
MATCH
Communications in Mathematical

and in Computer Chemistry

MATCH Commun. Math. Comput. Chem. 88 (2022) 321–350

ISSN: 0340–6253

doi: 10.46793/match.88-2.321L

Enumerating Possible Molecular Formulae in

Mass Spectrometry Using a Generating

Function Based Method

Sean Lia,∗, Björn Bohmana,b, Dylan Jayatilakaa

a School of Molecular Sciences, The University of Western Australia,

Perth
b Department of Plant Protection Biology, Swedish University of

Agricultural Sciences, Lomma

sean.li@research.uwa.edu.au, bjorn.bohman@slu.se,

dylan.jayatilaka@uwa.edu.au

(Received January 28, 2022)

Abstract

What molecular formulae correspond to a given mass M? Here,
we address this problem—the compomer problem of mass spectrom-
etry. We describe, implement, and test a straightforward and prac-
tical aufbau algorithm which leads to the molecular formula tree
from which all possible solutions may be obtained. The algorithm
was inspired from the generating function method used in combina-
torics, to count the number of compomers. The molecular formula
tree can be generated in linear time with regards to the number of
elements N , and in quadratic time with respect to the mass M ; and
we demonstrate that the memory requirements do not exceed that
of a standard laptop for the formula of a small molecule, say about
10 elements and a mass of 1000 Da. Nevertheless, we still discuss
and demonstrate how a range of heuristics can be used to mitigate
the memory requirements.

∗Corresponding author.

https://doi.org/10.46793/match.88-2.321L


322

1 Introduction

Mass spectrometry (MS), often paired with gas or liquid chromatogra-

phy, is a crucial tool in identifying compounds within complex chemical

mixtures. This technique plays an important role in metabolomics [22],

natural product chemistry [8], and environmental chemistry [24].

An important part of identifying unknown molecules using mass spec-

trometry is the assignment of a list of possible molecular formulae to a

given fragment in the mass spectrum. Our motivation in pursuing this

compomer problem is to advance the field of de novo structure determi-

nation for low-mass molecular compounds. The de novo problem of mass

spectrometry—that is, the determination of unknown chemical compounds

only from their mass spectra, without the use of spectral libraries—is a

general chemical problem within many specific applications.

We are particularly interested in chemical ecology, where one is often

trying to identify small-molecule semiochemicals. Moreover, several com-

mercial tandem mass spectrometers are now available, which allow the

collection of mass spectra not only for the target compound, but for its

fragments. With this extra information, and with further advances in in-

strumentation, de novo structure determination is a welcome possibility,

provided the compomer problem, among others, is addressed.

1.1 The compomer problem in more detail

Suppose the compound of interest may contain N possible elements,

E = [E1, E2, . . . , EN ] (1)

referred to here as the alphabet, each with an associated mass

m = [m1,m2, . . . ,mN ]. (2)

Then, if the compound has mass M , we can write

M =

N∑
i=1

nimi = n ·m, (3)



323

where ni, the multiplicity of element Ei, is a natural number equivalent to

the coefficient of a particular element within the molecular formula [17].

For example, in the alphabet E = [C,H,N,O] with corresponding masses

m = [12, 1, 14, 16] the molecular formula C2H4O2 with M = 60 may be

expressed as n = [2, 4, 0, 2].

The compomer problem is then this: for a given alphabet with masses

m, and a given totalM , compute all possible decompositions; multiplicities

n, which satisfies the above equation. For example, for M = 60 and with

the alphabet and masses as given before, one possible solution to the above

equation would be n = [2, 4, 0, 2], but another, not necessarily chemically

relevant solution, would be n = [0, 60, 0, 0], corresponding to H60.

A key observation which motivates the method in Section 2.2 is that

each decomposition (compomer) maps to an integer partition. For ex-

ample, the compomer n = [2, 4, 0, 2] corresponds the integer partition

60 = 12 + 12 + 1 + 1 + 1 + 1 + 16 + 16.

1.2 Previous work on the compomer problem

Since the compomer problem is well known, it is not surprising that there

has been much work on it, which will be covered in this section. From a

theoretical point of view, the time taken to list (enumerate) all compomers

increases monotonically with respect to the number of compomers, which

is approximately [5]

γ(M) ∼ MN−1

(N − 1)! ΠN
i=1mi

∼ MN−1 (4)

Thus, for larger masses and alphabets, or if the compomer problem needs

to be repeatedly solved, the time taken to list all chemical formula, or to

store all the solutions, quickly become prohibitive.

One way to increase the efficiency of solving the compomer problem is

to implement heuristics that eliminate fruitless partial solutions. A very

early example of this approach was implemented by Dromey and Foyster

[10]. These authors split the compomer problem into two subproblems:

for molecules involving the CHNOPS elements, solutions of the compomer



324

problem for the [N,O,P,S] elements with m1 ≤ M were first found in the

“naive” way, by iterating through all possible combinations of elements and

eliminating those with m1 > M . Then, for each compomer found in this

step, all solutions of the compomer problem for [C, H] for m2 = M −m1

were found. Thus, combining some compomer n1 with mass m1 with

any of the C, H compomers n2 yielded a compomer within the alphabet

[C,H,N,O,P,S] with mass equal to m1 +m2 = M .

Another heuristic involves expressing molecular formulae in terms of

formula components (e.g CH2), rather than in terms of the individual

constituent elements. This reduces the number of combinations that need

to be considered, and it even reduces the number of variables (i.e N). This

technique was first utilised by Furst and coworkers to enumerate molecular

formulae containing the elements C, H, N and O [13].

Later, Green and coworkers elaborated this technique introducing the

concept of low-mass moieties (LMMs) [14, 20]. LMMs are formula com-

ponents that have an integral mass of zero, such as CH4O−1 or C4O−3.

Given an arbitrary “seed” molecular formula of a fixed integral mass M ,

it is possible to generate more formulae possessing the same integral mass

by adding or subtracting LMMs from the original formula. Of course, one

has to check that the final result has non-negative multiplicities in order

to be a valid solution. The LMM approach could reduce N by up to 3,

and it was integrated into the CHOFIT software package [14].

It should be noted that the formula component methods still rely on

searching over all possible combinations of elements or LMMs. Further-

more, depending on the LMMs selected, these methods are not guaranteed

to list all valid molecular formulae for an arbitrary alphabet.

Böcker and coworkers have proposed and implemented a method which

can enumerate all valid compomers using ideas from dynamic program-

ming. In particular, an “extended residue table” for the alphabet is first

constructed using a round-robin algorithm. Then, all possible compomers

are found via a recursive divide-and-conquer approach, where the residue

table is used to truncate the search space by allowing masses which can-

not be decomposed with a given (sub)alphabet to be determined by table

lookup, terminating any “fruitless” subproblems early on [5, 7]. An ad-



325

vantage of this method is that the time taken per decomposition is inde-

pendent of M , however given that the number of decompositions increase

with respect to M , ultimately the time taken to list all formulae will still

increase.

Böcker and coworkers have also described an extension of their method

to high-resolution mass spectrometry (HR-MS) which involves multiplying

all masses by a constant factor and rounding to the nearest integer [6]. For

example, the mass vector for CHNOPS with masses to 5 decimal places can

be converted to integer form by multiplying by 105 to give m = [120000,

10078, 140031, 159949, 309738, 319721].

1.3 The use of chemical knowledge-based heuristics

Once one has a method that can produce a list of compomers, chemical

knowledge-based heuristics can also be used; in contrast to the mathe-

matical heuristics just discussed, these are rules which eliminate formulae

that are not chemically relevant. Notably, Kind and Fiehn have proposed

“seven golden rules” to filter out nonsensical molecular formula, by im-

posing standard valency rules, or the removal of molecular formulae which

have excessively high (or low) hydrogen-to-carbon-atom ratios, as well as

hetereoatom ratios [15]. In several very large databases, the correct molec-

ular formula was assigned with a probability of 98%, and for “truly novel

compounds” that were not present in the databases, the correct formula

was found in the first three hits with a probability of 61-81% [15].

One can also filter out unlikely molecular formula by comparing a sim-

ulation of the abundances of isotopomer peaks relative to the monoisotopic

which are then compared to experimentally observed ratios of peaks in or-

der to determine the formulae which are most consistent with the observed

mass fragments [27,28].

Finally, there has been some work on utilising tandem mass spectrome-

try (MSn) data to narrow down possible molecular formulae, as any daugh-

ter ions must logically be a subformula of the parent ion. See e.g [21] or [11]

for more information.



326

1.4 This work

In this paper we present a simple algorithm for generating all chemical

formula that could correspond to a fragment within the mass spectrum,

which is much more compact than generating these formula one-by-one

naively.

Our algorithm employs, and extends, the generating function method

[16] for counting the number of molecular formulae with a given fragment of

known total mass. Some of the earliest work based on generating function

ideas was by Morikawa and coworkers [18, 19]. Our algorithm works with

an arbitrary list of possible chemical elements from which the molecular

formula may be composed of. Most important, the algorithm requires the

production of what we call a molecular formula tree from which all possible

molecular formula associated with a given ion obtained, as branches of this

tree.

2 Theory

In this section we proceed directly to describe our algorithm, because we

think an explanation by example provides the clearest exposition. Next, we

justify our algorithm using the generating function method, which provides

a powerful way to solve problems in combinatorics. The theoretical cost,

pros and cons, and relationship of our method to other closely related

methods are also discussed in this section.

2.1 An example of the algorithm

The algorithm involves constructing a molecular formula tree. The process

is best illustrated by a concrete example. We take the particular case of

M = 7 using a hypothetical alphabet

E = [H,He,Li], with masses

m = [1, 4, 7]. (5)



327

We first make the multiplicity-weighted mass vectors for each element:

mH = [0, 1, 2, 3, 4, 5, 6, 7],

mHe = [0, 4],

mLi = [0, 7]. (6)

These vectors are just arithmetic sequences based on the mass of the el-

ement concerned, and importantly, they do not exceed the target value

M = 7 of the mass spectrum ion of interest. For simplicity we refer to mH

as, say, “the H vector”.

We now describe the aufbau process for building up the solution

• To start the process we pick any vector, say the H vector, as shown

in Figure 1(a).

• Next, we “convolute it” with the next vector, say the He vector.

This means that we add each element in the He vector to every

element in the H vector, and we record each pair as “branches” with

the element in the He vector appended to those in the H vector, as

shown in Figure 1(b). We do not keep any branches that exceed the

value M = 7. We also keep track of the element multiplicites ni

by writing the partial chemical formula below its mass contribution.

For example, we write He1 below the mass contribution 4 ≡ n2m2.

• In the next step, we first sort the branches by the sum of the masses of

the two elements, and then place branches possessing the same mass

into groups. This is equivalent to merging together these branches

into a tree, as shown in Figure 1(c).

• We then repeat the previous two steps for any other multiplicity-

weighted mass vectors, sorting and grouping by the mass of the

branches in the tree, up until the last vector. In this case, there

is only the Li vector left to do, and the result of the convolution

step, grouping and reordering is shown in Figure 1(d).

In the final step we may discard any values in the tree, which do not

correspond to the target value of M = 7, but for this example, we have



328

shown all the possibilities for completeness, in Figure 1(e). The list of

possible molecular formulae can be read off the tree by travelling along

any one of the branches. It clearly does not matter = whether we go from

top to bottom, or bottom to top, since it is only the sum M = 7 that mat-

ters. The algorithm also works no matter in which order in we choose the

multiplicity-weighted mass vectors, for essentially the same reason. How-

ever, in general it may be more efficient to choose the larger mass vectors

first (in the case the Li vector, then the He vector) because their sum is

more likely to exceed the target M value earlier in the process. Also, at

any stage in the procedure, branches may be pruned if the partial chemical

formulae are nonsensical: this illustrates the use of chemical heuristics.



329

M1

n1m1

0

0
H0

1

1
H1

2

2
H2

3

3
H3

4

4
H4

5

5
H5

6

6
H6

7

7
H7

(a)

M2

n2m2

n1m1

0

0
He0

0
H0

4

4
He1

0
H0

1

0
He0

1
H1

5

4
He1

1
H1

2

0
He0

2
H2

6

4
He1

2
H2

3

0
He0

3
H3

7

4
He1

3
H3

4

0
He0

4
H4

5

0
He0

5
H5

6

0
He0

6
H6

7

0
He0

7
H7

(b)

M2

n2m2

n1m1

0

0
He0

0
H0

1

0
He0

2
H1

2

0
He0

2
H2

3

0
He0

3
H3

4

4
He1

0
H0

0
He0

4
H4

5

4
He1

1
H1

0
He0

5
H5

6

4
He1

2
H2

0
He0

5
H6

7

4
He1

3
H3

0
He0

7
H7

(c)

M3

n3m3

n2m2

n1m1

0

0
Li0

0
He0

0
H0

1

0
Li0

0
He0

1
H1

2

0
Li0

0
He0

2
H2

3

0
Li0

0
He0

3
H3

4

0
Li0

4
He1

0
H0

0
He0

4
H4

5

0
Li0

4
He1

1
H1

0
He0

5
H5

6

0
Li0

4
He1

2
H2

0
He0

6
H6

7

0
Li0

4
He1

3
H3

0
He0

7
H7

7

7
Li1

0
He0

0
H0

(d)

M3

n3m3

n2m2

n1m1

0

0
Li0

0
He0

0
H0

1

0
Li0

0
He0

1
H1

2

0
Li0

0
He0

2
H2

3

0
Li0

0
He0

3
H3

4

0
Li0

4
He1

0
H0

0
He0

4
H4

5

0
Li0

4
He1

1
H1

0
He0

5
H5

6

0
Li0

4
He1

2
H2

0
He0

6
H6

7

0
Li0

4
He1

3
H1

0
He0

7
H7

7
Li1

0
He0

0
H0

(e)

Figure 1. Simple example illustrating the iterative aufbau procedure
for constructing the molecular formula tree for elements E =
[H,He,Li] with integer masses m = [1, 4, 7]. Refer to text
for full commentary. (a) Setting up the first layer of the tree
for element H. (b)-(c) Adding all possible masses; the Mi

are the masses of the partial molecular formulae of length i,
where each element Ei occurs ni times, i = 1, . . . , 3. The
final stage (d) includes all possible molecular formula of mass
0 ≤ M ≤ 7. For example, the very last tree indicates the
molecular formula Li1, He1H3, and H7, which are all possible
solutions of mass M = 7 for this problem.



330

2.2 Generating functions

A generating function, f(s), is a function, representable by an infinite

power series, where each coefficient of said series corresponds to a term in a

sequence [16]. If a sequence is finite, then f(s) is also known as a generating

polynomial. For example, the sequence [1, 2, 3, 4, 5 . . .] is represented by the

generating function

f(s) =
∑
n=0

(n+ 1)sn = 1 + 2s+ 3s2 + 4s3 + 5s4... (7)

where the power n of a term sn indicates the position of the coefficient in

the sequence.

We now show that by multiplying a particular kind of generating func-

tion, the powers of the variable s correspond naturally to a total mass,

while the coefficients of the variable s correspond to the number of ways

of generating a chemical formula with that mass.

Consider first the trivial case of an alphabet which contains only one

element with the mass m. The number of integer partitions of M is conse-

quently 1 if M is divisible by m, and 0 otherwise. For example, if M = 8

and m = 2, then there is only one way of decomposing M into parts equal

to m, namely 8 = 2 + 2 + 2 + 2, whereas if M = 9 then there is no way of

decomposing M into parts equal to m. The generating function for this

case is a sequence of 1’s in the positions nm, where n is a non-negative

integer, and its power series is

f(s;m) =
∑
n=0

snm = 1 + sm + s2m + . . . =
1

1− sm
(8)

The expression on the right can be obtained by observing that the infinite

series on the left is precisely its power series expansion.

Next, suppose that the alphabet contains two elements with masses m1

andm2, with generating functions f1 = f(s;m1) and f2 = f(s;m2) defined

as above, for decomposing M into parts equal to m1 or m2 respectively.

Then the number of ways to decompose a number M into a sum of m1 or

m2 is obtained as the coefficients of sM in the product of f1f2.



331

For example, take M = 12, m1 = 2, and m2 = 6. Then there are only

3 possible ways to decompose 12 into a sum of terms involving 2 and 3,

namely:

12 = 2 + 2 + 2 + 2 + 2 + 2,

12 = 2 + 2 + 2 + 6,

12 = 6 + 6.

On the other hand,

f(s; 2) f(s; 6) = (1 + s2 + s4 + s6 + s8 + s10 + s12 + . . .)(1 + s6 + s12 + . . .)

= 1 + s2 + s4 + s6 + s8 + s10 + s12

+ s6 + s8 + s10 + s12 + s12

= 1 + s2 + s4 + 2s6 + 2s8 + 2s10 + 3s12

In the above, to avoid unnecessary computation, terms are limited to the

s12 term. The coefficient in front of s12 is indeed 3, which corresponds to

the three possible products

(s2)6(s0), (s2)3(s6), and (s6)(s6),

where the groupings correspond to the power series in f(s; 2) and f(s; 6)

respectively.

It should now be obvious that the coefficient of sM counts the num-

ber of ways sM can be made from sn1m1+n2m2 , where n1 and n2 are the

multiplicities of the masses m1 or m2, because this is precisely the num-

ber of ways the individual monomials can multiply together so that the

exponents sum in different ways to give sM .

In the most general case, for a given list of possible elements with

masses m = [m1,m2, . . . ,mN ], the number of possible integer partitions,

and consequently the number of molecular formulae, of a compound with

mass M , can simply be expressed in terms of the generating function



332

comprised of a product of generating simple unit sequences,

F (s;m) =

N∏
i=1

fi, with fi = f(s;mi) =
∑
ni=0

snimi . (9)

The coefficient in front of the sM term in the resulting power series yields

the number of molecular formulae.

2.3 Listing the chemical formulae

In the compomer problem, we are not interested in counting the number

of molecular formulae that has a particular formula mass, but in explicitly

listing these formulae. To list all molecular formulae instead of only count-

ing them, all that needs to be done is to multiply together polynomials of

different variables si, rather than the same variable s, where each variable

si is associated with a different element Ei in the alphabet. Thus, for an

alphabet of length N , the generating function can be written as:

F (s;m) =

N∏
i=1

fi, where now fi = f(si;mi) =
∑
ni=0

(si)
nimi . (10)

For example, using the previous case of M = 12, with masses m1 = 2

m2 = 6 correspond to elements A and B respectively, we can expand the

product f1f2 = f(s1; 2)f(s2; 6) and keep only those terms with overall

power M = 12. This results in

(s21)
6(s02), (s21)

3(s62), and (s61)(s
6
2),

which directly corresponds to the formulae

A6, A3B, and B2.

The multiplicities of the elements A and B are derived by dividing the

power of the variables s1 and s2 by their respective masses, m1 and m2.



333

2.4 The molecular formula tree

In the previous section (Section 2.3), we showed that the enumeration of

all possible molecular formulae can be achieved by the process of multiply-

ing multivariable polynomials and choosing those monomials that have an

overall power of M . A straightforward procedure for doing this involves

successively multiplying polynomials f1 and f2, to get F2 = f1f2, then to

get F3 = F2f3, and so on; or in general

Fj = Fj−1fj , starting with F1 = f1 and finish with FN = F, (11)

with F defined in equation (10). Although there are efficient techniques

for multiplying polynomials, in this case, we need only keep track of the

multiplicities ni of the variables si, because these multiplicities define the

overall power

Mj =

j∑
i=1

nimi (12)

to which the monomial term is raised in each step j. Since the overall

monomial power is also a partial mass sum, and in the final step, j = N ,

we must choose those monomials with the overall power MN = M , the

desired total mass.

Substituting equations (12) and (11) in equation (10) we obtain

Mj = Mj−1 + njmj . (13)

Thus, as we have seen before, polynomial multiplication amounts only

to addition of monomial powers. This suggests that at each step of the

iterative process defined by equation (11), we only keep track of all the

multiplicities [ni]
j
i=1, and that we order these values according to their

sum Mj . We may reject those values of Mj which exceed the target value

M for j < N , and in the final step j = N reject those values MN that are

not exactly equal to the target value of M .

The fact that the final sum M is made of successive intermediate sums

in equation (13) suggests that a “tree” data structure is appropriate to

record how the multiplicities at level j− 1 are related to those at the next



334

level j; for example, one may recall the famous Pascal triangle, also made

iteratively, but based on a similar two-term equation.

We thus arrive at the following algorithm.

1. Initialization.

In the first step, j = 1, record an initial sequence of multiplicities

n1 = [1, 2, . . . , k1] and record the corresponding partial masses M1 =

[m1, 2m1, . . . , k1m1], where k1m1 is the largest value that does not

exceed M . The indices n1 form a sorted group of indices, the base

of the tree structure.

2. Convolution: building the tree by polynomial multiplication.

For the next steps 1 < j < N , repeat the following:

(a) Generate multiplicities nj = [1, 2, . . . , kj ] and record the cor-

responding mass values m = [mj , 2mj , . . . , kjmj ], where kjmj

does not exceed M . Add the elements of m to those in Mj−1

in all possible ways to form Mj ; at the same time append each

multiplicity in nj to the previously formed and sorted groups of

multiplicities associated with Mj−1, to form a new layer of the

tree.

(b) Sort the branches of indices with the same partial mass sum

Mj into groups, rejecting those where any is greater than M .

3. Terminating the tree: choosing the final M value.

In the final step, j = N , perform step 2(a), but in step 2(b), keep

only those values MN which are exactly equal to M .

Note that the sorting part of step 2(b) may be combined into step 2(a),

but they are kept separate here for clarity. Refer to Section 2.1 for more

information.

2.5 Truncating element vectors

Suppose, within a particular class of chemical compounds, that the likely

number of atoms of element E (with a mass of m) can be specified by a



335

range [nmin
E , nmax

E ]. Then the generating function of E, f(si), and thus the

E vector, can be appropriately truncated:

f(si) = s
nmin
E m

i + . . .+ s
nmax
E m

i (14)

The addition of these rules in order to truncate the element vectors can

greatly improve both the run time of the program and reduce the memory

required, since the size of the molecular formula tree and the time taken to

convolute the vectors are both dependent on the size of the element vectors.

This is especially notable in the case of hydrogen, as the chemically relevant

upper bound to the number of hydrogen atoms in a molecule of mass M

is much lower than the purely mathematical upper bound of M hydrogen

atoms.

2.6 Analysis of algorithm

As already stated, the number of solutions to the compomer problem is

asymptotically proportional to γ(M) [4] and so the number of branches

in the tree is also equal to this number. Consequently, the time needed

to list all solutions is proportional to this number. However, as we show

below, this is (asymptotically) much longer than the time to compute the

molecular formula tree. Besides, the use of chemically-based heuristics

may prune a significant number of branches from the molecular formula

tree. Due to this pruning process it is more constructive to analyse the

asymptotic time complexity of only computing the molecular formula tree.

In terms of time taken, the “bottleneck” in the algorithm is the sorting

process, after polynomial multiplication, which amounts to addition of

partial mass sequences. Thus, the time taken is related to the number of

elements within the list to be sorted. The list to be sorted has a lower and

an upper bound, and we consider only the upper bound.

For the upper bound, when the product list that is accumulating partial

solutions contains approximately M elements, the length L of the list for

variable si is the larger ofM
2/mi orMli, where li represents the list length

after pruning. After sorting a list, only another single pass through the

sorted list is required to collect individual elements into groups. Thus, we



336

need only examine the time complexity of the sorting process.

For an arbitrary list, sorting can be done in a time that scales as

O(L logL), where as explained

L = max
[
(M2/mi), li

]
(15)

is the list length (see e.g [9]). Since the process of polynomial multiplication

and grouping needs to be to be done N − 1 times for each variable si, the

time complexity is therefore

t ∼ O(NL logL) .

Thus, the run time for the computation of the molecular formula tree is

linear with respect to N , and roughly quadratic with respect to M , both

which are significantly faster than MN−1, ignoring prefactors.

Theoretically, the time complexity can be reduced to

t ∼ O(NL) .

since the list to be sorted is a list of subtrees, with branches of positive

integral mass N ≤ M . Consequently, the sorting and grouping process

can be done in one step using a bucket sort, without the subsequent merg-

ing of buckets. This was not done in the Python implementation of the

script, because the factor log L is negligible in practice, however such an

optimisation can be easily done.

The reason for the fast computation of the molecular formula tree is

due to the simultaneous enumeration of all chemical formula in the form

of a tree, rather than explicitly listing solutions one at a time. However,

this comes at the cost of having to store all the solutions, in the more

compressed form of a tree rather than an array of N -dimensional arrays.

A very similar method of enumerating an exponential number of terms

(a power set of protein configurations) in sub-exponential time, using what

is referred to as a convolution tree, was proposed by Serang and coworkers

[26] in their analysis of protein tandem mass spectrometry data—albeit

for a different purpose of evaluating the joint probabilities of all possible



337

combinations of proteins being present.

3 Materials and methods

3.1 Implementation of algorithm

The described algorithm was implemented as a “proof-of-concept” python3

program, as shown in Listing 1. No chemical-knowledge based heuristics

were used to limit the entries in any way. Only the built in itertools

and timeit libraries was used.

import itertools

def is_leaf(t):

return len(t) == 1

# Evaluate sum of tree by traversing down ONE branch,

# since all branches have the same mass

def sum_tree(t):

return sum(t) if is_leaf(t) else t[0] + sum_tree(t[1])

# Transforms the formula tree into a list by depth

# first traversal

def traverse_tree(tree):

res = []

def s(t,r):

if is_leaf(t):

#append formula to list, removes dummy root

res.append(r[1:]+t)

else:

#recursive function call over each branch

[s(branch,r+[t[0]]) for branch in t[1:]]

s(tree,[])

return res



338

# Multiplies two generating functions, builds a level

# in the formula tree

def multiply_gf(f1,f2,M):

# Multiplication: throws away terms larger than M

r = [j + i for i in f1 for j in f2 if sum_tree(j + i) <=

M]↪→

r.sort(key=sum_tree)

# Collect terms into groupings based on M of formulae

return [list(g) for k,g in

itertools.groupby(r,key=sum_tree)]↪→

# Produce generating functions based on the alphabet

def produce_gfs(alphabet, M):

return [ [ [j] for j in range(0,M+1,i)] for i in

alphabet]↪→

# Computes formula tree

def formula_tree(alphabet,M):

l = produce_gfs(alphabet,M) # generates list of GFs

prod = [ [i] for i in l[-1]] # "groups" the base case

# Multiplies the GFs in a loop and

# return all formulae with m = M

for i in range(len(l)-2,-1,-1):

prod = multiply_gf(prod,l[i],M)

return prod[-1]

# Flattens list of formula trees with m = M,

# resulting in a list of monomials corresponding to each

formula↪→

def generate_lst(t):

# Merge list of trees into one

# formula tree with a dummy root,

# then traverse the tree ...



339

return traverse_tree([0] + t)

# Given a monomial "mon", produce a compomer,

# then produce a molecular formula from the compomer

def produce_MF(mon,alphabet):

# Can be any list of symbols corresponding to elements

lst = ["C","H","N","O","P","S"]

# Obtain c_i of compomer by n_i/m_i

compomer = [int(mon[i]/alphabet[i]) for i in

range(len(mon))]↪→

# Swap carbons and hydrogens

compomer[0],compomer[1] = compomer[1],compomer[0]

# Remove element if coeff is 0 and remove the "1" if

coeff is 1↪→

res = [lst[i]+str(compomer[i]) for i in

range(len(compomer)) if compomer[i] != 0]↪→

return "".join([i if len(i) != 2 or i[1] != "1" else

i[0] for i in res])↪→

# Generates a list of molecular formulae given an alphabet

# (list of integral m_i's, ascending order) and a mass M

def enumerate_MF(alphabet, M):

return [produce_MF(i,alphabet) for i in

generate_lst(formula_tree(alphabet,M))]↪→

#this will print out all CHNOPS MF with integer mass 100

print(enumerate_MF([1,12,14,16,31,32],100))

Listing 1. Listing of the python3 program used to implement the
molecular formula tree. Calling the routine enumerate MF

with the given alphabet and integer mass M produces a list
of molecular formulae with that mass



340

3.2 Details of the computer used

A standard Lenovo 81GC laptop with 8Gb of physical memory installed,

an Intel(R) Core(TM) i7-8550U CPU, 4 cores, 8 logical processors, and a

clock speed of 1.8GHz was used for all calculations.

4 Results and discussion

In this section we demonstrate our algorithm by performing several nu-

merical experiments, and tests, intended to give an idea of the scope and

ease of application of our method. The tests and their results are discussed

together.

4.1 Time to construct the formula tree as a function

of alphabet length

The time needed to compute the molecular formula tree as a function of

the alphabet length was established for N ≤ 10 for molecular formula

trees with M = 500 and for the integer masses associated with the most

common isotopes of the elements E = {H,He,Li, . . . ,Ne}, or subsets com-

prising, successively, the first elements of this set. We used the lowest mass

elements to ensure that we would get the longest generating functions and

the largest trees. The results are shown in Figure 2.

We observe that the time scales linearly with respect to alphabet length

N which agrees with the theoretical analysis.

Figure 3 illustrates a more detailed analysis, and shows a log-log plot

of time required for M ≤ 500 for N ≤ 10. We observe that as N becomes

larger all plots possess a similar gradient; the slope being approximately

2.06, indicating a scaling of t ∼ M2.06 (the point N = 1 and N = 2

was ignored in obtaining the least-squares fit for the slope). This again

supports that the algorithm scales linearly with respect to N , and slightly

slower than quadratically with respect to M . In particular, the essentially

identical gradient from N = 3 to N = 10 supports the claim that run time

scaling for molecular formula tree computations do not vary substantially

with regard to alphabet length N .



341

Figure 2. Time required to make the molecular formula tree as a lin-
ear function (R2 = 0.9557) of alphabet length N for to-
tal mass M = 500, for the masses of the first ten elements
E = {H,He,Li, . . . ,N,O,F,Ne}.

Figure 3. Log-log plot of time taken to compute the formula tree using
our python program for masses M ≤ 500 and for alphabets
of length N ≤ 10; different colours used for different N .
Visually, the gradient does not vary substantially for N ≥ 3;
and a numerical fit to for these N has a slope 2.06 ± 0.02
with R2 values in the range [0.981, 0.992].

4.2 Counting molecular formulae

Using this method, the maximum number of molecular formulae that only

contain some or all of the CHNOPS elements formulae with integer mass



342

M ≤ 2000 can be counted using code for polynomial multiplication: there

are 39,026,736,558 different formulae in total. This is larger than the

7,995,776,805 counted by brute force enumeration with the HiRes soft-

ware by Kind and coworkers [15], since our method does not employ any

heuristics to eliminate nonsensical chemical formulae.

4.3 Finding the molecular formula of Cangrelor

To assess the performance of this method in an application to find pos-

sible molecular formulae of “real” data, conceivably obtainable from a

hypothetical HRMS experiment, we chose the drug molecule Cangrelor,

C17H25Cl2F3N5O2P3S2, with a mass of M = 775 and an exact monoiso-

topic mass of M = 774.94831. This molecule was chosen due to its rela-

tively high mass, the fact that it was composed of eight different elements,

and because Kind and Fiehn used it to generate 4,465 possible molecular

formulae within 1 ppm of the exact mass, using the MS software HR2, a

modified HiRes [15].

Using the unmodified version of our program in Listing 1, it took 3.7

seconds to generate the formula tree and 175 seconds to expand the for-

mula tree, resulting in a list of 37,001,983 formulae, corresponding to all

molecular formulae containing some or all of the 8 elements and possessing

a mass of 775.

4.4 Using chemical knowledge-based heuristics

It is very straightforward to implement chemical heuristics using our me-

thod, both by truncating element vectors as detailed in Section 2.5 and

in the process of tree traversal to recover molecular formulae. By im-

plementing just two chemical rules on the multiplicities generated during

formation of the molecular formula tree, namely:

nH,max < 2nC,max + 2, where nC,max = ⌊M/12⌋, and (16)

nC,min = ⌊M/(4 · 12)⌋ (17)



343

Table 1. A partial list of molecular formulae generated by the algo-
rithm, ranked in order of mass deviation, |Mprecise − M |,
from the formula mass of M = 774.9483131704699. The cor-
rect formula is starred, the 1st in the list, and has a non-zero
mass deviation due to imprecision in the floating point com-
puter arithmetic. The masses of all formulae generated are
monoisotopic masses, and the exact isotopic masses are taken
from [1].

Molecular Mass
formula deviation

C17H25N5O12F3P3S2Cl2* 1.1× 10−13

C17H16N15O9S3Cl3 3.1× 10−8

C22H19N4O7F7PS5 3.5× 10−8

C29HN3O3F16S 2.5× 10−7

C31H26N5P2Cl7 2.9× 10−7

C19H13N9O6F8P3SCl 3.4× 10−7

C19H4N19O3F5S2Cl2 3.7× 10−7

C20H31O13F2PS6Cl 3.7× 10−7

C23H9N12O10F2P4 6.7× 10−7

C21HN13F13P3 6.7× 10−7

C16H38N6OF2PS3Cl8 7.9× 10−7

C21H32NO3F6Cl9 8.4× 10−7

C18H23NO3F13S6Cl 9.7× 10−7

i.e the percentage composition of carbon by mass should be more than 25%.

By truncating the corresponding C and H vectors, the size of the formula

tree was reduced substantially; the time was 1.1 seconds to generate the

formula tree and 20.3 seconds to traverse all of its branches, yielding a

slightly smaller set of 4,899,086 molecular formulae.

This list can be pruned further by modifying the traversal of the for-

mula tree in order to extract the list of formulae. For example, in the case

of M = 100, nC,max = 8; so according to the rules above, nH,max = 18.

However, even with the rules above, a formulae such as C3H16O3, which

contains too many hydrogens to be chemically relevant, would still be al-

lowed. This shows that if many heteroatoms are present, then there can

be large discrepancies between nC and nC,max, which cannot be dealt with

by truncating element vectors

However, to save the excess time required to extract these formula from



344

the formula tree, tree traversal can be stopped immediately after estab-

lishing that the H-to-C ratio is too high, discarding the chemically unrea-

sonable formulae all at once rather than generating each one individually

by tree traversal and then discarding. The H-to-C ratio and heteroatom

checks documented by Kind and coworkers can be incorporated like so, in

order to increase computational efficiency [15].

Other heuristics, perhaps applicable to specific classes of chemical com-

pounds or concerning discrepancies between integer and exact masses, can

also be applied this way, in order to circumvent traversing much of the

formula tree. To showcase this, the rule that the H-to-C ratio should be

less than 3 was incorporated into the program, and this further reduced

run time to 11.5 seconds and yielded a list of 3,259,436 formulae.

4.5 The effect of high-precision molecular masses

The list that resulted from the previous steps can be further filtered down

using high resolution mass spectral data. To do this, we used high-precision

isotopic masses, available from the CRC handbook [1], to compute the

“formula mass” of each of the molecular formulae generated, filtering out

branches where the mass difference was greater than 1 ppm between the

formula mass of Cangrelor (the “measured mass”) and the formula mass

of other formulae. The very high resolution of 1 ppm represents a best-

case scenario; in reality a value of 5 ppm is more realistic, and would yield

many more solutions.

The result was a list of 9731 formulae, one of which was the the correct

formula of C17H25Cl2F3N5O2P3S2. The closest matching results are also

shown in Table 1. This shows that, given a high mass and even a relatively

small number of elements, there exist formulae with virtually identical

mass; there exist molecular formulae with a mass deviation less than 10−7

from the formula mass of the correct formula.

4.6 Comparison with other methods

The difference between our algorithm and that of Böcker and Lipták [5] is

that the latter authors proposed a “top-down” query approach, whereas we



345

propose a “bottom-up” explicit construction approach. By a clever use of

integer remainders and divisors, encoded in an “extended residue table”,

Böcker and Lipták are able to explore the search space of all possible

formulae, terminating each branch of the search as soon as it is feasible.

Due to only requiring the construction of a relatively small table, their

method is more memory-efficient than our method.

However, a key disadvantage with their method when applied to HR-

MS is that the mass measured will inevitably possesses an associated un-

certainty ϵ which is higher than the uncertainty of the constituent atomic

masses, so in practice all masses in an interval [M − ϵ,M + ϵ] should be

decomposed, requiring the compomer problem to be solved many times.

This “interval problem” was addressed by both Agarwal and coworkers

and Dührkop and coworkers, again utilising dynamic programming-based

methodologies [2, 12]. On the other hand, our algorithm is conceptually

simpler and produces a compact molecular formula tree containing all for-

mulae with integer mass M , from which a list of formulae matching the

HR-MS data can be directly extracted (refer to Section 4.5), thus bypass-

ing the “interval problem” entirely.

Another advantage of our algorithm is that restrictions on the max-

imum/minimum number of elements make a very large difference in the

time and memory required. As we have shown in Section (4.3), implement-

ing simple restrictions on the search space, which can be done by simply

truncating the element vectors to a specified size without changing the

rest of the program, can lead to a drastic speedup in the run time of the

program. Should a domain expert reasonably suspect a narrower range of

“acceptable” elemental compositions, a further speedup is expected.

Like our algorithm, Morikawa and coworkers describe a generating

function based method to count [19] molecular formula but with the added

restriction that these formula correspond to molecular structures which

obey Senior’s standard valency rules [25]. An earlier method of Morikawa

used a Diophantine equation approach [18]. Neither of these methods are

completely general, and the concept of a molecular formulae tree did not

emerge.

Our algorithm can be regarded as a generalisation of that of Dromey



346

and Foyster [10]. Their algorithm involves dividing the alphabet

[C, H, N, O, P, S] into subalphabets [C, H] and [N, O, P, S], generating

all possible decompositions with m ≤ M for both subproblems, and then

taking the cartesian product of the two arrays of partial solutions to arrive

at the full solutions. Our algorithm instead builds up all solutions as the

molecular formula tree, by recursively taking the cartesian product of a tree

of partial solutions with the trivial partial solution; mass decompositions

with a size 1 subalphabet.

4.7 The effect of using polyisotopic patterns

It was already noted by Schum and coworkers that run time consider-

ations render the possibility of simultaneous enumeration of polyisotopic

and monoisotopic molecular formulae impractical [23]. Consequently, poly-

isotopic ion filtering needs to be conducted prior to molecular formula gen-

eration. The linear scaling of run time with respect to N suggests that our

method could potentially bypass this step and simultaneously enumerate

all polyisotopic and monoisotopic molecular formulae, especially since a

limit for the maximum “reasonable” number of certain isotopes (e.g 13C)

within a fragment can be set based on its mass, meaning truncation of the

element vectors can be done. Likewise, for a given chemical compound, all

of its isotopomers up to a given mass (e.g M +10) can be quickly and effi-

ciently enumerated by this algorithm, by simply incorporating the isotopic

masses into the alphabet. We did not test this possibility here.

4.8 Treating high resolution masses and integers

In the case of high resolution MS with masses recorded up to n decimal

places, the integer-based method described here could be applied by multi-

plying all the masses by a factor of 10n, say, or some other factor; and then

rounding to the nearest integer, as the use of integer arithmetic on a com-

puter is faster than using real arithmetic. However, as we already showed

theoretically and in practice, run-time of the algorithm scales roughly as

M2, so that enumeration of all formulae with unscaled integer masses, fol-

lowed by subsequent filtering, is more suitable in practice. In this case,



347

rather than needing to fully expand the molecular formula tree and elim-

inate formulae one by one, it would be possible to remove portions of

the molecular formula tree, which are guaranteed to give an answer too

different from the required mass, according to some preset tolerance, for

example 5 ppm [3]. Removing portions of the molecular formula tree as

soon as practicable mitigates both the computational cost and memory

requirements for cases where there would otherwise be large numbers of

molecular formulae. Furthermore, this enumeration-followed-by-filtering

approach eliminates the need to perform mass decompositions on all in-

tegers within a range, as is the case with Böcker’s method [5]. Again, we

have not tested this possibility here.

5 Conclusion

An algorithm that enumerates all possible molecular formula given a spe-

cific massM was developed using the generating function method of count-

ing integer partitions. The algorithm works by constructing a molecular

formula tree, essentially a tree associated with the monomials of the gen-

erating function, which scales linearly with the number of elements in the

molecular formula, and roughly quadratically with respect to the total

mass M .

Although the algorithm costs a substantial amount of computational

memory, it was in some cases faster than algorithms reported for this pur-

pose, indicating that this may not be a limiting problem using computers

currently available. Our method can also allow for rapid pre-computation

of molecular formulae in a specified range of masses.

Due to its simplicity and ability to be applied to arbitrary alphabets,

this algorithm can be readily integrated into any molecular formula assign-

ment software package, in any application where the speed of molecular

formula generation becomes a limiting factor. Indeed, as the molecular

formula of a compound, in addition to sub-formulae of its fragments, play

a crucial role in providing insight into molecular structure, we plan to

integrate this method into subsequent work involving de-novo structural

identification of compounds using mass spectrometry.



348

Acknowledgment : SL acknowledges funding of a Ph.D. scholarship from
the Forrest Research Foundation.

References

[1] Robert C. West (Ed.), CRC Handbook of Chemistry and Physics, CRC
Press, Cleveland, 1978.

[2] D. Agarwal, Topics in mass spectrometry based structure determina-
tion. Theses, Université Nice Sophia Antipolis, 2015.

[3] M. P. Balogh, Debating resolution and mass accuracy, LC GC Asia
Pacific 7 (2004) 16–16.

[4] M. Beck, I. M. Gessel, T. Komatsu, The polynomial part of a re-
stricted partition function related to the frobenius problem, El. J.
Comb. 8 (2001) 1-5.

[5] S. Böcker, Z. Lipták, A fast and simple algorithm for the money
changing problem. Algorithmica 48 (2007) 413–432.

[6] S. Böcker, M. C. Letzel, Z. Lipták, A. Pervukhin, Sirius: decompos-
ing isotope patterns for metabolite identification, Bioinformatics 25
(2009) 218–224.

[7] S. Böcker, Z. Lipták, M. Martin, A. Pervukhin, H. Sudek, De-
comp—from interpreting mass spectrometry peaks to solving the
money changing problem, Bioinformatics 24 (2008) 591–593.

[8] B. Bohman, G. R. Flematti, R. A. Barrow, Identification of hydrox-
ymethylpyrazines using mass spectrometry, J. Mass Spectrom. 50
(2015) 987–993.

[9] T. H Cormen, Introduction to Algorithms, MIT Press, Cambridge,
2009.

[10] R. G. Dromey, G. T. Foyster, Calculation of elemental composi-
tions from high resolution mass spectral data, Anal. Chem 52 (1980)
394–398.

[11] K. Dührkop, F. Hufsky, S. Böcker, Molecular formula identification
using isotope pattern analysis and calculation of fragmentation trees,
Mass Spectrom. (Tokyo) 3 (2014) 37–37.

[12] K. Dührkop, M. Ludwig, M. Meusel, S. Böcker, Faster mass decom-
position, arXiv:1307.7805, 2013.



349

[13] A. Fürst, J. T. Clerc, E. Pretsch, A computer program for the compu-
tation of the molecular formula, Chemom. Intell. Lab. Sys. 5 (1989)
329–334.

[14] N. W. Green, E. M. Perdue, Fast graphically inspired algorithm for
assignment of molecular formulae in ultrahigh resolution mass spec-
trometry, Anal. Chem. 87 (2015) 5086–5094.

[15] T. Kind, O. Fiehn, Seven golden rules for heuristic filtering of molec-
ular formulas obtained by accurate mass spectrometry, BMC Bioin-
form. 8 (2007) 105–105.

[16] S. K. Lando, Lectures on Generating Functions, AMS, Providence,
2003.

[17] J. Meija, Mathematical tools in analytical mass spectrometry, Anal.
Bioanal. Chem. 385 (2006) 486–499.

[18] T. Morikawa, Algebraic enumeration and generation of molecular
formulas for a given molecular weight, J. Chem. Edu. 63 (1986)
1053–1055.

[19] T. Morikawa, Y. Tada, Algebraic enumeration of molecular formulae
for given molecular weight, Int. J. Math. Edu. Sci. Techn. 24 (1993)
467–472.

[20] E. M. Perdue, N. W. Green, Isobaric molecular formulae of c, h, and
o: A view from the negative quadrants of Van Krevelen space, Anal.
Chem. 87 (2015) 5079–5085.

[21] M. Rojas-Cherto, P. T. Kasper, E. L. Willighagen, R. Vreeken, T.
Hankemeijer, T. H. Reijmers, Elemental composition determination
based on MS(n), Bioinformatics 27 (2011) 2376–2383.

[22] K. Scheubert, F. Hufsky, S. Böcker. Computational mass spectrome-
try for small molecules, J. Cheminf. 5 (2013) #12.

[23] S. K. Schum, L. E. Brown, L. R. Mazzoleni, Mfassignr: Molecular for-
mula assignment software for ultrahigh resolution mass spectrometry
analysis of environmental complex mixtures, Env. Res. 191 (2020)
#110114.

[24] S. K. Schum, B. Zhang, K. Dzepina, P. Fialho, C. Mazzoleni, L. R.
Mazzoleni, Molecular and physical characteristics of aerosol at a re-
mote free troposphere site: Implications foratmospheric aging, Atmo-
spheric Chem. Phys. 18 (2018) 14017–14036.



350

[25] J. K. Senior, Partitions and their representative graphs, Am. J. Math.
73 (1951) 663–689.

[26] O. Serang, The probabilistic convolution tree: Efficient exact
Bayesian inference for faster lc-ms/ms protein inference, PloS One
9 (2014) #e91507.

[27] N. Stoll, E. Schmidt, K. Thurow, Isotope pattern evaluation for the
reduction of elemental compositions assigned to high-resolution mass
spectral data from electrospray ionization fourier transform ion cy-
clotron resonance mass spectrometry, J. Am. Soc. Mass Spectrom. 17
(2006) 1692–1699.

[28] D. Valkenborg, I. Mertens, F. Lemiére, E. Witters, T. Burzykowski,
The isotopic distribution conundrum, Mass Spectrom. Rev. 31 (2012)
96–109.


	Introduction
	The compomer problem in more detail
	Previous work on the compomer problem
	The use of chemical knowledge-based heuristics
	This work

	Theory
	An example of the algorithm
	Generating functions
	Listing the chemical formulae
	The molecular formula tree
	Truncating element vectors
	Analysis of algorithm

	Materials and methods
	Implementation of algorithm
	Details of the computer used

	Results and discussion
	Time to construct the formula tree as a function of alphabet length
	Counting molecular formulae
	Finding the molecular formula of Cangrelor
	Using chemical knowledge-based heuristics
	The effect of high-precision molecular masses
	Comparison with other methods
	The effect of using polyisotopic patterns
	Treating high resolution masses and integers

	Conclusion

