Chem. 87 (2022) 441–462.  

 


