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Abstract

Van’t Hoff’s way (asymmetry, stereogenicity) and Le Bel’s way
(dissymmetry, chirality) are compared from the viewpoint of two
ways for investigating organic stereochemistry, where cubane deriva-
tives of the point group Oh are selected as probes. For emphasizing
Le Bel’s way, combinatorial enumerations of 3D structures under
point groups are first discussed to develop Fujita’s proligand method
and Fujita’s USCI approach. The foundations of these enumerations
are applied to support synthetic studies of stereoisomers for empha-
sizing van’t Hoff’s way after the proposal of Fujita’s stereoisogram
approach based on RS -stereoisomeric groups, e.g., Ohσ̃Î . Impor-
tance of the proligand-promolecule model is emphasized in enumer-
ations under point groups (Fujita’s proligand method and Fujita’s
USCI approach) as well as in enumerations of RS -stereoisomeric
groups (Fujita’s stereoisogram approach). After the five types (type
I to type V) of stereoisograms are classified into three categories (i.e.,
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Category 1 (types I/IV), Category 2 (types II/III/V), and the co-
existence case), the half-size-subgroup method and the factor-group
method have been developed for type-itemized enumerations of ste-
reoisograms. Type-V stereoisograms for characterizing “extended
pseudoasymmetry” are discussed by assigning their configuration
numbers and CA-descriptors.

1 Introduction

1.1 Van’t Hoff’s way and Le Bel’s way

for investigating organic stereochemistry

The concept of stereoisograms proposed by the author (Fujita) [1–3] aims

at excluding serious conceptual confusions, which have been caused by the

two different ways derived from two founders of organic stereochemistry,

i.e., van’t Hoff’s way based on “asymmetry” [4, 5] (later replaced by the

term “stereogenicity” in the Mislow-Siegel’s article [6]) and Le Bel’s way

based on “dissymmetry” [7, 8] (later replaced by the term “chirality” in

the lecture by Lord Kelvin [9]), ever since the beginning of organic stereo-

chemistry. In this paper, inherent inconsistency between van’t Hoff’s way

and Le Bel’s way during the practices of the conventional stereochemistry

will be discussed by paying attention to dynamic and static aspects.

1.2 Syntheses of stereoisomers. Emphasis on van’t

Hoff’s way in dynamic aspects of stereochemistry

The term “stereogenic” originally aims at representing generation of ste-

reoisomers [6], the number of which may be two or more, so that pair-

wise nature is not included as intrinsic nature. Hence, the pairwise use

of stereogenic/non-stereogenic or stereogenic/astereogenic is beyond the

scope of the assumption in contrast to the pairwise use of chirality/achi-

rality.

As a result of lacking pairwise nature, during practices under the con-

ventional organic stereochemistry, Mislow-Siegel’s stereogenicity has been

adopted in the form of “stereogenic units”, which may be classified into

two or more units, so as to be categorized into stereogenic centers (atoms),
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G Mislow-Siegel's stereogeni
ity

Gs stereoisomerism

❅❅■

enantiomerism

❅❅■

Figure 1. Conventional stereochemistry based on enantiomerism,
Mislow-Siegel’s stereogenicity, and stereoisomerism.

stereogenic axes, stereogenic planes, and so on [10]. In particular, an

“asymmetric atom (chirality centre)” is adopted as the traditional exam-

ple of a stereogenic unit in IUPAC recommendations 1996 [10].

So long as we examine the usage described in IUPAC recommenda-

tions 1996 [10], chirality is treated as a subordinate concept to Mislow-

Siegel’s stereogenicity to specify the nature of stereogenic units. After

preparing the terms “chirotopic/achirotopic centers” [6], some achiral cases

Gσ are treated under the term “pseudoasymmetry” as exceptional cases

of “asymmetry”, and accordingly as exceptional cases of Mislow-Siegel’s

stereogenicity (Figure 1).

According to IUPAC recommendations 1996 [10], the term “chirotopic”

is defined to be “the description of an atom (or point, group, face, etc. in

a molecular model) that resides within a chiral” environment, while the

term “achirotopic” is defined to be “one that resides within an achiral

environment has been called achirotopic.” Thus, chirotopic/achirotopic

centers are subordinate concepts of Mislow-Siegel’s stereogenicity. More

pictorially speaking, the vertical frame of the enantiomerism is redrawn

horizontally in Figure 1, so as to be completely involved in the horizontal

frame of Mislow-Siegel’s stereogenicity. This treatment would reinforce

the viewpoint about the naming “pseudoasymmetry” for specifying some

achiral cases Gσ (“asymmetry” modified with “pseudo”). .

In spite of preparing the terms “chirotopic/achirotopic centers” [6] for

the purposes of further discussions concerning “pseudoasymmetry”, the

relationship between chirality and Mislow-Siegel’s stereogenicity has pro-

vided us with some sources of misunderstanding.

In addition to “pseudoasymmetry” [11,12], we are able to perceive that

there have appeared several fundamental terms with inaccurate or ambigu-
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ous interpretations, such as “R/S vs. r/s” in the RS -nomenclature (the

CIP system) [13,14], “stereogenicity” [15], and “prochirality” [16,17]. The

details of inaccuracy or ambiguity have been discussed respectively in the

references cited above after the proposal of the concept of stereoisograms.

1.3 Combinatorial enumeration of 3D structures un-

der point groups. Emphasis on Le Bel’s way in

static aspects of stereochemistry

Before starting discussions on stereoisograms and RS -stereoisomeric gro-

ups, several fundamental aspects on symmetry-itemized enumerations and

gross enumerations of 3D structures under point groups should be pointed

out by comparing the counterparts for enumerations of graphs. These

fundamental aspects for the proligand-promolecule model and for the USCI

approach will be extended to cover Fujita’s stereoisogram approach.

1. The proligand-promolecule model based on a given skeleton [18,19].

A proligand is an abstract ligand (substituent) which is character-

ized to be chiral or achiral in isolation, but to have no concrete 3D

structure even if chiral. A promolecule is an abstract molecule which

is constructed by putting a set of such proligands on the substitu-

tion positions of an appropriate skeleton belonging to a given point

group G. The presence of achiral and chiral proligands is a crucial

point during 3D structural enumeration. On the other hand, the

conventional graph enumeration does not depend on such proligand-

promolecule model but postulates the presence of achiral ligands (and

no chiral ligands), as found in Pólya’s graph enumerations [20,21].

2. The concept of sphericity of an orbit and chirality fittingness [22–24].

The substitution positions of the skeleton are separated into orbits

(equivalence classes), each of which belongs to a coset representation

(Gi\)G under the subgroup Gi of G during a substitution process.

Symmetry-itemized enumerations based on tables of marks (mark

tables) [25] have been extended to treat both achiral and chiral pro-

ligands on the basis of the sphericity of an orbit [22,23]. Thus, each
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orbit is controlled by its sphericity due to the coset representation

(Gi\)G, so as to be classified into a homospheric orbit (if both G

and Gi are achiral), an enantiospheric orbit (if G is achiral and Gi

is chiral), and a hemispheric orbit (if both G and Gi are chiral) [22].

Each orbit has chirality fittingness according to its sphericity, so that

a homospheric orbit permits the substitution of a set of achiral proli-

gands, an enantiospheric orbit permits the substitution of a set of the

same achiral proligands or pairs of enantiomeric proligands, as well

as a hemispheric orbit permits the substitution of a set of same achi-

ral or chiral proligands. Thus, chirality fittingness due to sphericity

controls symmetry-itemized enumeration [23,24].

3. The concept of the USCI-CF of an orbit [22–24].

Each orbit is controlled by the USCI-CF (unit subduced cycle in-

dex with chirality fittingness), which is derived by the subduction

of coset representation [22, 23]. The USCI-CF table corresponding

to a mark table can be used to symmetry-itemized enumerations,

where four enumeration methods are developed under the collec-

tive name Fujita’s USCI approach: (1) the partial-cycle-index (PCI)

method by using partial cycle indices with chirality fittingness (PCI-

CFs) [26, 27], (2) the fixed-point matrix (FPM) method [28–30], (3)

the elementary-superposition (ES) method [31], and (4) the partial-

superposition (PS) method [26,31]. The symmetry-itemized enumer-

ations based on a cubane as an Oh-skeleton have been conducted by

means of the FPM method [32], the PCI method [33], and the ES

method [34].

4. The concept of sphericity of a cycle and chirality fittingness [35].

Pólya’s Theorem [36] has been extended to cover 3D structures along

with graphs, where the proligand-promolecule model is adopted to

create the concept of sphericity of a cycle [35]. Thereby, cycle indices

with chirality fittingness (CI-CFs) have been developed to establish

the proligand method [37] for gross enumerations of 3D structures,

e.g., extended sphericity indices of cycles for stereochemical exten-

sion of Pólya’s coronas [38], the use of different sets of sphericity
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indices for combinatorial enumeration of nonrigid stereoisomers [39],

and combinatorial enumeration of planted 3D trees as stereochemical

models of monosubstituted alkanes [40].

The applicabilities of Fujita’s proligand method and related meth-

ods [37] have been studied by using a cubane skeleton of Oh-point

group as a probe [41]; i.e., gross enumerations of cubane derivatives

by Fujita’s proligand method [41], by Fujita’s markaracter method

[42], by Fujita’s characteristic-monomial method [43], by Fujita’s

extended-superposition method [44], and by Fujita’s double-coset-

representation method [45].

5. Emphasis on equivalence relationships and equivalence classes (or-

bits).

IUPAC 1996 [10] defines stereoisomerism as “Isomerism due to differ-

ences in the spatial arrangement of atoms without any differences in

connectivity or bond multiplicity between the isomers. (the expres-

sion “differences” is stressed as an italicized form by the author.)”

This definition is not an equivalence relationship, because there al-

ways appear two different entities, i.e., the original entity and the

isomeric entity. As a result, it is unable to deal with one-membered

equivalence class (orbit).

Orbits in a molecule [24] and orbits among molecules [46] are linked

with each other to accomplish combinatorial enumeration of stereo-

isomers [47]. Thereby, the concept of mandalas based on Fujita’s

proligand method has been formulated as a novel way of combinato-

rial enumerations through the concepts of coset representations and

sphericities [48].

6. The application of the GAP system after the development of combi-

ned-permutation representations (CPRs) as computer-oriented util-

ities [49].

The GAP (Groups, Algorithms, Programming) system [50] released

in 1988 (the current version is GAP 4.11.1 released on 02 March 2021)

provides us with various useful functions, e.g., TableOfMarks for gen-
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erating mark tables of permutation groups. To apply GAP functions

to enumeration practices under point groups, the author (Fujita) has

developed combined-permutation representations (CPRs) [49]. CPRs

have been applied to calculate cycle indices with chirality fittingness

(CI-CFs), which have been used for enumerating 3D structures of

ligancy 4 by Fujita’s proligand method [49]. CPRs have also been

applied to calculate CI-CFs of variousOh-skeletons, which have been

used to their gross enumerations [51].

For the purpose of symmetry-itemized enumerations, concordant gen-

eration of standard mark tables and standard USCI-CF tables has

been executed by using CPRs [52]. This procedure has been ap-

plied to the generation of standard mark tables and standard USCI-

CF tables by starting from various Oh-skeletons [53]. The resulting

USCI-CFs are used to calculate PCI-CFs and to execute symmetry-

itemized enumerations of Oh-derivatives.

The items pointed out above are mainly concerned with symmetry-

itemized enumerations and gross enumerations of 3D structures under

point groups, where enantiomerism (enantiomeric relationship) or the pair-

wise nature of chirality/achirality is emphasized. Thus, during the above

discussions on rather static aspects of stereochemistry, we have laid stress

on the geometric nature of 3D structures. This means that “chirality”

linked with enantiomerism (i.e., Le Bel’s way for chirality) has been se-

lected as a basis.

1.4 Dynamic aspects compared to static aspects in or-

ganic stereochemistry

By starting from the above items discussed on the geometric nature of

3D structures (static aspects), the stereoisomeric nature of 3D structures

should be discussed by focusing rather dynamic aspects of stereochemis-

try. It should be noted, however, when we survey the procedures of stud-

ies on stereochemistry, actual procedures of studies are opposite (dynamic

→ static). Thus, we first consider what is synthesized (van’t Hoff’s way
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Figure 2. Fujita’s stereoisogram approach based on enantiomerism,
RS -stereogenicity, RS -stereoisomerism, and stereo-
isomerism.

(asymmetry)) and then examine the geometric properties of the synthe-

sized matter at issue (such as chirality and its Cahn-Ingold-Prelog (CIP)

RS -descriptor). Hence, it is natural that van’t Hoff’s way (asymmetry)

for treating stereoisomerism became a mainstream stereochemistry. Ac-

cording to this trend, Mislow-Siegel’s stereogenicity [6] has been mainly

adopted as a successor of van’t Hoff’s way (asymmetry).

Because Mislow-Siegel’s stereogenicity has been defined in the funda-

mental step of terminology, the alternation of its meaning accompanies

wide-range re-examination of terminology. However, the ad-hoc modifi-

cation of Mislow-Siegel’s stereogenicity (such as the term “pseudoasym-

metry”) has been found to be unexpected influences on stereochemical

terminology, as discussed above (Figure 1). Hence, the essential modifi-

cation (Figure 2) should be added to the fundamental of Mislow-Siegel’s

stereogenicity.

To cover the overlooked aspects in Mislow-Siegel’s stereogenicity, the

author (Fujita) has coined a term RS-stereogenicity, which specifies the

net interaction between chirality and Mislow-Siegel’s stereogenicity (Fig-

ure 2). Fujita’s RS -stereogenicity [1, 15] is a substantial and meaningful

restriction of Mislow-Siegel’s stereogenicity [6], so that the static aspect

(Le Bel’s way) and the dynamic aspect (van’t Hoff’s way) are integrated

after sclerality/asclerality is added as the third aspect for specifying a pair

of holantimers. Thus, chirality/achirality (for specifying a pair of enan-

tiomers) and RS -stereogenicity/RS -astereogenicity (for specifying a pair

of RS -diastereomers) are regarded as two kinds of handedness and inte-
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grated into RS-stereoisomerism [54]. Group-theoretically speaking, this

integration of three kinds of half-size subgroups (i.e., point groups for

specifying chirality/achirality, RS -stereogenic groups for specifying RS -

stereogenicity/RS -astereogenicity, and LR-permutation groups for speci-

fying sclerality/asclerality) is formulated to give RS -stereoisomeric groups.

Note that LR is the abbreviation of the term ligand-reflection. It is an im-

portant perspective that the integrations into RS -stereoisomeric groups

are illustrated by stereoisograms as diagrammatic expressions.

1.5 RS -stereoisomerism vs stereoisomerism

Before stating the targets of the present article, it is useful to compare

between Figure 1 and Figure 2 more detailedly.

According to IUPAC Recommendations 2013 (P-92.1.1) [55] which is

based on Mislow-Siegel’s stereogenicity, the term “stereogenic units” is de-

fined that “A stereogenic unit (i.e. a unit generating stereoisomerism) is

a grouping within a molecular entity that may be considered to generate

stereoisomerism.” and that (a) a chirality center, (b) a chirality axis, (c)

a chirality plane, (d) pseudoasymmetric center, axis or plane, (e) cis/-

trans isomers containing a double bond, and (f) an enantiomorphic double

bond are listed as the basic types of stereogenic units. As a result, the

Mislow-Siegel’s stereogenicity of Figure 1 has no description on multiple

appearance of such stereogenic units.

For example, a facial stereoisomer and a meridional stereoisomer shown

in Figure 3 are explained as two permutation derivatives of a single octa-

hedral stereogenic unit controlled by the stereoisomeric group S
[6]

Ohσ̃Î

, if we

obey Figure 1. There is no participation of the RS -stereoisomeric group

Ohσ̃Î in the case of Figure 1.

On the other hand, if we obey Figure 2, Figure 3 is regarded to be

controlled by the RS -stereoisomeric group Ohσ̃Î (order |Ohσ̃Î | = 96) and

the stereoisomeric group S
[6]

Ohσ̃Î

(order |S[6]

Ohσ̃Î

| = 1440). Hence, fifteen

(= |S[6]

Ohσ̃Î

|/|Ohσ̃Î | = 1440/96) cosets, i.e., Ohσ̃Î\S
[6]

Ohσ̃Î

, are generated

to give Figure 2, which constructs maximum number of fifteen stereoiso-

mers. Each of them is controlled by a stereoisogram corresponding to
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Figure 3. Stereoisomers but not RS -Stereoisomers. Two isomers of
octahedral complexes, i.e., a fac-isomer having three A’s
in the facial position and a mer -isomer having three A’s
in the meridional position, are stereoisomeric but not RS -
stereoisomeric.

a quadruplet of RS -stereoisomers according to the coset decomposition

Ohσ̃Î\S
[6]

Ohσ̃Î

. In the case of a facial octahedral complex 1 and a merid-

ional octahedral complex 2 with the composition A3BXY, the author (Fu-

jita) [56, 57] has reported the type-itemized enumerations of octahedral

complexes, which indicate the presence of one type-I stereoisogram (one

facial stereoisomer) and three type-IV stereoisograms (three meridional

stereoisomers). Each stereoisogram corresponds to a quadruplet of RS -

stereoisomers for representing RS -stereoisomerism, so that the one type-I

stereoisogram (one facial stereoisomer, e.g., 1) and the three type-IV ste-

reoisograms (three meridional stereoisomers, e,g., 2) just fill up the frame

of stereoisomerism shown in Figure 2.

In the case of a cubane skeleton, the RS -stereoisomerism and the ste-

reoisomerism overlap each other. In other words, one stereoisogram for

representing the RS -stereoisomerism is sufficient to fill up the frame of

stereoisomerism shown in Figure 2.

1.6 Targets of the present article

Targets of the present article are the discussions on the concepts of stereo-

isograms and RS -stereoisomerism, where chirality and RS -stereogenicity

as two kinds of handedness are integrated by adding sclerality as the

third aspect. Throughout the present article, a cubane skeleton is se-

lected as a representative probe for extending the point group Oh into
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an RS -stereoisomeric group Ohσ̃Î . This course of investigation lays stress

on three half-size subgroups of RS -stereoisomeric group Ohσ̃Î , so that

the half-size-subgroup method has been proposed as one method for type-

itemized enumerations of stereoisograms [58]. On the other hand, the coset

decomposition of the RS -stereoisomeric group Ohσ̃Î by the subgroup O is

examined from the viewpoint of a factor group O\Ohσ̃Î , which is isomor-

phic to the Klein four-group. Thereby, another method for type-itemized

enumeration of stereoisograms (named the factor-group method) will be

developed and accomplished by means of CPRs under the GAP system.

Because the half-size-subgroup method has been reported in details in the

previous article [58], it will be reported here by way of introduction and

comparison to the factor group method. In particular, the main target of

the present article is the proposal and detailed discussions on the factor-

group method, where the above-described foundations obtained during the

enumerations of stereoisomers under point groups (Fujita’s USCI approach

based on the proligand-promolecule model) are extended to develop Fu-

jita’s stereoisogram approach.

2 RS -stereoisomeric group Ohσ̃Î

2.1 Elementary stereoisogram for a cubane skeleton

We start from the point groups O and Oh for discussing geometric prop-

erties of a cubane skeleton 3. The point group Oh (order 48) consists of

a subgroup O (A: order or size 24) and a coset Oσ (B: size 24) as shown

by Eq. 1:

Oh = O︸︷︷︸
A

+ Oσ︸︷︷︸
B

, (1)

where the symbol σ represents an appropriate reflection (e.g., σh(1)), which

is represented with a overline (e.g., σh(1) ∼ (1, 5)(2, 6)(3, 7)(4, 8)).

Under the GAP system, the point group O (O cube) is created by using

a set of generators gen O cube (containing a four-fold rotation and a three-

fold rotation for a cubane skeleton), while the point group Oh (Oh cube) is

created by using a set of generators gen Oh cube (containing an additional
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reflection σ ∼ (1, 5)(2, 6)(3, 7)(4, 8)(9, 10) with a 2-cycle (9, 10)) as follows:

gap> gen_O_cube := [ (1,2,3,4)(5,6,7,8), (2,4,5)(3,8,6) ];;

gap> O_cube := Group(gen_O_cube);;

gap> Display(Size(O_cube));

24

gap> gen_Oh_cube := [ (1,2,3,4)(5,6,7,8), (2,4,5)(3,8,6), (1,5)(2,6)(3,7)(4,8)(9,10)];;

gap> Oh_cube := Group(gen_Oh_cube);;

gap> Display(Size(Oh_cube));

48

The RS -stereoisomeric group Ohσ̃Î (OhsI cube) is defined according to

Eq. 2, where an RS -permutation σ̃ (∈ Oσ̃ ⊂ Ohσ̃ ) is created by deleting

the mirror operation from the reflection σ (∈ Oσ ⊂ Oh). Note that the

second term of Eq. 2 is further converted as follows:

OhOσ̃ = (O+Oσ)Oσ̃ = Oσ̃ +Oσσ̃ = Oσ̃ +OÎ.

Hence, Eq. 2 is converted into Eq. 3, which represents the RS -stereoisomeric

group Ohσ̃Î in the form of a coset decomposition of Ohσ̃Î by the subgroup

O.

Ohσ̃Î = Oh︸︷︷︸
AB

+OhOσ̃︸ ︷︷ ︸
CD

(2)

= O︸︷︷︸
A

+ Oσ︸︷︷︸
B

+ Oσ̃︸︷︷︸
C

+ OÎ︸︷︷︸
D

(3)

The construction of the RS -stereoisomeric group Ohσ̃Î (OhsI cube) by

Eq. 3 is illustrated as an elementary stereoisogram shown in Figure 4,

where each coset of Eq. 3 is shown by an appropriately selected skeleton

[59].

According to the GAP system, the RS -permutation (1, 5)(2, 6)(3, 7)(4, 8)

is added to a set of generators gen Oh cube for the point group Oh, where

the GAP function Concatenation is used to generate a set of generators

gen OhsI cube for the RS -stereoisomeric group Ohσ̃Î (OhsI cube).

gap> gen_O_cube := [ (1,2,3,4)(5,6,7,8), (2,4,5)(3,8,6) ];;

gap> O_cube := Group(gen_O_cube);;

gap> gen_Oh_cube := [ (1,2,3,4)(5,6,7,8), (2,4,5)(3,8,6), (1,5)(2,6)(3,7)(4,8)(9,10)];;

gap> Oh_cube := Group(gen_Oh_cube);;

gap> gen_OhsI_cube := Concatenation(gen_Oh_cube, [(1,5)(2,6)(3,7)(4,8)]);;

gap> OhsI_cube := Group(gen_OhsI_cube);;

gap> Display(Size(OhsI_cube));

96

gap>

The application of the GAP function CosetDecomposition produces

the four cosets collected in Eq. 3 in the form of list formats CD OhsI O of
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Figure 4. Elementary stereoisogram for a cubane skeleton. The re-
spective skeletons are tentatively linked with double-headed
arrows [59].

the GAP system.

gap> #Coset Decomposition

gap> CD_OhsI_O := CosetDecomposition(OhsI_cube,O_cube);;

gap> Display(CD_OhsI_O[1]);

[ (), (2,4,5)(3,8,6), (2,5,4)(3,6,8), (1,2)(3,5)(4,6)(7,8), (1,2,3,4)(5,6,7,8),

(1,2,6,5)(3,7,8,4), (1,3,6)(4,7,5), (1,3)(2,4)(5,7)(6,8), (1,3,8)(2,7,5),

(1,4,3,2)(5,8,7,6), (1,4,8,5)(2,3,7,6), (1,4)(2,8)(3,5)(6,7), (1,5,6,2)(3,4,8,7),

(1,5,8,4)(2,6,7,3), (1,5)(2,8)(3,7)(4,6), (1,6,3)(4,5,7), (1,6)(2,5)(3,8)(4,7),

(1,6,8)(2,7,4), (1,7)(2,3)(4,6)(5,8), (1,7)(2,6)(3,5)(4,8),

(1,7)(2,8)(3,4)(5,6), (1,8,6)(2,4,7), (1,8,3)(2,5,7), (1,8)(2,7)(3,6)(4,5) ]

gap> Display(CD_OhsI_O[2]);

[ ( 3, 6)( 4, 5), ( 2, 5)( 3, 8), ( 2, 4)( 6, 8), ( 1, 2)( 3, 4)( 5, 6)( 7, 8),

( 1, 2, 6, 7, 8, 4)( 3, 5), ( 1, 2, 3, 7, 8, 5)( 4, 6), ( 1, 6)( 4, 7),

( 1, 6, 8, 3)( 2, 5, 7, 4), ( 1, 6, 3, 8)( 2, 7, 4, 5), ( 1, 5, 8, 7, 3, 2)( 4, 6),

( 1, 5)( 2, 6)( 3, 7)( 4, 8), ( 1, 5, 6, 7, 3, 4)( 2, 8),

( 1, 4, 8, 7, 6, 2)( 3, 5), ( 1, 4)( 2, 3)( 5, 8)( 6, 7),

( 1, 4, 3, 7, 6, 5)( 2, 8), ( 1, 3)( 5, 7), ( 1, 3, 8, 6)( 2, 4, 7, 5),

( 1, 3, 6, 8)( 2, 7, 5, 4), ( 1, 7)( 2, 6, 5, 8, 4, 3), ( 1, 7)( 2, 3, 4, 8, 5, 6),

( 1, 7)( 2, 8)( 3, 5)( 4, 6), ( 1, 8, 3, 6)( 2, 5, 4, 7),

( 1, 8, 6, 3)( 2, 4, 5, 7), ( 1, 8)( 2, 7) ]

gap> Display(CD_OhsI_O[3]);

[ ( 9,10), ( 2, 4, 5)( 3, 8, 6)( 9,10), ( 2, 5, 4)( 3, 6, 8)( 9,10),

( 1, 2)( 3, 5)( 4, 6)( 7, 8)( 9,10), ( 1, 2, 3, 4)( 5, 6, 7, 8)( 9,10),

( 1, 2, 6, 5)( 3, 7, 8, 4)( 9,10), ( 1, 3, 6)( 4, 7, 5)( 9,10),

( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,10), ( 1, 3, 8)( 2, 7, 5)( 9,10),

( 1, 4, 3, 2)( 5, 8, 7, 6)( 9,10), ( 1, 4, 8, 5)( 2, 3, 7, 6)( 9,10),

( 1, 4)( 2, 8)( 3, 5)( 6, 7)( 9,10), ( 1, 5, 6, 2)( 3, 4, 8, 7)( 9,10),

( 1, 5, 8, 4)( 2, 6, 7, 3)( 9,10), ( 1, 5)( 2, 8)( 3, 7)( 4, 6)( 9,10),

( 1, 6, 3)( 4, 5, 7)( 9,10), ( 1, 6)( 2, 5)( 3, 8)( 4, 7)( 9,10),

( 1, 6, 8)( 2, 7, 4)( 9,10),

( 1, 7)( 2, 3)( 4, 6)( 5, 8)( 9,10), ( 1, 7)( 2, 6)( 3, 5)( 4, 8)( 9,10),

( 1, 7)( 2, 8)( 3, 4)( 5, 6)( 9,10), ( 1, 8, 6)( 2, 4, 7)( 9,10),
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( 1, 8, 3)( 2, 5, 7)( 9,10), ( 1, 8)( 2, 7)( 3, 6)( 4, 5)( 9,10) ]

gap> Display(CD_OhsI_O[4]);

[ ( 3, 6)( 4, 5)( 9,10), ( 2, 5)( 3, 8)( 9,10), ( 2, 4)( 6, 8)( 9,10),

( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10), ( 1, 2, 6, 7, 8, 4)( 3, 5)( 9,10),

( 1, 2, 3, 7, 8, 5)( 4, 6)( 9,10), ( 1, 6)( 4, 7)( 9,10),

( 1, 6, 8, 3)( 2, 5, 7, 4)( 9,10), ( 1, 6, 3, 8)( 2, 7, 4, 5)( 9,10),

( 1, 5, 8, 7, 3, 2)( 4, 6)( 9,10), ( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,10),

( 1, 5, 6, 7, 3, 4)( 2, 8)( 9,10), ( 1, 4, 8, 7, 6, 2)( 3, 5)( 9,10),

( 1, 4)( 2, 3)( 5, 8)( 6, 7)( 9,10), ( 1, 4, 3, 7, 6, 5)( 2, 8)( 9,10),

( 1, 3)( 5, 7)( 9,10), ( 1, 3, 8, 6)( 2, 4, 7, 5)( 9,10),

( 1, 3, 6, 8)( 2, 7, 5, 4)( 9,10), ( 1, 7)( 2, 6, 5, 8, 4, 3)( 9,10),

( 1, 7)( 2, 3, 4, 8, 5, 6)( 9,10), ( 1, 7)( 2, 8)( 3, 5)( 4, 6)( 9,10),

( 1, 8, 3, 6)( 2, 5, 4, 7)( 9,10),

( 1, 8, 6, 3)( 2, 4, 5, 7)( 9,10), ( 1, 8)( 2, 7)( 9,10) ]

gap>

These cosets of the RS -stereoisomeric group Ohσ̃Î construct a basis for

an elementary stereoisogram for a cubane skeleton, as shown in Figure 4.

Thus, the first pair of square brackets (CD OhsI O[1]) shows the coset O︸︷︷︸
A

for controlling the reference skeleton 3, the second pair of square brackets

(CD OhsI O[2]) shows the coset Oσ̃︸︷︷︸
C

for controlling an RS -diastereomeric

skeleton 4, the third pair of square brackets (CD OhsI O[3]) shows the

coset OÎ︸︷︷︸
D

for controlling a ligand-reflection (LR) skeleton 4, and finally

the 4th pair of square brackets (CD OhsI O[4]) shows the coset Oσ︸︷︷︸
B

for

controlling the mirror-numbered skeleton 3.

In the elementary stereoisogram shown by Figure 4, a horizontal gray

line represents a mirror plane, which causes reflection between 3 and 3

or between 4 and 4. On the other hand, a vertical gray line represents a

graphical inversion, where the pair of RS -diastereomeric skeletons (3 and

4) can be converted to each other by the intervention of a graph 5, while

the pair of RS -diastereomeric mirror-skeletons (3 and 4) can be converted

to each other by the intervention of a mirror graph (5).

2.2 Construction of half-size subgroups of the RS -

stereoisomeric group Ohσ̃Î.

Along with the point group Oh (Eq. 1) as a half-size subgroup (size or

order 48, appearing in the vertical directions of a stereoisogram), the RS -

stereoisomeric group Ohσ̃Î (Eq. 3, size 96) has two other half-size sub-
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groups, i.e., RS -stereogenic group Oσ̃ (size 48, appearing in the horizontal

directions of a stereoisogram) and LR-permutation group OÎ (size 48, ap-

pearing in the diagonal directions of s stereoisogram).

Oσ̃ = O︸︷︷︸
A

+ Oσ̃︸︷︷︸
C

(4)

OÎ = O︸︷︷︸
A

+ OÎ︸︷︷︸
D

, (5)

where the symbol σ̃ represents an appropriate RS -permutation selected

from the coset Oσ̃︸︷︷︸
C

(e.g., σ̃h(1) (∼ (1, 5)(2, 6)(3, 7)(4, 8))), while the symbol

Î represents an appropriate LR-permutation selected from the coset OÎ︸︷︷︸
D

(e.g., Î (∼ (1)(2)(3)(4)(5)(6)(7)(8))).

Under the GAP system, a set of generator (gen Os cube) is used to

generate the RS -permutation group Oσ̃ (Os cube, Eq. 4), while a set of

generators (gen OI cube) is used to generate the LR-permutation group

OÎ (OI cube, Eq. 5).

gap> gen_Os_cube := [ (1,2,3,4)(5,6,7,8), (2,4,5)(3,8,6), (1,5)(2,6)(3,7)(4,8)];;

gap> Os_cube := Group(gen_Os_cube);;

gap> Display(Size(Os_cube));

48

gap> gen_OI_cube := [ (1,2,3,4)(5,6,7,8), (2,4,5)(3,8,6), (9,10)];;

gap> OI_cube := Group(gen_OI_cube);;

gap> Display(Size(OI_cube));

48

gap> gen_OhsI_cube := [ (1,2,3,4)(5,6,7,8), (2,4,5)(3,8,6), (1,5)(2,6)(3,7)(4,8),

↪→ (9,10)];;

gap> OhsI_cube := Group(gen_OhsI_cube);;

gap> Display(Size(OhsI_cube));

96

gap>

Among the four cosets of the RS -stereoisomeric group Ohσ̃Î described

above, the first coset (CD OhsI O[1]) and the second coset (CD OhsI O[2])

produces the RS -permutation group Os cube, i.e., O︸︷︷︸
A

+ Oσ̃︸︷︷︸
C

(Eq. 4).

On the other hand, the first coset (CD OhsI O[1]) and the third coset

(CD OhsI O[3]) produces the LR-permutation group OI cube, i.e., O︸︷︷︸
A

+
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OÎ︸︷︷︸
D

(Eq. 5).

3 Factor group of the RS -stereoisomeric

group Ohσ̃Î

Because the coset decomposition of the RS -stereoisomeric group Ohσ̃Î by

the subgroup O (Eq. 3) can produce a factor group O\Ohσ̃Î , because the

subgroup O is a normal subgroup of Ohσ̃Î .

O\Ohσ̃Î = { O︸︷︷︸
A 1

, Oσ︸︷︷︸
B 2

, Oσ̃︸︷︷︸
C 3

, OÎ︸︷︷︸
D 4

} (6)

For example, any two cosets in Eq. 6 can be multiplied to give another

coset, e.g., Oσ̃ Oσ = OOσ̃σ = OÎ, because O is normal and has commu-

tative nature.

Because the four skeletons collected in Figure 4 can be regarded to

correspond to the four cosets collected in Eq. 6, the stereoisogram (Figure

4) can be regarded as a matrix shown as the first formula corresponding to

the factor group O\Ohσ̃Î , as shown in the left-hand side of Eq. 7. Hence,

the multiplication by Oσ, for example, results in a transformation into

another matrix, as shown in the right-hand side of Eq. 7. This result is

converted into a permutation (1 2)(3 4).




O︸︷︷︸
A 1

Oσ̃︸︷︷︸
C 3

Oσ︸︷︷︸
B 2

OÎ︸︷︷︸
D 4




O\Ohσ̃Î

Oσ =




Oσ︸︷︷︸
B 2

OÎ︸︷︷︸
D 4

O︸︷︷︸
A 1

Oσ̃︸︷︷︸
C 3




∼ (1 2)(3 4) (7)

In a similar way to Eq. 7, the four cosets contained in Eq. 6 satisfy the

multiplication table shown by Figure 5. Note that the Oσ︸︷︷︸
B 2

-row in Figure

5 represents the same multiplication as Eq. 7. The gray alphabets A–D

attached with under-braces show the four RS -stereoisomers collected in
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O︸︷︷︸
A 1

Os︸︷︷︸
B 2

Os̃︸︷︷︸
C 3

OÎ︸︷︷︸
D 4

O︸︷︷︸
A 1

O︸︷︷︸
A 1

Os︸︷︷︸
B 2

Os̃︸︷︷︸
C 3

OÎ︸︷︷︸
D 4

Os︸︷︷︸
B 2

Os︸︷︷︸
B 2

O︸︷︷︸
A 1

OÎ︸︷︷︸
D 4

Os̃︸︷︷︸
C 3

Os̃︸︷︷︸
C 3

Os̃︸︷︷︸
C3

OÎ︸︷︷︸
D 4

O︸︷︷︸
A 1

Os︸︷︷︸
B 2

OÎ︸︷︷︸
D 4

OÎ︸︷︷︸
D 4

Os̃︸︷︷︸
C 3

Os︸︷︷︸
B 2

O︸︷︷︸
A 1

Figure 5. Multiplication table of the factor group O\O
hσ̃Î

,

the elementary stereoisogram (Figure 4).

By referring to Eq. 7 and the multiplication table (Figure 5), the factor

group O\Ohσ̃Î (Eq. 6) can be regarded to be a Klein 4-group, which has

5 subgroups up to conjugacy. Thereby, the factor group can be discussed

in terms of a non-redundant set of subgroups (SSG):

SSGO\Ohσ̃Î
=

{O (A)︸ ︷︷ ︸
1

, Oh (AB)︸ ︷︷ ︸
2

, Oσ̃ (AC)︸ ︷︷ ︸
3

, OÎ (AD)︸ ︷︷ ︸
4

, Ohσ̃Î (ABCD)︸ ︷︷ ︸
5

} (8)

where the subgroups are aligned and numbered sequentially in the ascend-

ing order of their orders (sizes).

The first subgroup O (A)︸ ︷︷ ︸
1

collected in Eq. 8 constructs the factor group

O\Ohσ̃Î , which show the following multiplication results by referring to

Figure 5. Note that Eq. 11 represent the same multiplication as Eq. 7
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O\Ohσ̃Î =

{
O︸︷︷︸

A 1

, Oσ︸︷︷︸
B 2

, Oσ̃︸︷︷︸
C 3

, OÎ︸︷︷︸
D 4

}
Permutation

SSG

1 2 3 4 5

◦ ◦ ◦ ◦ ◦

x ◦ x x ◦

x x ◦ x ◦

x x x ◦ ◦

(9)

O\Ohσ̃Î O =
O︸︷︷︸

A 1

, Oσ︸︷︷︸
B 2

, Oσ̃︸︷︷︸
C 3

, OÎ︸︷︷︸
D 4

∼ (1)(2)(3)(4)
(10)

O\Ohσ̃Î Oσ =
Oσ︸︷︷︸
B 2

, O︸︷︷︸
A 1

, OÎ︸︷︷︸
D 4

, Oσ̃︸︷︷︸
C 3

∼ (1 2)(3 4)
(11)

O\Ohσ̃Î Oσ̃ =
Oσ̃︸︷︷︸
C 3

, OÎ︸︷︷︸
D 4

, O︸︷︷︸
A 1

, Oσ︸︷︷︸
B 2

∼ (1 3)(2 4)
(12)

O\Ohσ̃Î OÎ =
OÎ︸︷︷︸
D 4

, Oσ̃︸︷︷︸
C 3

, Oσ︸︷︷︸
B 2

, O︸︷︷︸
A 1

∼ (1 4)(2 3)
(13)

list of marks [4,0,0,0,0]

By referring to SSGO\Ohσ̃Î
(Eq. 8), the list of permutations shown in

the last parts of Eqs. 10–13 produces the list of marks [4,0,0,0,0], which is

aligned according to the ascending order of sizes of subgroups ((A 1) →
(AB 2) → (AC 2) → (AD 2) → (ABCD 4)) shown below each brace in

Eq. 8. For example, the subgroup O (A 1) consists of one permutation

{(1)(2)(3)(4)} so as to give the mark 4 (i.e., 4 fixed cosets); the subgroup

Oh (AB 2) consists of two permutations {(1)(2)(3)(4), (1 2)(3 4)} so as to

give the mark 0 (i.e., no fixed coset); and so on.

The second subgroup Oh (AB)︸ ︷︷ ︸
2

collected in Eq. 8 constructs the fac-

tor group Oh\Ohσ̃Î , which show the following multiplication results by

referring to Figure 5:

Oh\Ohσ̃Î =

{
(O+Oσ︸ ︷︷ ︸
AB 1

), (Oσ̃ +OÎ︸ ︷︷ ︸
CD 2

)
}

Permutation
SSG

1 2 3 4 5

◦ ◦ ◦ ◦ ◦

x ◦ x x ◦

x x ◦ x ◦

x x x ◦ ◦

(14)

Oh\Ohσ̃Î O =
(O+Oσ︸ ︷︷ ︸
AB 1

), (Oσ̃ +OÎ︸ ︷︷ ︸
CD 2

) ∼ (1)(2)
(15)

Oh\Ohσ̃Î Oσ =
(O+Oσ︸ ︷︷ ︸
AB 1

), (Oσ̃ +OÎ︸ ︷︷ ︸
CD 2

) ∼ (1)(2)
(16)

Oh\Ohσ̃Î Oσ̃ =
(Oσ̃ +OÎ︸ ︷︷ ︸

CD 2

), (O+Oσ︸ ︷︷ ︸
AB 1

) ∼ (1 2)
(17)

Oh\Ohσ̃Î OÎ =
(Oσ̃ +OÎ︸ ︷︷ ︸

CD 2

), (O+Oσ︸ ︷︷ ︸
AB 1

) ∼ (1 2)
(18)

list of marks [2,2,0,0,0]

In a similar way, the list of permutations shown in the last parts of Eqs.

15–18 produces the list of marks [2,2,0,0,0] by referring to SSGO\Ohσ̃Î
(Eq.

8).

The third subgroup Oσ̃ (AC)︸ ︷︷ ︸
3

collected in Eq. 8 constructs the fac-

tor group Oσ̃\Ohσ̃Î , which show the following multiplication results by
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referring to Figure 5:

Oσ̃\Ohσ̃Î =

{
(O+Oσ̃︸ ︷︷ ︸
AC 1

), (Oσ +OÎ︸ ︷︷ ︸
BD 2

)
}

Permutation
SSG

1 2 3 4 5

◦ ◦ ◦ ◦ ◦

x ◦ x x ◦

x x ◦ x ◦

x x x ◦ ◦

(19)

Oσ̃\Ohσ̃Î O =
(O+Oσ̃︸ ︷︷ ︸
AC 1

), (Oσ +OÎ︸ ︷︷ ︸
BD 2

) ∼ (1)(2)
(20)

Oσ̃\Ohσ̃Î Oσ =
(Oσ +OÎ︸ ︷︷ ︸

BD 2

), (O+Oσ̃︸ ︷︷ ︸
AC 1

) ∼ (1 2)
(21)

Oσ̃\Ohσ̃Î Oσ̃ =
(O+Oσ̃︸ ︷︷ ︸
AC 1

), (Oσ +OÎ︸ ︷︷ ︸
BD 2

) ∼ (1)(2)
(22)

Oσ̃\Ohσ̃Î OÎ =
(Oσ +OÎ︸ ︷︷ ︸

BD 2

), (O+Oσ̃︸ ︷︷ ︸
AC 1

) ∼ (1 2)
(23)

list of marks [2,0,2,0,0]

In a similar way, the list of permutations shown in the last parts of Eqs.

20–23 produces the list of marks [2,0,2,0,0] by referring to SSGO\Ohσ̃Î
(Eq.

8).

The 4th subgroup OÎ (AD)︸ ︷︷ ︸
4

collected in Eq. 8 constructs the factor

group OÎ\Ohσ̃Î , which show the following multiplication results by refer-

ring to Figure 5:

OÎ\Ohσ̃Î =

{
(O+Oσ̃︸ ︷︷ ︸
AC 1

), (Oσ +OÎ︸ ︷︷ ︸
BD 2

)
}

Permutation
SSG

1 2 3 4 5

◦ ◦ ◦ ◦ ◦

x ◦ x x ◦

x x ◦ x ◦

x x x ◦ ◦

(24)

OÎ\Ohσ̃Î O =
(O+OÎ︸ ︷︷ ︸
AD 1

), (Oσ +Oσ̃︸ ︷︷ ︸
BC 2

) ∼ (1)(2)
(25)

OÎ\Ohσ̃Î Oσ =
(Oσ +Oσ̃︸ ︷︷ ︸

BC 2

), (O+OÎ︸ ︷︷ ︸
AD 1

) ∼ (1 2)
(26)

OÎ\Ohσ̃Î Oσ̃ =
(Oσ +Oσ̃︸ ︷︷ ︸

BC 2

), (O+OÎ︸ ︷︷ ︸
AD 1

) ∼ (1 2)
(27)

OÎ\Ohσ̃Î OÎ =
(O+OÎ︸ ︷︷ ︸
AD 1

), (Oσ +Oσ̃︸ ︷︷ ︸
BC 2

) ∼ (1)(2)
(28)

list of marks [2,0,0,2,0]

The resulting list of permutations shown in the last parts of Eqs. 25–28

similarly produces the list of marks [2,0,0,2,0] by referring to SSGO\Ohσ̃Î

(Eq. 8).

The 5th subgroup Ohσ̃Î (ABCD)︸ ︷︷ ︸
5

is the RS -stereoisomeric group itself

as collected in Eq. 8. It constructs the factor group Ohσ̃Î\Ohσ̃Î , which

show the following multiplication results by referring to Figure 5:
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Ohσ̃Î\Ohσ̃Î =

{
(O+Oσ +Oσ̃ +OÎ︸ ︷︷ ︸

ABCD 1

)
}

Permutation
SSG

1 2 3 4 5

◦ ◦ ◦ ◦ ◦

x ◦ x x ◦

x x ◦ x ◦

x x x ◦ ◦

(29)

Ohσ̃Î\Ohσ̃Î O =
(O+Oσ +Oσ̃ +OÎ︸ ︷︷ ︸

ABCD 1

) ∼ (1)
(30)

Ohσ̃Î\Ohσ̃Î Oσ =
(Oσ +O+OÎ +Oσ̃︸ ︷︷ ︸

ABCD 1

) ∼ (1)
(31)

Ohσ̃Î\Ohσ̃Î Oσ̃ =
(Oσ̃ +OÎ +O+Oσ︸ ︷︷ ︸

ABCD 1

) ∼ (1)
(32)

Ohσ̃Î\Ohσ̃Î OÎ =
(OÎ +Oσ̃ +Oσ +O︸ ︷︷ ︸

ABCD 1

) ∼ (1)
(33)

list of marks [1,1,1,1,1]

Note that, although the sequence of A–D in each product is different

from another product, the set of A–D is fixed to give the unit permutation

(1). Hence, the resulting list of permutations shown in the last parts of

Eqs. 30–33 similarly produces the list of marks [1,1,1,1,1] by referring to

SSGO\Ohσ̃Î
(Eq. 8).

According to the SSG (Eq. 8), the lists of marks calculated above are

aligned to give the corresponding mark table as a left triangular matrix:

tom matrix =

O\Ohσ̃Î

Oh\Ohσ̃Î

Oσ̃\Ohσ̃Î

OÎ\Ohσ̃Î

Ohσ̃Î\Ohσ̃Î




4 0 0 0 0

2 2 0 0 0

2 0 2 0 0

2 0 0 2 0

1 1 1 1 1




(34)

The GAP function FactorGroup can be used to obtain the factor group

of the RS -stereoisomeric group Ohσ̃Î by the subgroup O, i.e., O\Ohσ̃Î

(Eq. 6). The size (order) of the resulting factor group Group([ f1, f2

]) (named FG OhsI O here) is calculated to be 4, which can be regarded

to be a Klein 4-group and has 5 subgroups up to conjugacy. Note that

the sequence of the subgroups of the factor group FG OhsI O (Group([

f1, f2 ])) is calculated to be [ <identity> of ..., f1, f2, f1*f2

], where <identity> of ... corresponds to O, f1 corresponds to OÎ ,

f2 corresponds to Oσ̃, and f1*f2 corresponds to Oh. See that the output

of hom indicates the correspondence between

[(1, 2, 3, 4)(5, 6, 7, 8), (2, 4, 5)(3, 8, 6), (1, 5)(2, 6)(3, 7)(4, 8), (9, 10)]

and
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[ <identity> of ..., <identity> of ..., f2,f1 ].

The mark table named tom FG OhsI O is obtained by using the GAP func-

tion TableOfMarks and is found to be identical with Eq. 34 (note that the

order of appearance of rows and columns is not equal to Eq. 34).

gap> gen_O_cube := [ (1,2,3,4)(5,6,7,8), (2,4,5)(3,8,6) ];;

gap> O_cube := Group(gen_O_cube);;

gap> gen_OhsI_cube := [ (1,2,3,4)(5,6,7,8), (2,4,5)(3,8,6), (1,5)(2,6)(3,7)(4,8),

↪→ (9,10)];;

gap> OhsI_cube := Group(gen_OhsI_cube);;

gap> FG_OhsI_O := FactorGroup(OhsI_cube,O_cube);

<pc group with 2 generators>

gap> Display(Size(FG_OhsI_O));

4

gap> Display(Elements(FG_OhsI_O));

[ <identity> of ..., f1, f2, f1*f2 ]

gap> StructureDescription(last);

"C2 x C2"

gap> hom:=NaturalHomomorphismByNormalSubgroup(OhsI_cube,O_cube);

[ (1,2,3,4)(5,6,7,8), (2,4,5)(3,8,6), (1,5)(2,6)(3,7)(4,8), (9,10) ] ->

[ <identity> of ..., <identity> of ..., f2,f1 ]

gap> Display(ImagesSource(hom));

Group( [ f1, f2 ] )

gap> tom_FG_OhsI_O := TableOfMarks(FG_OhsI_O);

TableOfMarks( C2 x C2 )

gap> Display(tom_FG_OhsI_O);

1: 4

2: 2 2

3: 2 . 2

4: 2 . . 2

5: 1 1 1 1 1

gap>

4 Type-itemized enumerations

4.1 CI-CFs of half-size subgroups of the RS -stereo-

isomeric group Ohσ̃Î and related CI-CFs.

For the purpose of enumeration based on Fujita’s proligand method, CI-
CFs have been calculated by means of the newly-defined GAP function
CalcConjClassCICF, which is stored in CICFgenCC.gapfunc. The CI-
CFs for the gross enumerations of cubane derivatives have been reported
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previously [59].

CI-CF(O, bd) = 1
24 b

8
1 + 1

3 b
2
1b

2
3 + 3

8 b
4
2 + 1

4 b
2
4 (35)

CI-CF(Oh, $d) = 1
48 b

8
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2
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6 b
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CI-CF(Oσ̃, bd) = 1
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CI-CF(OÎ , $d) = 1
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CI-CF(Ohσ̃Î , $d) = 1
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The CI-CF for the point group O (CI-CF(O, bd) (Eq. 35)) is calculated

by referring to the permutations listed in CD OhsI O[1]. The CI-CF for the

point group Oh (CI-CF(Oh, $d) (Eq. 36)) is calculated by referring to the

permutations listed in CD OhsI O[1] and CD OhsI O[4], where each 2-cycle

(9,10) indicates a reflection operation. The CI-CF for the RS -permuation

group Oσ̃ (CI-CF(Oσ̃, bd) (Eq. 37)) is calculated by referring to the per-

mutations listed in CD OhsI O[1] and CD OhsI O[2]. Similarly, the CI-CF

for the LR-permuation group OÎ (CI-CF(Oσ̂, $d) (Eq. 38)) is calculated

by referring to the permutations listed in CD OhsI O[1] and CD OhsI O[3],

where each 2-cycle (9,10) indicates a reflection operation. And finally, the

CI-CF for the RS -stereoisomeric group Ohσ̃Î (CI-CF(Ohσ̃Î , $d) (Eq. 39))

is calculated by referring to the permutations listed from CD OhsI O[1] to

CD OhsI O[4], where each 2-cycle (9,10) indicates a reflection operation.

In the present article, a novel method on the basis of the factor group

will be proposed as an alternative type-itemized enumerations of cubane

derivatives. By referring to the factor group O\Ohσ̃Î (Eq. 6), the CI-CFs

for the respective cosets (A, B, C, and D) can be calculated from Eq. 35

to Eq. 38, e.g., 2CI-CF(Oh, $d)− CI-CF(O, bd) (Eq. 41) for the coset B.

CI-CF(A) = CI-CF(O, bd) = 1
24 b

8
1 + 1

3 b
2
1b

2
3 + 3

8 b
4
2 + 1

4 b
2
4 (40)

CI-CF(B) = 2CI-CF(Oh, $d) − CI-CF(O, bd) = 1
4a

4
1c

2
2 + 1

4 c
2
4 + 1

6 c
4
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3 c2c6. (41)

CI-CF(C) = 2CI-CF(Oσ̃, bd) − CI-CF(O, bd) = 1
4 b

4
1b

2
2 + 1

4 b
2
4 + 1

6 b
4
2 + 1

3 b2b6, (42)

CI-CF(D) = 2CI-CF(OÎ , $d) − CI-CF(O, bd) = 1
24a

8
1 + 1

3a
2
1a

2
3 + 3

8 c
4
2 + 1

4 c
2
4. (43)

These CI-CFs can be calculated alternatively by referring to CD OhsI O[1]

to CD OhsI O[4], because these cosets (A–D) are concretely obtained as

shown above. It should be noted that CI-CF(A) (Eq. 40) and CI-CF(D)
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(Eq. 43) (as well as CI-CF(B) (Eq. 41) and CI-CF(C) (Eq. 42)) have the

same cycle structures, if the differences due to chirality fittingness are ne-

glected. This parallelism comes from the fact that the permutations listed

in CD OhsI O[1] (forA) have the same structures as those of CD OhsI O[3]

(for D) if the 2-cycle (9,10) is neglected, as well as from the fact that the

permutations listed in CD OhsI O[2] (for C) have the same structures as

those of CD OhsI O[4] (for B) if the 2-cycle (9,10) is neglected.

4.2 Ligand inventories and ligand-inventory

functions

The CI-CFs (Eqs. 35–39) calculated under the subgroups of Ohσ̃Î are

used in the type-itemized enumerations of cubane derivatives (the half-size-

subgroup method). On the other hand, the CI-CFs for the respective cosets

(A, B, C, and D) (Eqs. 40–43) are used in the type-itemized enumerations

of cubane derivatives (the factor-group method) by referring to the factor

group O\Ohσ̃Î (Eq. 6). For the sake of simplicity, a set of eight proligands

is selected from the following inventory of proligands:

L = {H,A,B,X,Y,Z; p,p; q, q} (44)

where H, A, B, X, Y, and Z are achiral proligands in isolation, while a

pair of p and p (or q and q) represents an enantiomeric pair of chiral

proligands in isolation. The corresponding ligand-inventory functions are

obtained according to Eqs. 5–7 in Theorem 1 of Ref. [35].

ad = Hd +Ad +Bd +Xd +Yd + Zd (45)

bd = Hd +Ad +Bd +Xd +Yd + Zd + pd + pd + qd + qd (46)

cd = Hd +Ad +Bd +Xd +Yd + Zd + 2pd/2pd/2 + 2qd/2qd/2 (47)

Note that the methodology of Fujita’s USCI approach is applied to

the enumerations of stereoisograms after an appropriate reinterpretation.

The ligand-inventory functions (Eqs. 45–47) are introduced into the CI-

CFs (Eqs. 35–39) or the CI-CFs (Eqs. 40–43). The resulting equations

are expanded to give generating functions, in which the coefficient of
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each term HhAaBbXxYyZzppppqqqq represents the number of fixed 3D-

structures with the composition C8HhAaBbXxYyZzppppqqqq, where each

orbit (equivalence class) of 3D-structures is counted once under the respec-

tive subgroup.

Such a mode of substitution is represented by a substitution pattern

represented by a partition [h, a, b, x, y, z; p, p, q, q], because the coefficients

appear symmetrically. The symmetrical appearance permits us to pre-

sume h ≥ a ≥ w ≥ x ≥ y ≥ z; p ≥ q, p ≥ p, and q ≥ q without losing

generality. Appendix A shows a typical procedure for Fujita’s proligand

method applied extendedly to RS -stereoisomeric group Ohσ̃Î by using the

combined-permutation representation (CPR). Each substitution pattern

marked by an asterisk (e.g., [7,0,0,0,0,0;1,0,0,0]* for H7p) has the counter-

part of opposite chirality sense (e.g., [7,0,0,0,0,0;0,1,0,0]* for H7p), so that

the corresponding coefficient should be duplicated to generate the number

of cubane derivatives.

Several examples of outputs by Appendix A are listed as follows:

list_partitions[1] := [ 8, 0, 0, 0, 0, 0, 0, 0, 0, 0 ];

list_FP[1] := [ 1, 1, 1, 1, 1, 1, 1, 1, 1, E];

####Category 1 (1st/4th = 1)

list_partitions[2] := [ 7, 1, 0, 0, 0, 0, 0, 0, 0, 0 ];

list_FP[2] := [ 1, 1, 1, 1, 1, 1, 1, 1, 1, E];

list_partitions[3] := [ 6, 2, 0, 0, 0, 0, 0, 0, 0, 0 ];

list_FP[3] := [ 3, 3, 3, 3, 3, 3, 3, 3, 3, E];

(omitted)

list_partitions[20] := [ 7, 0, 0, 0, 0, 0, 1, 0, 0, 0 ];

list_FP[20] := [ 1, 1/2, 1, 1/2, 1/2, 1, 0, 1, 0, E];

#####Category 2 (1st/4th = 2)

list_partitions[21] := [ 6, 1, 0, 0, 0, 0, 1, 0, 0, 0 ];

list_FP[21] := [ 3, 3/2, 3, 3/2, 3/2, 3, 0, 3, 0, E];

list_partitions[22] := [ 6, 0, 0, 0, 0, 0, 2, 0, 0, 0 ];

list_FP[22] := [ 3, 3/2, 3, 3/2, 3/2, 3, 0, 3, 0, E];

(omitted)

list_partitions[40] := [ 4, 2, 1, 0, 0, 0, 1, 0, 0, 0 ];

list_FP[40] := [ 35, 35/2, 22, 35/2, 11, 35, 0, 9, 0, E];

list_partitions[41] := [ 4, 2, 0, 0, 0, 0, 1, 1, 0, 0 ];

list_FP[41] := [ 35, 23, 22, 22, 16, 35, 11, 9, 9, E];

#### Category 3 (1st/4th =/ 1,2)

(omitted)

in which the j-th symbol list partitions[j] shows the respective sub-

stitution pattern according to [h, a, b, x, y, z; p, p, q, q] and the j-th symbol

list FP[j] shows the respective list of fixed points according to the se-
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Table 1. Numbers of Cubane Derivatives Under the Subgroups of RS -
Stereoisomeric Group (Category 1)

j list1 partitions list1 FP
[ O, Oh, Oσ̃, OÎ , Ohσ̃Î , A, B, C, D, E ]

(Eq. 35) (Eq. 36) (Eq. 37) (Eq. 38) (Eq. 39) (Eq. 40) (Eq. 41) (Eq. 42) (Eq. 43)
1 [8, 0, 0, 0, 0, 0, 0, 0, 0, 0] [ 1, 1, 1, 1, 1, 1, 1, 1, 1, E ]
2 [7, 1, 0, 0, 0, 0, 0, 0, 0, 0] [ 1, 1, 1, 1, 1, 1, 1, 1, 1, E ]
3 [6, 2, 0, 0, 0, 0, 0, 0, 0, 0] [ 3, 3, 3, 3, 3, 3, 3, 3, 3, E ]
4 [6, 1, 1, 0, 0, 0, 0, 0, 0, 0] [ 3, 3, 3, 3, 3, 3, 3, 3, 3, E ]
5 [5, 3, 0, 0, 0, 0, 0, 0, 0, 0] [ 3, 3, 3, 3, 3, 3, 3, 3, 3, E ]
6 [5, 2, 1, 0, 0, 0, 0, 0, 0, 0] [ 7, 6, 6, 7, 6, 7, 5, 5, 7, E ]
7 [5, 1, 1, 1, 0, 0, 0, 0, 0, 0] [ 14, 10, 10, 14, 10, 14, 6, 6, 14, E ]
8 [4, 4, 0, 0, 0, 0, 0, 0, 0, 0] [ 7, 6, 6, 7, 6, 7, 5, 5, 7, E ]
9 [4, 3, 1, 0, 0, 0, 0, 0, 0, 0] [ 13, 10, 10, 13, 10, 13, 7, 7, 13, E ]
10 [4, 2, 2, 0, 0, 0, 0, 0, 0, 0] [ 22, 16, 16, 22, 16, 22, 10, 10, 22, E ]
11 [4, 2, 1, 1, 0, 0, 0, 0, 0, 0] [ 35, 22, 22, 35, 22, 35, 9, 9, 35, E ]
12 [4, 1, 1, 1, 1, 0, 0, 0, 0, 0] [ 70, 38, 38, 70, 38, 70, 6, 6, 70, E ]
13 [3, 3, 2, 0, 0, 0, 0, 0, 0, 0] [ 24, 17, 17, 24, 17, 24, 10, 10, 24, E ]
14 [3, 3, 1, 1, 0, 0, 0, 0, 0, 0] [ 48, 30, 30, 48, 30, 48, 12, 12, 48, E ]
15 [3, 2, 2, 1, 0, 0, 0, 0, 0, 0] [ 70, 42, 42, 70, 42, 70, 14, 14, 70, E ]
16 [3, 2, 1, 1, 1, 0, 0, 0, 0, 0] [ 140, 76, 76, 140, 76, 140, 12, 12, 140, E ]
17 [2, 2, 2, 2, 0, 0, 0, 0, 0, 0] [ 114, 68, 68, 114, 68, 114, 22, 22, 114, E ]
18 [2, 2, 2, 1, 1, 0, 0, 0, 0, 0] [ 210, 114, 114, 210, 114, 210, 18, 18, 210, E ]
19 [2, 2, 1, 1, 1, 1, 0, 0, 0, 0] [ 420, 216, 216, 420, 216, 420, 12, 12, 420, E ]
20 [6, 0, 0, 0, 0, 0, 1, 1, 0, 0] [ 3, 3, 3, 3, 3, 3, 3, 3, 3, E ]
21 [3, 1, 1, 1, 1, 1, 0, 0, 0, 0] [ 280, 140, 140, 280, 140, 280, 0, 0, 280, E ]
22 [0, 0, 0, 0, 0, 0, 4, 4, 0, 0] [ 7, 6, 6, 7, 6, 7, 5, 5, 7, E ]

quence [O, Oh, Oσ̃, OÎ , Ohσ̃Î , A, B, C, D, and E], where the last symbol

E is a tentative output corresponding to a value of Ohσ̃Î .

For the sake of convenience, the output data due to Appendix A

are separated into Category 1 (Table 1), Category 2 (Tables 2 and 3),

and Category 3 (Table 4), where the respective rows are renumbered

according to each category (the leftmost column of each row). For ex-

ample, list partitions[1] and list FP[1] explained above (Category

1) are printed as list1 partitions[1] and list1 FP[1] in Table 1;

list partitions[20] and list FP[20] explained above (Category 2) are

printed as list2 partitions[1] and list2 FP[1] in Table 2 (and also

in Table 3); as well as list partitions[41] and list FP[41] explained

above (Category 3) are printed as list3 partitions[2] and list3 FP[2]

in Table 4.

Category 1 is determined if the ratio O/OÎ (the 1st value /4th value

in list FP[j]) is equal to 1, so that we put E = B (the 7th value) for

subsequent calculations. Table 1 collects the data of Category 1, where the

list numbers are changed for use of Category 1, i.e., list1 partitions[j]

and list1 FP[j].

On the other hand, Category 2 is determined if the ratio O/OÎ (the

1st value /4th value in list FP[j]) is equal to 2, so that we put E = 0

for subsequent calculations. Tables 2 and 3 collect several data of Cat-
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Table 2. Numbers of Cubane Derivatives Under the Subgroups of RS -
Stereoisomeric Group (Category 2, Part 1)

j list2 partitions list2 FP
[ O, Oh, Oσ̃, OÎ , Ohσ̃Î , A, B, C, D, E ]
(Eq. 35) (Eq. 36) (Eq. 37) (Eq. 38) (Eq. 39) (Eq. 40) (Eq. 41) (Eq. 42) (Eq. 43)

1 [7, 0, 0, 0, 0, 0, 1, 0, 0, 0] [ 1, 1/2, 1, 1/2, 1/2, 1, 0, 1, 0, 0 ]
2 [6, 1, 0, 0, 0, 0, 1, 0, 0, 0] [ 3, 3/2, 3, 3/2, 3/2, 3, 0, 3, 0, 0 ]
3 [6, 0, 0, 0, 0, 0, 2, 0, 0, 0] [ 3, 3/2, 3, 3/2, 3/2, 3, 0, 3, 0, 0 ]
4 [6, 0, 0, 0, 0, 0, 1, 0, 1, 0] [ 3, 3/2, 3, 3/2, 3/2, 3, 0, 3, 0, 0 ]
5 [5, 2, 0, 0, 0, 0, 1, 0, 0, 0] [ 7, 7/2, 6, 7/2, 3, 7, 0, 5, 0, 0 ]
6 [5, 1, 1, 0, 0, 0, 1, 0, 0, 0] [ 14, 7, 10, 7, 5, 14, 0, 6, 0, 0 ]
7 [5, 1, 0, 0, 0, 0, 2, 0, 0, 0] [ 7, 7/2, 6, 7/2, 3, 7, 0, 5, 0, 0 ]
8 [5, 1, 0, 0, 0, 0, 1, 1, 0, 0] [ 14, 9, 10, 7, 6, 14, 4, 6, 0, 0 ]
9 [5, 1, 0, 0, 0, 0, 1, 0, 1, 0] [ 14, 7, 10, 7, 5, 14, 0, 6, 0, 0 ]

10 [5, 0, 0, 0, 0, 0, 3, 0, 0, 0] [ 3, 3/2, 3, 3/2, 3/2, 3, 0, 3, 0, 0 ]
11 [5, 0, 0, 0, 0, 0, 2, 1, 0, 0] [ 7, 7/2, 6, 7/2, 3, 7, 0, 5, 0, 0 ]
12 [5, 0, 0, 0, 0, 0, 1, 1, 1, 0] [ 14, 7, 10, 7, 5, 14, 0, 6, 0, 0 ]
13 [4, 0, 0, 0, 0, 0, 4, 0, 0, 0] [ 7, 7/2, 6, 7/2, 3, 7, 0, 5, 0, 0 ]
14 [4, 3, 0, 0, 0, 0, 1, 0, 0, 0] [ 13, 13/2, 10, 13/2, 5, 13, 0, 7, 0, 0 ]
15 [4, 0, 0, 0, 0, 0, 3, 1, 0, 0] [ 13, 13/2, 10, 13/2, 5, 13, 0, 7, 0, 0 ]
16 [4, 0, 0, 0, 0, 0, 3, 0, 1, 0] [ 13, 13/2, 10, 13/2, 5, 13, 0, 7, 0, 0 ]
17 [4, 2, 0, 0, 0, 0, 2, 0, 0, 0] [ 22, 11, 16, 11, 8, 22, 0, 10, 0, 0 ]
18 [4, 0, 0, 0, 0, 0, 2, 0, 2, 0] [ 22, 11, 16, 11, 8, 22, 0, 10, 0, 0 ]
19 [4, 2, 1, 0, 0, 0, 1, 0, 0, 0] [ 35, 35/2, 22, 35/2, 11, 35, 0, 9, 0, 0 ]
20 [4, 2, 0, 0, 0, 0, 1, 0, 1, 0] [ 35, 35/2, 22, 35/2, 11, 35, 0, 9, 0, 0 ]
21 [4, 0, 0, 0, 0, 0, 2, 1, 1, 0] [ 35, 35/2, 22, 35/2, 11, 35, 0, 9, 0, 0 ]
22 [4, 0, 0, 0, 0, 0, 2, 0, 1, 1] [ 35, 35/2, 22, 35/2, 11, 35, 0, 9, 0, 0 ]
23 [4, 1, 1, 1, 0, 0, 1, 0, 0, 0] [ 70, 35, 38, 35, 19, 70, 0, 6, 0, 0 ]
24 [4, 1, 1, 0, 0, 0, 1, 1, 0, 0] [ 70, 41, 38, 35, 22, 70, 12, 6, 0, 0 ]
25 [4, 1, 1, 0, 0, 0, 2, 0, 0, 0] [ 35, 35/2, 22, 35/2, 11, 35, 0, 9, 0, 0 ]
26 [4, 1, 0, 0, 0, 0, 1, 1, 1, 0] [ 70, 35, 38, 35, 19, 70, 0, 6, 0, 0 ]
27 [3, 3, 1, 0, 0, 0, 1, 0, 0, 0] [ 48, 24, 30, 24, 15, 48, 0, 12, 0, 0 ]
28 [3, 3, 0, 0, 0, 0, 1, 1, 0, 0] [ 48, 28, 30, 24, 17, 48, 8, 12, 0, 0 ]
29 [3, 3, 0, 0, 0, 0, 1, 0, 1, 0] [ 48, 24, 30, 24, 15, 48, 0, 12, 0, 0 ]
30 [3, 3, 0, 0, 0, 0, 2, 0, 0, 0] [ 24, 12, 17, 12, 17/2, 24, 0, 10, 0, 0 ]
31 [3, 2, 2, 0, 0, 0, 1, 0, 0, 0] [ 70, 35, 42, 35, 21, 70, 0, 14, 0, 0 ]
32 [3, 2, 0, 0, 0, 0, 2, 1, 0, 0] [ 70, 35, 42, 35, 21, 70, 0, 14, 0, 0 ]
33 [3, 2, 1, 1, 0, 0, 1, 0, 0, 0] [ 140, 70, 76, 70, 38, 140, 0, 12, 0, 0 ]
34 [3, 2, 1, 0, 0, 0, 1, 1, 0, 0] [ 140, 78, 76, 70, 42, 140, 16, 12, 0, 0 ]
35 [3, 2, 0, 0, 0, 0, 1, 1, 1, 0] [ 140, 70, 76, 70, 38, 140, 0, 12, 0, 0 ]
36 [3, 1, 1, 1, 1, 0, 1, 0, 0, 0] [ 280, 140, 140, 140, 70, 280, 0, 0, 0, 0 ]
37 [3, 1, 1, 1, 0, 0, 1, 1, 0, 0] [ 280, 152, 140, 140, 76, 280, 24, 0, 0, 0 ]
38 [3, 1, 1, 1, 0, 0, 1, 0, 1, 0] [ 280, 140, 140, 140, 70, 280, 0, 0, 0, 0 ]
39 [3, 1, 1, 0, 0, 0, 1, 1, 1, 0] [ 280, 140, 140, 140, 70, 280, 0, 0, 0, 0 ]
40 [3, 1, 0, 0, 0, 0, 1, 1, 1, 1] [ 280, 144, 140, 140, 72, 280, 8, 0, 0, 0 ]

egory 2, where the list numbers are changed for use of Category 2, i.e.,

list2 partitions[j] and list2 FP[j].

Category 3 is determined if the ratio O/OÎ in list FP[j] is neither

equal to 1 nor equal to 2, so that E is calculated by a special proce-

dure for subsequent calculations. Table 4 collects several data of Cate-

gory 3. where the list numbers are changed for use of Category 3, i.e.,

list3 partitions[j] and list3 FP[j].

4.3 Total features of type-itemized enumerations

By type-itemized enumerations under the RS -stereoisomeric group Ohσ̃Î ,

there emerge five types of stereoisograms shown in Figure 6, which is cited
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Table 3. Numbers of Cubane Derivatives Under the Subgroups of RS -
Stereoisomeric Group (Category 2, Part 2)

j list2 partitions list2 FP
[ O, Oh, Oσ̃, OÎ , Ohσ̃Î , A, B, C, D, E ]
(Eq. 35) (Eq. 36) (Eq. 37) (Eq. 38) (Eq. 39) (Eq. 40) (Eq. 41) (Eq. 42) (Eq. 43)

41 [3, 0, 0, 0, 0, 0, 3, 2, 0, 0] [ 24, 12, 17, 12, 17/2, 24, 0, 10, 0, 0 ]
42 [3, 0, 0, 0, 0, 0, 3, 1, 1, 0] [ 48, 24, 30, 24, 15, 48, 0, 12, 0, 0 ]
43 [3, 0, 0, 0, 0, 0, 3, 0, 1, 1] [ 48, 24, 30, 24, 15, 48, 0, 12, 0, 0 ]
44 [3, 0, 0, 0, 0, 0, 2, 2, 1, 0] [ 70, 35, 42, 35, 21, 70, 0, 14, 0, 0 ]
45 [3, 0, 0, 0, 0, 0, 2, 1, 1, 1] [ 140, 70, 76, 70, 38, 140, 0, 12, 0, 0 ]
46 [2, 2, 2, 0, 0, 0, 2, 0, 0, 0] [ 114, 57, 68, 57, 34, 114, 0, 22, 0, 0 ]
47 [2, 0, 0, 0, 0, 0, 3, 2, 1, 0] [ 70, 35, 42, 35, 21, 70, 0, 14, 0, 0 ]
48 [2, 0, 0, 0, 0, 0, 3, 1, 2, 0] [ 70, 35, 42, 35, 21, 70, 0, 14, 0, 0 ]
49 [2, 0, 0, 0, 0, 0, 3, 1, 1, 1] [ 140, 70, 76, 70, 38, 140, 0, 12, 0, 0 ]
50 [2, 0, 0, 0, 0, 0, 2, 2, 2, 0] [ 114, 57, 68, 57, 34, 114, 0, 22, 0, 0 ]
51 [2, 0, 0, 0, 0, 0, 2, 1, 2, 1] [ 210, 105, 114, 105, 57, 210, 0, 18, 0, 0 ]
52 [2, 2, 2, 1, 0, 0, 1, 0, 0, 0] [ 210, 105, 114, 105, 57, 210, 0, 18, 0, 0 ]
53 [2, 2, 2, 0, 0, 0, 1, 0, 1, 0] [ 210, 105, 114, 105, 57, 210, 0, 18, 0, 0 ]
54 [2, 2, 1, 0, 0, 0, 2, 1, 0, 0] [ 210, 105, 114, 105, 57, 210, 0, 18, 0, 0 ]
55 [2, 2, 1, 0, 0, 0, 2, 0, 1, 0] [ 210, 105, 114, 105, 57, 210, 0, 18, 0, 0 ]
56 [2, 2, 0, 0, 0, 0, 2, 1, 1, 0] [ 210, 105, 114, 105, 57, 210, 0, 18, 0, 0 ]
57 [2, 2, 1, 1, 1, 0, 1, 0, 0, 0] [ 420, 210, 216, 210, 108, 420, 0, 12, 0, 0 ]
58 [2, 2, 1, 1, 0, 0, 2, 0, 0, 0] [ 210, 105, 114, 105, 57, 210, 0, 18, 0, 0 ]
59 [2, 2, 1, 1, 0, 0, 1, 1, 0, 0] [ 420, 222, 216, 210, 114, 420, 24, 12, 0, 0 ]
60 [2, 2, 1, 1, 0, 0, 1, 0, 1, 0] [ 420, 210, 216, 210, 108, 420, 0, 12, 0, 0 ]
61 [2, 2, 1, 0, 0, 0, 1, 1, 1, 0] [ 420, 210, 216, 210, 108, 420, 0, 12, 0, 0 ]
62 [2, 1, 1, 1, 1, 0, 2, 0, 0, 0] [ 420, 210, 216, 210, 108, 420, 0, 12, 0, 0 ]
63 [2, 1, 1, 1, 0, 0, 2, 1, 0, 0] [ 420, 210, 216, 210, 108, 420, 0, 12, 0, 0 ]
64 [2, 1, 1, 1, 0, 0, 2, 0, 1, 0] [ 420, 210, 216, 210, 108, 420, 0, 12, 0, 0 ]
65 [2, 1, 1, 1, 1, 1, 1, 0, 0, 0] [ 840, 420, 420, 420, 210, 840, 0, 0, 0, 0 ]
66 [2, 1, 1, 1, 1, 0, 1, 1, 0, 0] [ 840, 432, 420, 420, 216, 840, 24, 0, 0, 0 ]
67 [2, 1, 1, 1, 1, 0, 1, 0, 1, 0] [ 840, 420, 420, 420, 210, 840, 0, 0, 0, 0 ]
68 [2, 1, 1, 1, 0, 0, 1, 1, 1, 0] [ 840, 420, 420, 420, 210, 840, 0, 0, 0, 0 ]
69 [2, 1, 1, 0, 0, 0, 1, 1, 1, 1] [ 840, 432, 420, 420, 216, 840, 24, 0, 0, 0 ]
70 [1, 1, 1, 1, 1, 1, 2, 0, 0, 0] [ 840, 420, 420, 420, 210, 840, 0, 0, 0, 0 ]
71 [1, 1, 1, 1, 1, 0, 3, 0, 0, 0] [ 280, 140, 140, 140, 70, 280, 0, 0, 0, 0 ]
72 [1, 1, 1, 1, 1, 0, 2, 1, 0, 0] [ 840, 420, 420, 420, 210, 840, 0, 0, 0, 0 ]
73 [1, 1, 1, 1, 1, 0, 2, 0, 1, 0] [ 840, 420, 420, 420, 210, 840, 0, 0, 0, 0 ]
74 [1, 1, 1, 1, 0, 0, 2, 1, 1, 0] [ 840, 420, 420, 420, 210, 840, 0, 0, 0, 0 ]
75 [1, 1, 1, 0, 0, 0, 2, 1, 1, 1] [ 840, 420, 420, 420, 210, 840, 0, 0, 0, 0 ]
76 [1, 1, 1, 1, 1, 1, 1, 1, 0, 0] [ 1680, 840, 840, 840, 420, 1680, 0, 0, 0, 0 ]
77 [1, 1, 1, 1, 1, 0, 1, 1, 1, 0] [ 1680, 840, 840, 840, 420, 1680, 0, 0, 0, 0 ]
78 [1, 1, 1, 1, 0, 0, 1, 1, 1, 1] [ 1680, 864, 840, 840, 432, 1680, 48, 0, 0, 0 ]
79 [0, 0, 0, 0, 0, 0, 6, 2, 0, 0] [ 3, 3/2, 3, 3/2, 3/2, 3, 0, 3, 0, 0 ]
80 [0, 0, 0, 0, 0, 0, 4, 3, 1, 0] [ 13, 13/2, 10, 13/2, 5, 13, 0, 7, 0, 0 ]
81 [0, 0, 0, 0, 0, 0, 4, 2, 2, 0] [ 22, 11, 16, 11, 8, 22, 0, 10, 0, 0 ]
82 [0, 0, 0, 0, 0, 0, 4, 2, 1, 1] [ 35, 35/2, 22, 35/2, 11, 35, 0, 9, 0, 0 ]
83 [0, 0, 0, 0, 0, 0, 3, 2, 2, 1] [ 70, 35, 42, 35, 21, 70, 0, 14, 0, 0 ]
84 [0, 0, 0, 0, 0, 0, 3, 1, 3, 1] [ 48, 24, 30, 24, 15, 48, 0, 12, 0, 0 ]

Table 4. Numbers of Cubane Derivatives Under the Subgroups of RS -
Stereoisomeric Group (Category 3: Coexistence of Category
1 and 2)

j list3 partitions list3 FP
[ O, Oh, Oσ̃, OÎ , Ohσ̃Î , A, B, C, D, E ]
(Eq. 35) (Eq. 36) (Eq. 37) (Eq. 38) (Eq. 39) (Eq. 40) (Eq. 41) (Eq. 42) (Eq. 43)

1 [4, 0, 0, 0, 0, 0, 2, 2, 0, 0] [ 22, 14, 16, 16, 12, 22, 6, 10, 10, E ]
2 [4, 2, 0, 0, 0, 0, 1, 1, 0, 0] [ 35, 23, 22, 22, 16, 35, 11, 9, 9, E ]
3 [4, 0, 0, 0, 0, 0, 1, 1, 1, 1] [ 70, 40, 38, 44, 26, 70, 10, 6, 18, E ]
4 [2, 2, 0, 0, 0, 0, 2, 2, 0, 0] [ 114, 64, 68, 66, 42, 114, 14, 22, 18, E ]
5 [2, 0, 0, 0, 0, 0, 2, 2, 1, 1] [ 210, 113, 114, 123, 70, 210, 16, 18, 36, E ]
6 [2, 2, 2, 0, 0, 0, 1, 1, 0, 0] [ 210, 118, 114, 114, 68, 210, 26, 18, 18, E ]
7 [2, 2, 0, 0, 0, 0, 1, 1, 1, 1] [ 420, 224, 216, 228, 124, 420, 28, 12, 36, E ]
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from the previous report [15] after necessary data for type-itemization are

added.

Because a type-I stereoisogram (type index [−,−, a]) has equality sym-

bols along the diagonal directions (i.e., ascleral), double-headed arrows

along the vertical directions (i.e., chiral), and double-headed arrows along

the horizontal directions (i.e., RS -stereogenic), the numbers of fixed points

under the subgroups (O, Oh, Oσ̃, OÎ , and Ohσ̃Î) are obtained as shown

below the type-I stereoisogram. Note that such a fixed point is altered

according to equivalence class of each subgroup. For example, one pair of

enantiomers or one achiral derivative is counted once as a “fixed point”

(an “equivalence class” or an “orbit”) under the point group Oh. Such

numbers of fixed points are aligned to give a list for the type I (mat I =

[2,1,1,2,1]).

In a similar way, other types correspond to respective lists, i.e., mat II

= [2,1,2,1,1] for type-II (type index [−, a,−]), mat III = [4,2,2,2,1] for type-

III (type index [−,−,−]), mat IV = [1,1,1,1,1] for type-IV (type index

[a, a, a]), and mat V = [2,2,1,1,1] for type-V (type index [a,−,−]).

These lists (mat I to mat V) shown in the bottoms of the respective

stereoisograms of Figure 6 are collected into type matrix as a 5 × 5 matrix

as follows:

type matrix =

\ O Oh Oσ̃ OÎ Ohσ̃Î

I

II

III

IV

V




2, 1, 1, 2, 1

2, 1, 2, 1, 1

4, 2, 2, 2, 1

1, 1, 1, 1, 1

2, 2, 1, 1, 1




(48)

The list [3, 3, 3, 3, 3] for [O, Oh, Oσ̃, OÎ , Ohσ̃Î ] can be obtained by the

multiplication of [0, 0, 0, 3, 0] (the presence of 3 type-IV stereoisograms) by

type matrix under the GAP system:

gap> type_matrix :=

> [[2,1,1,2,1],

> [2,1,2,1,1],

> [4,2,2,2,1],
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RS-astereogeni
 RS-stereogeni


Type I: [−,−,a]
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O

h
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O

s̃
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O

Î

two as
leral promole
ules

O

hs̃Î
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hiral

Type II: [−,a,−]
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✲
S
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O
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mat V = [2,2,1,1,1℄

Figure 6. Stereoisograms for representing RS-stereoisomers of five
types [15].
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> [1,1,1,1,1],

> [2,2,1,1,1]];;

gap> [0,0,0,3,0]*type_matrix;

[ 3, 3, 3, 3, 3 ]

gap>

However, the inverse calculation is impossible, because the matrix

type matrix is singular, where the corresponding determinant is equal to

zero. This means that the inverse matrix cannot be calculated, as testified

as follows:

gap> Determinant(type_matrix);

0

gap> type_matrix^(-1);

fail

gap>

4.4 Half-size-subgroup method for type-itemized

enumerations

Although the half-size-subgroup method for type-itemized enumerations

has been described in a previous report [58], the essential points should

be described briefly so as to be compared with those of the present new

method (the factor-group method).

4.4.1 Half-size-subgroup method applied to

category-1 cases

By examining the data of the previous subsections, we find that the enu-

meration results under the LR-permutation group OÎ are remarkable to

understand total features of type-itemized enumerations. The Category 1

for a stereoisogram is defined if the number of fixed points under O (the

first value of list FP[j]) is equal to the number of fixed points under the

LR-permutation group OÎ .

Table 1 collects several data of Category 1, in which the ratio O/OÎ

(the 1st value /4th value in list1 FP[j]) is equal to 1, so that we put E

= B (the 7th value).
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By examining the type-I row and type-IV row in the type matrix (48),

the O-column and the OÎ -column have the same value (i.e., O/OÎ = 1).

This means that any number of type-I stereoisograms and any number of

type-IV stereoisograms are possible to give the Category 1 (O/OÎ = 1),

if the absence of type-II, type-III, and type-IV is guaranteed.

The list [3, 3, 3, 3, 3] for [O, Oh, Oσ̃, OÎ , Ohσ̃Î ] is extracted from the

first to 5th values in the intersection between [6, 2, 0, 0, 0, 0, 0, 0, 0, 0]-row

and list1 FP in Table 1. As another example, the list [7, 6, 6, 7, 6] for

[O, Oh, Oσ̃, OÎ , Ohσ̃Î ] is extracted from the first to 5th values in the

intersection between [5, 2, 1, 0, 0, 0, 0, 0, 0, 0]-row and list1 FP in Table 1.

A tentative non-singular matrix type matrixX is formulated from the

singular matrix type matrix by changing the value 1 at the intersection

between th 2nd row and the 4th column into 0. Thereby, the following

results are obtained.

gap> type_matrixX :=

> [[2,1,1,2,1],

> [2,1,2,0,1],

> [4,2,2,2,1],

> [1,1,1,1,1],

> [2,2,1,1,1]];;

gap> [3,3,3,3,3]*type_matrixX^(-1);

[ 0, 0, 0, 3, 0 ]

gap> [7,6,6,7,6]*type_matrixX^(-1);

[ 1, 0, 0, 5, 0 ]

gap>

The resulting list [I, II, III, IV, V] = [ 0, 0, 0, 3, 0 ] indicates the presence

of three cubane derivatives having a type-IV stereoisogram, which have

composition H6A2. On the other hand, the resulting list [I, II, III, IV,

V] = [ 1, 0, 0, 5, 0 ] indicates the presence of one cubane derivative

having a type-I stereoisogram and five cubane derivatives having type-IV

stereoisograms, both of which have composition H5A2B.

More primitively speaking, the list [I, 0, 0, IV, 0] gives the following
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simultaneous linear equations for the former case:

for O, OÎ : 2I + IV = 3

for Oh, Oσ̃, Ohσ̃Î : I + IV = 3

Result: I = 0 and IV = 3:

i.e., [I, II, III, IV, V] = [0,0,0,3,0]. (49)

and for the latter case:

for O, OÎ : 2I + IV = 7

for Oh, Oσ̃, Ohσ̃Î : I + IV = 6

Result: I = 1 and IV = 5:

i.e., [I, II, III, IV, V] =[1,0,0,5,0]. (50)

These results are consistent with the data calculated above by using the

non-singular matrix type matrixX.

Similar procedures can be applied to the data of Category 1 listed in

Table 1, where the presence of cubane derivatives having type-I and type-

IV stereoisograms. The results have been reported in a previous paper [58].

4.4.2 Half-size-subgroup method applied to

category-2 cases

Let us examine the partition [4, 1, 1, 0, 0, 0, 1, 1, 0, 0] appearing in the 24th

row of Table 2, which indicates that O/OÎ (the 1st value /the 4th value)

is equal to 70/35 = 2. This value means a Category-2 case.

The list [70, 41, 38, 35, 22] for [O, Oh, Oσ̃, OÎ , Ohσ̃Î ] is extracted from

the first to 5th values in the intersection between [4, 1, 1, 0, 0, 0, 1, 1, 0, 0]-

row and list2 FP in Table 2.

As discussed in the previous article [58], another non-singular matrix

type matrixY is tentatively formulated by starting from the singular ma-

trix type matrix, where the value 1 at the intersection between the 1st

row and the 5th column is changed into 0. Thereby, the following results

are obtained.
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gap> type_matrixY :=

> [[2,1,1,2,0],

> [2,1,2,1,1],

> [4,2,2,2,1],

> [1,1,1,1,1],

> [2,2,1,1,1]];;

gap> [70,41,38,35,22]*type_matrixY^(-1);

[ 0, 3, 13, 0, 6 ]

gap>

The resulting list [I, II, III, IV, V] = [ 0, 3, 13, 0, 6 ] indicates that the com-

position H4ABpp permits the presence of three cubane derivatives having

a type-II stereoisogram, 13 cubane derivatives having a type-III stereo-

isogram, and 6 cubane derivatives having a type-V stereoisogram. Their

formulas will be shown below for illustrating the corresponding results of

the factor-group method.

Similar procedures can be applied to the data of Category 2 listed in

Tables 2 and 3, where the presence of cubane derivatives having type-II,

type-III, and type-V stereoisograms. The results have been reported in a

previous paper [58].

4.5 Factor-group method for type-itemized

enumerations

4.5.1 Factor-group method applied to category-1 cases

The respective numbers of fixed points corresponding to the respective

cosets (A, B, C, andD) (Eqs. 40–43) have been calculated by using the CI-

CFs for the factor group O\Ohσ̃Î (Eq. 6). They are listed as the five values

of list1 FP[j] in the latter half of each row of Table 1, which can be used

as a list for type-itemized enumeration under the factor group O\Ohσ̃Î .

Each value shown in the A-column is regarded as the number of fixed

points under O (A)︸ ︷︷ ︸
1

, each value shown in the B-column is regarded as the

number of fixed points under Oh (AB)︸ ︷︷ ︸
2

, each value shown in the C-column

is regarded as the number of fixed points under Oσ̃ (AC)︸ ︷︷ ︸
3

, and each value
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shown in the D-column is regarded as the number of fixed points under

OÎ (AD)︸ ︷︷ ︸
4

. By referring to the non-redundant set of subgroups SSGO\Ohσ̃Î

(Eq. 8), the E-column is the number of fixed points under Ohσ̃Î (ABCD)︸ ︷︷ ︸
5

,

which is estimated by the relationship E = B in the case of Category 1.

This is because Category 1 means that the ascleral property results in the

absence of type-V stereoisograms to assure B = E.

The extracted list [A, B, C, D, E] is regarded to be list1 FPCat1A,

which is represented in the calculation process as follows:

list1 FPCat1A :=

[list1 FP[j][6],list1 FP[j][7],list1 FP[j][8], list1 FP[j][9], list1 FP[j][10]];.

This list is multiplied by the inverse of a mark table tom matrix as a left

triangular matrix.

For the sake of convenience, the type-itemized calculations based on

the factor group (mark table: tom matrix) is referred to under the name

the factor-group method. Several calculation data (j = 20 · · · 22) are shown
below as the examples of the GAP calculation:

gap> tom_matrix :=

> [[4,0,0,0,0],

> [2,2,0,0,0],

> [2,0,2,0,0],

> [2,0,0,2,0],

> [1,1,1,1,1]];;

gap> list1_partitions :=[];;

gap> list1_FP := [];;

gap> #selected data

gap> list1_III_V_II_I_Vtype := [];;

gap> list1_partitions[20] := [ 6, 0, 0, 0, 0, 0, 1, 1, 0, 0 ];

[ 6, 0, 0, 0, 0, 0, 1, 1, 0, 0 ]

gap> list1_FP[20] := [ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3];

[ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 ]

gap> list1_partitions[21] := [ 3, 1, 1, 1, 1, 1, 0, 0, 0, 0 ];

[ 3, 1, 1, 1, 1, 1, 0, 0, 0, 0 ]

gap> list1_FP[21] := [ 280, 140, 140, 280, 140, 280, 0, 0, 280,0];

[ 280, 140, 140, 280, 140, 280, 0, 0, 280, 0 ]

gap> list1_partitions[22] := [ 0, 0, 0, 0, 0, 0, 4, 4, 0, 0 ];

[ 0, 0, 0, 0, 0, 0, 4, 4, 0, 0 ]

gap> list1_FP[22] := [ 7, 6, 6, 7, 6, 7, 5, 5, 7, 5];

[ 7, 6, 6, 7, 6, 7, 5, 5, 7, 5 ]

gap> #type-itemized enumeration

gap> for j in [20..22] do

> Print("list1_partitions[", j, "] := ", list1_partitions[j], "; \n");



273

Table 5. Type-Itemized Enumerations by the Factor-Group Method
(Category 1)

j list1 partitions list1 FPCat1 [III V II I IV]type[
A

(Eq. 40),
B

(Eq. 41),
C

(Eq. 42),
D

(Eq. 43),E

]

1 [8, 0, 0, 0, 0, 0, 0, 0, 0, 0] [1, 1, 1, 1, 1] [0, 0, 0, 0, 1]
2 [7, 1, 0, 0, 0, 0, 0, 0, 0, 0] [1, 1, 1, 1, 1] [0, 0, 0, 0, 1]
3 [6, 2, 0, 0, 0, 0, 0, 0, 0, 0] [3, 3, 3, 3, 3] [0, 0, 0, 0, 3]
4 [6, 1, 1, 0, 0, 0, 0, 0, 0, 0] [3, 3, 3, 3, 3] [0, 0, 0, 0, 3]
5 [5, 3, 0, 0, 0, 0, 0, 0, 0, 0] [3, 3, 3, 3, 3] [0, 0, 0, 0, 3]
6 [5, 2, 1, 0, 0, 0, 0, 0, 0, 0] [7, 5, 5, 7, 5] [0, 0, 0, 1, 5]
7 [5, 1, 1, 1, 0, 0, 0, 0, 0, 0] [14, 6, 6, 14, 6] [0, 0, 0, 4, 6]
8 [4, 4, 0, 0, 0, 0, 0, 0, 0, 0] [7, 5, 5, 7, 5] [0, 0, 0, 1, 5]
9 [4, 3, 1, 0, 0, 0, 0, 0, 0, 0] [13, 7, 7, 13, 7] [0, 0, 0, 3, 7]
10 [4, 2, 2, 0, 0, 0, 0, 0, 0, 0] [22, 10, 10, 22, 10] [0, 0, 0, 6, 10]
11 [4, 2, 1, 1, 0, 0, 0, 0, 0, 0] [35, 9, 9, 35, 9] [0, 0, 0, 13, 9]
12 [4, 1, 1, 1, 1, 0, 0, 0, 0, 0] [70, 6, 6, 70, 6] [0, 0, 0, 32, 6]
13 [3, 3, 2, 0, 0, 0, 0, 0, 0, 0] [24, 10, 10, 24, 10] [0, 0, 0, 7, 10]
14 [3, 3, 1, 1, 0, 0, 0, 0, 0, 0] [48, 12, 12, 48, 12] [0, 0, 0, 18, 12]
15 [3, 2, 2, 1, 0, 0, 0, 0, 0, 0] [70, 14, 14, 70, 14] [0, 0, 0, 28, 14]
16 [3, 2, 1, 1, 1, 0, 0, 0, 0, 0] [140, 12, 12, 140, 12] [0, 0, 0, 64, 12]
17 [2, 2, 2, 2, 0, 0, 0, 0, 0, 0] [114, 22, 22, 114, 22] [0, 0, 0, 46, 22]
18 [2, 2, 2, 1, 1, 0, 0, 0, 0, 0] [210, 18, 18, 210, 18] [0, 0, 0, 96, 18]
19 [2, 2, 1, 1, 1, 1, 0, 0, 0, 0] [420, 12, 12, 420, 12] [0, 0, 0, 204, 12]
20 [6, 0, 0, 0, 0, 0, 1, 1, 0, 0] [3, 3, 3, 3, 3] [0, 0, 0, 0, 3]
21 [3, 1, 1, 1, 1, 1, 0, 0, 0, 0] [280, 0, 0, 280, 0] [0, 0, 0, 140, 0]
22 [0, 0, 0, 0, 0, 0, 4, 4, 0, 0] [7, 5, 5, 7, 5] [0, 0, 0, 1, 5]

> list1_FPCat1A := [list1_FP[j][6],list1_FP[j][7],list1_FP[j][8],list1_FP[j][9],

↪→ list1_FP[j][10]];

> list_temp := list1_FPCat1A * tom_matrix^(-1);

> Print("list1_III_V_II_I_Vtype[", j, "] := ", list_temp, "; \n");

> od;

list1_partitions[20] := [ 6, 0, 0, 0, 0, 0, 1, 1, 0, 0 ];

list1_III_V_II_I_Vtype[20] := [ 0, 0, 0, 0, 3 ];

list1_partitions[21] := [ 3, 1, 1, 1, 1, 1, 0, 0, 0, 0 ];

list1_III_V_II_I_Vtype[21] := [ 0, 0, 0, 140, 0 ];

list1_partitions[22] := [ 0, 0, 0, 0, 0, 0, 4, 4, 0, 0 ];

list1_III_V_II_I_Vtype[22] := [ 0, 0, 0, 1, 5 ];

gap>

The total data for Category 1 ([III V II I IV]type, j = 1 · · · 22) has
been obtained on the basis of the factor-group method due to the five

values list1 FPCat1[j] (j = 1 · · · 22) extracted from the latter half of

each row of Table 1 (listed as list1 FP, j = 1 · · · 22). The resulting values

are collected in Table 5. They are consistent with the values of the half-

size-subgroup method in the preceding subsubsection and in the previous

article [58].
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4.5.2 Examples of calculation data of category 1

To examine the validity of the factor-group method proposed in the present

article, let us testify several data of type-itemized enumerations of Cate-

gory 1 collected in Table 5.

Cubane Derivatives with Composition H5A3.

The [III V II I IV]type[5] list [0, 0, 0, 0, 3] appearing in the 5th row of

Table 5 indicates the presence of three type-IV cubane derivatives with

list1 partitions[5] (H5A3). Their stereoisograms are depicted in Figure

7. Each of them is degenerated into one achiral derivative: ([6])IV, ([8])IV,

or ([10])IV.

The symmetry-itemized enumeration [33] under the point group Oh

has indicated the presence of two C ′
s-derivatives and one C3v-derivative.

The derivatives ([6])IV and ([8])IV belong to C ′
s-point group, where the

respective mirror plane is determined to be the plane 1-2-7-8 in ([6])IV

and the plane 2-4-8-6 in ([8])IV. The three-fold axis is determined to

run through 1 an 7 in the C3v-derivative (([10])IV-derivative), where the

projection along this line is depicted in the formula 12.

Cubane Derivatives with Composition H5A2B.

The [III V II I IV]type[6] list [0, 0, 0, 1, 5] appearing in the 6th row of

Table 5 indicates the presence of one type-I and five type-IV cubane deriva-

tives with list1 partitions[6] (H5A2B). Because each of the latter five

type-IV stereoisograms are degenerated into one achiral derivative, they

are depicted to be ([15])IV, ([16])IV, ([17])IV, ([18])IV, and ([19])IV. One

type-I stereoisogram, which is fully depicted in Figure 8, can be repre-

sented by the corresponding simplified stereoisogram, i.e., ([13 13])I.

The symmetry-itemized enumeration [33] under the point group Oh

has indicated the presence of one C1-derivative and five C ′
s-derivatives

with the composition H5A2B.

The C ′
s-point group assigned to the derivatives ([15])IV and ([16])IV

are characterized by the respective mirror plane determined to be the plane

2486. On the other hand, the C ′
s-point group assigned to the derivatives

([17])IV. ([18])IV, and ([19])IV are characterized by the respective mirror

plane determined to be the plane 1375. The two kinds of C ′
s-point groups

are conjugate to each other under the point group Oh.
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Figure 7. Stereoisograms of cubane derivative with the composition
H5A3. The type index [a, a, a] is assigned to such a type-
IV stereoisogram, which is specified to be achiral, RS -
astereogenic, and ascleral.
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Figure 8. Type-I stereoisogram (full form) of a cubane derivative with
the composition H5A2B and Simplified type-IV stereoiso-
grams of cubane derivatives with the composition H5A2B.

In the previous paper [59], the author (Fujita) has applied the C/A-

descriptors for a cube (CU-8 ) [60], which is adopted in the indexing sys-

tem of Chemical Abstracts [61]. For the procedure of assigning the C/A-

descriptors to cubane derivatives, see Section 4.3.1 of the previous pa-

per [59]. According to Fujita’s stereoisogram approach [54], a pair of C/A-

descriptors has been clarified to be assigned to a pair of RS -diastereomers

(due to RS -stereogenicity as the second kind of handedness), not to a pair

of enantiomers (due to chirality as the first kind of handedness).

Let us examine the assignment of C/A-descriptors to the type-I ste-

reoisogram shown in Figure 8, which is characterized by a type index

[−,−, a] (chirality, RS -stereogenicity, and asclerality) to show the pres-

ence of diagonal equality symbols. Figure 9 indicates the assignment of

C/A-descriptors to the type-I cubane derivative (the reference promolecule

13) with the composition H5A2B. According to Fujita’s stereoisogram ap-

proach (see Figure 2), a pair of C/A-descriptors is considered to be assigned

to a pair of RS -diastereomers 13/14 (due to RS -stereogenicity), not to a

pair of enantiomers 13/13 (due to chirality). Thereby, CU -8-13132333-C

is given to 13, while CU -8-13132333-A is given to 14 (= 13). In the case

of a type-I stereoisograms, its asclerality [−,−, a] results in the incorpora-
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Figure 9. Assignment of C/A-descriptors to a pair of RS -
diastereomers 13/14 with the composition H5A2B,
which is characterized by a type-I stereoisogram. The pair
of RS -diastereomers 13/14 is coincident with a pair of
enantiomers 13/13. The priority sequence is presumed to
be A 1○ > B 2○ > H 3○.

tion between an enantiomeric relationship 13/13 and RS -diastereomeric

relationship 13/14, so that the C/A-descriptors are regarded to be given

to a pair of enantiomers (Figure 1) under the conventional stereochemis-

try. Even in Fujita’s stereoisogram approach, this case is treated as being

chirality-faithful because of the parallelism of C/A-descriptors between

RS -stereogenicity and chirality.

Note that the conventional stereochemistry adopts chirality as a sole

kind of handedness, and disregards RS -stereogenicity until now. This

treatment under the sole kind of handedness means that the vertical frame

of the enantiomerism is redrawn horizontally in Figure 1, so as to be com-

pletely involved in the horizontal frame of Mislow-Siegel’s stereogenicity.

As a result, the cases of type-III and the cases of type-V are treated in

accordance with the type-I cases (e.g., Figure 9). Such treatments that nul-

lify the presence of RS -stereogenicity as the second kind handedness have

been main roots of misunderstandings in the conventional stereochemistry.
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4.5.3 The factor-group method applied to category-2 cases

The Category 2 for a stereoisogram is defined if the number of fixed points

under O (the first value of list FP[j]) is obtained by the duplication

of the number of fixed points under the LR-permutation group OÎ (i.e.,

O/OÎ = 2).

Tables 2 and 3 collect several data of Category 2, in which the ratio

O/OÎ (the 1st value /4th value in list2 FP[j]) is equal to 2. It should

be noted that we put E = D = 0.

It should be noted that we have D = 0 always in the case of Category 2.

Thus, if O/OÎ = 2, all OÎ is scleral and there are no ascleral derivatives,

so as to give D = 0 and E = 0.

4.5.4 Examples of calculation data of category 2

To examine the validity of the factor-group method proposed in the present

article, let us testify several data of type-itemized enumerations of Cate-

gory 2 collected in Tables 6 and 7.

Derivatives with Composition H4ABpp

As a typical Category-2 case, let us examine the values collected in the

24th row of Table 6 (list2 partitions[24] = [4, 1, 1, 0, 0, 0, 1, 1, 0, 0]),

which corresponds to the derivatives with composition H4ABpp. The top

5 values [70, 41, 38, 35, 22] have been already used during the half-size-

subgroup method (Subsubsection 4.4.2). The next 5 values [70, 12, 6, 0, 0]

extracted and listed under the name list2 FPCat2B[24] in Table 6 are

used in the present factor-group method. In the following GAP code,

the set of extracted values list2 FPCat2B[24][6]–[10] ([70, 12, 6, 0, 0]) is

stored temporarily under the name templist. Then, this list is multi-

plied by the inverse matrix of a mark table (tom matrix). The resulting

values for list2 III V II I Vtype[24] are stored in the temporary list

list temp.

gap> tom_matrix :=

> [[4,0,0,0,0],

> [2,2,0,0,0],

> [2,0,2,0,0],

> [2,0,0,2,0],

> [1,1,1,1,1]];;
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Table 6. Type-Itemized Enumerations by the Factor-Group Method
(Category 2, Part 1)

j list2 partitions list2 FPCat2 [III V II I IV]type[
A

(Eq. 40),
B

(Eq. 41),
C

(Eq. 42),
D

(Eq. 43),E

]

1 [7, 0, 0, 0, 0, 0, 1, 0, 0, 0] [1, 0, 1, 0, 0] [0, 0, 1/2, 0, 0]
2 [6, 1, 0, 0, 0, 0, 1, 0, 0, 0] [3, 0, 3, 0, 0] [0, 0, 3/2, 0, 0]
3 [6, 0, 0, 0, 0, 0, 2, 0, 0, 0] [3, 0, 3, 0, 0] [0, 0, 3/2, 0, 0]
4 [6, 0, 0, 0, 0, 0, 1, 0, 1, 0] [3, 0, 3, 0, 0] [0, 0, 3/2, 0, 0]
5 [5, 2, 0, 0, 0, 0, 1, 0, 0, 0] [7, 0, 5, 0, 0] [1/2, 0, 5/2, 0, 0]
6 [5, 1, 1, 0, 0, 0, 1, 0, 0, 0] [14, 0, 6, 0, 0] [2, 0, 3, 0, 0]
7 [5, 1, 0, 0, 0, 0, 2, 0, 0, 0] [7, 0, 5, 0, 0] [1/2, 0, 5/2, 0, 0]
8 [5, 1, 0, 0, 0, 0, 1, 1, 0, 0] [14, 4, 6, 0, 0] [1, 2, 3, 0, 0]
9 [5, 1, 0, 0, 0, 0, 1, 0, 1, 0] [14, 0, 6, 0, 0] [2, 0, 3, 0, 0]
10 [5, 0, 0, 0, 0, 0, 3, 0, 0, 0] [3, 0, 3, 0, 0] [0, 0, 3/2, 0, 0]
11 [5, 0, 0, 0, 0, 0, 2, 1, 0, 0] [7, 0, 5, 0, 0] [1/2, 0, 5/2, 0, 0]
12 [5, 0, 0, 0, 0, 0, 1, 1, 1, 0] [14, 0, 6, 0, 0] [2, 0, 3, 0, 0]
13 [4, 0, 0, 0, 0, 0, 4, 0, 0, 0] [7, 0, 5, 0, 0] [1/2, 0, 5/2, 0, 0]
14 [4, 3, 0, 0, 0, 0, 1, 0, 0, 0] [13, 0, 7, 0, 0] [3/2, 0, 7/2, 0, 0]
15 [4, 0, 0, 0, 0, 0, 3, 1, 0, 0] [13, 0, 7, 0, 0] [3/2, 0, 7/2, 0, 0]
16 [4, 0, 0, 0, 0, 0, 3, 0, 1, 0] [13, 0, 7, 0, 0] [3/2, 0, 7/2, 0, 0]
17 [4, 2, 0, 0, 0, 0, 2, 0, 0, 0] [22, 0, 10, 0, 0] [3, 0, 5, 0, 0]
18 [4, 0, 0, 0, 0, 0, 2, 0, 2, 0] [22, 0, 10, 0, 0] [3, 0, 5, 0, 0]
19 [4, 2, 1, 0, 0, 0, 1, 0, 0, 0] [35, 0, 9, 0, 0] [13/2, 0, 9/2, 0, 0]
20 [4, 2, 0, 0, 0, 0, 1, 0, 1, 0] [35, 0, 9, 0, 0] [13/2, 0, 9/2, 0, 0]
21 [4, 0, 0, 0, 0, 0, 2, 1, 1, 0] [35, 0, 9, 0, 0] [13/2, 0, 9/2, 0, 0]
22 [4, 0, 0, 0, 0, 0, 2, 0, 1, 1] [35, 0, 9, 0, 0] [13/2, 0, 9/2, 0, 0]
23 [4, 1, 1, 1, 0, 0, 1, 0, 0, 0] [70, 0, 6, 0, 0] [16, 0, 3, 0, 0]
24 [4, 1, 1, 0, 0, 0, 1, 1, 0, 0] [70, 12, 6, 0, 0] [13, 6, 3, 0, 0]
25 [4, 1, 1, 0, 0, 0, 2, 0, 0, 0] [35, 0, 9, 0, 0] [13/2, 0, 9/2, 0, 0]
26 [4, 1, 0, 0, 0, 0, 1, 1, 1, 0] [70, 0, 6, 0, 0] [16, 0, 3, 0, 0]
27 [3, 3, 1, 0, 0, 0, 1, 0, 0, 0] [48, 0, 12, 0, 0] [9, 0, 6, 0, 0]
28 [3, 3, 0, 0, 0, 0, 1, 1, 0, 0] [48, 8, 12, 0, 0] [7, 4, 6, 0, 0]
29 [3, 3, 0, 0, 0, 0, 1, 0, 1, 0] [48, 0, 12, 0, 0] [9, 0, 6, 0, 0]
30 [3, 3, 0, 0, 0, 0, 2, 0, 0, 0] [24, 0, 10, 0, 0] [7/2, 0, 5, 0, 0]
31 [3, 2, 2, 0, 0, 0, 1, 0, 0, 0] [70, 0, 14, 0, 0] [14, 0, 7, 0, 0]
32 [3, 2, 0, 0, 0, 0, 2, 1, 0, 0] [70, 0, 14, 0, 0] [14, 0, 7, 0, 0]
33 [3, 2, 1, 1, 0, 0, 1, 0, 0, 0] [140, 0, 12, 0, 0] [32, 0, 6, 0, 0]
34 [3, 2, 1, 0, 0, 0, 1, 1, 0, 0] [140, 16, 12, 0, 0] [28, 8, 6, 0, 0]
35 [3, 2, 0, 0, 0, 0, 1, 1, 1, 0] [140, 0, 12, 0, 0] [32, 0, 6, 0, 0]
36 [3, 1, 1, 1, 1, 0, 1, 0, 0, 0] [280, 0, 0, 0, 0] [70, 0, 0, 0, 0]
37 [3, 1, 1, 1, 0, 0, 1, 1, 0, 0] [280, 24, 0, 0, 0] [64, 12, 0, 0, 0]
38 [3, 1, 1, 1, 0, 0, 1, 0, 1, 0] [280, 0, 0, 0, 0] [70, 0, 0, 0, 0]
39 [3, 1, 1, 0, 0, 0, 1, 1, 1, 0] [280, 0, 0, 0, 0] [70, 0, 0, 0, 0]
40 [3, 1, 0, 0, 0, 0, 1, 1, 1, 1] [280, 8, 0, 0, 0] [68, 4, 0, 0, 0]
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Table 7. Type-Itemized Enumerations by the Factor-Group Method
(Category 2, Part 2)

j list2 partitions list2 FPCat2 [III V II I IV]type[
A

(Eq. 40),
B

(Eq. 41),
C

(Eq. 42),
D

(Eq. 43),E

]

41 [3, 0, 0, 0, 0, 0, 3, 2, 0, 0] [24, 0, 10, 0, 0] [7/2, 0, 5, 0, 0]
42 [3, 0, 0, 0, 0, 0, 3, 1, 1, 0] [48, 0, 12, 0, 0] [9, 0, 6, 0, 0]
43 [3, 0, 0, 0, 0, 0, 3, 0, 1, 1] [48, 0, 12, 0, 0] [9, 0, 6, 0, 0]
44 [3, 0, 0, 0, 0, 0, 2, 2, 1, 0] [70, 0, 14, 0, 0] [14, 0, 7, 0, 0]
45 [3, 0, 0, 0, 0, 0, 2, 1, 1, 1] [140, 0, 12, 0, 0] [32, 0, 6, 0, 0]
46 [2, 2, 2, 0, 0, 0, 2, 0, 0, 0] [114, 0, 22, 0, 0] [23, 0, 11, 0, 0]
47 [2, 0, 0, 0, 0, 0, 3, 2, 1, 0] [70, 0, 14, 0, 0] [14, 0, 7, 0, 0]
48 [2, 0, 0, 0, 0, 0, 3, 1, 2, 0] [70, 0, 14, 0, 0] [14, 0, 7, 0, 0]
49 [2, 0, 0, 0, 0, 0, 3, 1, 1, 1] [140, 0, 12, 0, 0] [32, 0, 6, 0, 0]
50 [2, 0, 0, 0, 0, 0, 2, 2, 2, 0] [114, 0, 22, 0, 0] [23, 0, 11, 0, 0]
51 [2, 0, 0, 0, 0, 0, 2, 1, 2, 1] [210, 0, 18, 0, 0] [48, 0, 9, 0, 0]
52 [2, 2, 2, 1, 0, 0, 1, 0, 0, 0] [210, 0, 18, 0, 0] [48, 0, 9, 0, 0]
53 [2, 2, 2, 0, 0, 0, 1, 0, 1, 0] [210, 0, 18, 0, 0] [48, 0, 9, 0, 0]
54 [2, 2, 1, 0, 0, 0, 2, 1, 0, 0] [210, 0, 18, 0, 0] [48, 0, 9, 0, 0]
55 [2, 2, 1, 0, 0, 0, 2, 0, 1, 0] [210, 0, 18, 0, 0] [48, 0, 9, 0, 0]
56 [2, 2, 0, 0, 0, 0, 2, 1, 1, 0] [210, 0, 18, 0, 0] [48, 0, 9, 0, 0]
57 [2, 2, 1, 1, 1, 0, 1, 0, 0, 0] [420, 0, 12, 0, 0] [102, 0, 6, 0, 0]
58 [2, 2, 1, 1, 0, 0, 2, 0, 0, 0] [210, 0, 18, 0, 0] [48, 0, 9, 0, 0]
59 [2, 2, 1, 1, 0, 0, 1, 1, 0, 0] [420, 24, 12, 0, 0] [96, 12, 6, 0, 0]
60 [2, 2, 1, 1, 0, 0, 1, 0, 1, 0] [420, 0, 12, 0, 0] [102, 0, 6, 0, 0]
61 [2, 2, 1, 0, 0, 0, 1, 1, 1, 0] [420, 0, 12, 0, 0] [102, 0, 6, 0, 0]
62 [2, 1, 1, 1, 1, 0, 2, 0, 0, 0] [420, 0, 12, 0, 0] [102, 0, 6, 0, 0]
63 [2, 1, 1, 1, 0, 0, 2, 1, 0, 0] [420, 0, 12, 0, 0] [102, 0, 6, 0, 0]
64 [2, 1, 1, 1, 0, 0, 2, 0, 1, 0] [420, 0, 12, 0, 0] [102, 0, 6, 0, 0]
65 [2, 1, 1, 1, 1, 1, 1, 0, 0, 0] [840, 0, 0, 0, 0] [210, 0, 0, 0, 0]
66 [2, 1, 1, 1, 1, 0, 1, 1, 0, 0] [840, 24, 0, 0, 0] [204, 12, 0, 0, 0]
67 [2, 1, 1, 1, 1, 0, 1, 0, 1, 0] [840, 0, 0, 0, 0] [210, 0, 0, 0, 0]
68 [2, 1, 1, 1, 0, 0, 1, 1, 1, 0] [840, 0, 0, 0, 0] [210, 0, 0, 0, 0]
69 [2, 1, 1, 0, 0, 0, 1, 1, 1, 1] [840, 24, 0, 0, 0] [204, 12, 0, 0, 0]
70 [1, 1, 1, 1, 1, 1, 2, 0, 0, 0] [840, 0, 0, 0, 0] [210, 0, 0, 0, 0]
71 [1, 1, 1, 1, 1, 0, 3, 0, 0, 0] [280, 0, 0, 0, 0] [70, 0, 0, 0, 0]
72 [1, 1, 1, 1, 1, 0, 2, 1, 0, 0] [840, 0, 0, 0, 0] [210, 0, 0, 0, 0]
73 [1, 1, 1, 1, 1, 0, 2, 0, 1, 0] [840, 0, 0, 0, 0] [210, 0, 0, 0, 0]
74 [1, 1, 1, 1, 0, 0, 2, 1, 1, 0] [840, 0, 0, 0, 0] [210, 0, 0, 0, 0]
75 [1, 1, 1, 0, 0, 0, 2, 1, 1, 1] [840, 0, 0, 0, 0] [210, 0, 0, 0, 0]
76 [1, 1, 1, 1, 1, 1, 1, 1, 0, 0] [1680, 0, 0, 0, 0] [420, 0, 0, 0, 0]
77 [1, 1, 1, 1, 1, 0, 1, 1, 1, 0] [1680, 0, 0, 0, 0] [420, 0, 0, 0, 0]
78 [1, 1, 1, 1, 0, 0, 1, 1, 1, 1] [1680, 48, 0, 0, 0] [408, 24, 0, 0, 0]
79 [0, 0, 0, 0, 0, 0, 6, 2, 0, 0] [3, 0, 3, 0, 0] [0, 0, 3/2, 0, 0]
80 [0, 0, 0, 0, 0, 0, 4, 3, 1, 0] [13, 0, 7, 0, 0] [3/2, 0, 7/2, 0, 0]
81 [0, 0, 0, 0, 0, 0, 4, 2, 2, 0] [22, 0, 10, 0, 0] [3, 0, 5, 0, 0]
82 [0, 0, 0, 0, 0, 0, 4, 2, 1, 1] [35, 0, 9, 0, 0] [13/2, 0, 9/2, 0, 0]
83 [0, 0, 0, 0, 0, 0, 3, 2, 2, 1] [70, 0, 14, 0, 0] [14, 0, 7, 0, 0]
84 [0, 0, 0, 0, 0, 0, 3, 1, 3, 1] [48, 0, 12, 0, 0] [9, 0, 6, 0, 0]
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gap>

gap> list2_partitions :=[];;

gap> list2_FP := [];;

gap> list2_III_V_II_I_Vtype := [];;

gap>

gap> list2_partitions[24] := [ 4, 1, 1, 0, 0, 0, 1, 1, 0, 0 ];;

gap> list2_FP[24] := [70, 41, 38, 35, 22, 70, 12, 6, 0, 0];;

gap> templist :=

>[list2_FP[24][6],list2_FP[24][7],list2_FP[24][8],list2_FP[24][9],list2_FP[24][10]];;

gap> list_temp := templist * tom_matrix^(-1);;

gap> Print("list1_III_V_II_I_Vtype[", 24, "] := ", list_temp, "; \n");

list2_III_V_II_I_Vtype[24] := [ 13, 6, 3, 0, 0 ];

gap>

Thus, the composition H4ABpp permits the presence of 13 cubane

derivatives, each having a type-III stereoisogram, 6 cubane derivatives,

each having a type-V stereoisogram, and 3 cubane derivatives, each having

a type-II stereoisogram. The resulting type list [III V II I IV]type[24]

([13, 6, 3, 0, 0]) is consistent with the previous list [I, II, III, IV, V]

= [0, 3, 13, 0, 6] which is calculated as Category 2 by means of the half-size-

subgroup method (Subsubsection 4.4.2).

Among the enumerated stereoisograms of the composition H4ABpp,

Figure 10 collects thirteen type-III stereoisograms, where the top twelve

type-III stereoisograms are depicted in full form, while the last one type-III

stereoisogram is depicted in simplified form.

The simplified form of Figure 10 can be referred to by using an in-

line expression such as ([48 48] [49 49])III, where each of two pairs

of enantiomers is surrounded by a pair of square brackets ([48 48] and

[49 49]). Each pair of enantiomers is counted separately under the point

group Oh, and two pairs of enantiomers are counted as a single quadruplet

of RS -stereoisomers, as surrounded by a pair of parentheses with subscript

III. According to this formulation, such an in-line expression as ([48 48]

[49 49])III can be recovered into the original type-III stereoisogram. In-

versely, a type-III stereoisogram in a full format, e.g., the third one of

Figure 10, can be transformed into a simplified format and into its in-line

expression such as ([28 28] [29 29])III. Because 28 and 48 are convertible

to each other by exchanging ligand A and ligand B, the simplified format

corresponding to the in-line expression ([28 28] [29 29])III can be easily

depicted.
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Figure 10. Type-Itemized Enumeration of cubane derivatives with the
composition H4ABpp (Part 1). Top twelve type-III ste-
reoisograms are depicted in full form, while the last one
type-III stereoisogram is depicted in simplified form.
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Figure 11. Assignment of C/A-descriptors to cubane derivatives of the
composition H4ABpp, which are characterized by type-III
stereoisograms (Part 1). The priority sequence is presumed
to be A 1○ > B 2○ > p 3○ > p 4○ > H 5○.

Among the type-III stereoisograms listed in Figure 10, let us select

the top diagram ([24 24] [25 25])III as an example of assigning C/A-

descriptors. Figure 11 indicates the assignment of C/A-descriptors to these

type-III cubane derivatives with the composition H4ABpp.

The reference cubane derivative 24 is converted into 50 by attaching

priority numbers, where the priority sequence is presumed to be A 1○ > B

2○ > p 3○ > p 4○ > H 5○, as shown in the upper-left row of Figure 11. The

bottom face of 50 is determined to be the most preferred face, as shown

by the four ligands with a grayed priority number. The cubane derivative

is re-oriented to give 51 having a top preferred face. The configuration

number is obtained to be 15254535, which shows an anti-clockwise citation.

Hence, the CA-descriptor CU -8-15254535-A is assigned to 24, where a last

letter A is the label for indicating the anti-clockwise citation.

On the other hand, the corresponding RS -diastereomer 25 is converted

into 52 by attaching priority numbers, where the priority sequence is pre-

sumed to be A 1○ > B 2○ > p 3○ > p 4○ > H 5○, as shown in the

lower-left row of Figure 11. The top face of 52 is determined to be the

most preferred face, as shown by the four ligands with a grayed priority

number. The corresponding graphic expression 53 gives the configura-

tion number to be 15254535, which shows a clockwise citation. Hence, the

CA-descriptor CU -8-15254535-C is assigned to 25, where a last uppercase

letter C is the label for indicating the clockwise citation.

In a similar way, the cubane derivative 24 is characterized by the CA-

descriptor CU -8-15253545-C, while its RS -diastereomer 25 is character-
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Figure 12. Assignment of C/A-descriptors to cubane derivatives of the
composition H4ABpp, which are characterized by type-III
stereoisograms (Part 2). The priority sequence is presumed
to be A 1○ > B 2○ > p 3○ > p 4○ > H 5○.

ized by the CA-descriptor CU -8-15253545-A.

It should be emphasized that the pair of RS -diastereomers 24/25

is characterized by a pair of the CA-descriptors CU -8-15254535-A/CU -

8-15254535-C, while the pair of RS -diastereomers 24/25 is character-

ized by a pair of the CA-descriptors CU -8-15253545-C/CU -8-15253545-A.

TheRS -diastereomers of each pair are characterized by the same configu-

ration number but contra-rotating CA-descriptors.

Figure 12 illustrates the difference of CA-descriptors between 28 and

48, which are convertible to each other by exchanging ligand A and ligand

B. As for the type-III stereoisogram represented by ([28 28] [29 29])III,

the pair of RS -diastereomers 28/29 is characterized by a pair of the CA-

descriptors CU -8-15542355-A/CU -8-15542355-C. In contrast, as for the

type-III stereoisogram represented by ([48 48] [49 49])III, the pair of

RS -diastereomers 48/49 is characterized by a pair of the CA-descriptors

CU -8-13542555-C/CU -8-13542555-A. Compare between CU -8-15542355-

A for 28 and CU -8-13542555-C for 48.

Among the enumerated stereoisograms of the composition H4ABpp,

Figure 13 collects three Type-II stereoisograms and six Type-V stereoiso-
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grams of cubane derivatives, where they are depicted in full format.

Each of the three Type-II stereoisograms is characterized by the hor-

izontal equality symbols, so that its self-RS -diastereomeric nature (RS -

astereogenicity) is specified by its in-line expression, such as ([74 74])II,

([76 76])II, and ([78 78])II, where the description on one pair of enan-

tiomers is sufficient to specify the type-II stereoisogram because the pair

[74 74], for example, is equivalent to [75 75].

Six type-V stereoisograms of the composition H4ABpp, which are shown

in the bottom part of Figure 13, exhibits the nature of the extended ver-

sions of “pseudoasymmetry” [62]. Each of the type-V stereoisogram is

characterized of vertical equality symbols to give type index [a,−,−],

which exhibits achirality, RS -stereogenicity, and sclerality. The “pseu-

doasymmetry” is expressed by the corresponding in-line expression such

as ([80] [81])V, where a single membership [80] in a pair of square brack-

ets represents an achiral cubane derivative (a pair of self-enantiomers), and

where two achiral derivatives [80] and [81] are distinguished by a lower

pair of a/c-descriptors under the CIP (Cahn-Ingold-Prolog) system giving

A/C -descriptors.

It should be noted that the three type-II stereoisograms shown in

the top row of Figure 13 cannot be attached with C/A-descriptors, al-

though they are chiral. Thus, the preferred face cannot be selected or

clockwise/anti-clockwise direction cannot be differentiated in the assign-

ment procedure. This failed procedure reflects another reasoning for the

fact that the assignment of C/A-descriptors is not based on chirality.

On the other hand, the six type-V stereoisograms shown in the lower

part of Figure 13 can be attached with C/A-descriptors, even though they

are achiral. This point also reflects the other reasoning for the fact that

the assignment of C/A-descriptors is not based on chirality, but on RS -

stereogenicity.

Figure 14 shows assignment of C/A-descriptors to cubane derivatives of

the composition H4ABpp, which are characterized type-V stereoisograms.

They are chirality-unfaithful cases represented by a lower-case letters c/a.

The detaild discussions on Figure 14 will appear in Section 5 (Type-V

Stereoisograms for Elucidating “Extended Pseudoasymmetry”),
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Figure 13. Type-Itemized Enumeration of cubane derivatives with the
composition H4ABpp (Part 2). Three Type-II stereoiso-
grams and six Type-V stereoisograms of cubane derivatives
with the composition H4ABpp.
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Figure 14. Assignment of C/A-descriptors to cubane derivatives of
the composition H4ABpp, which are characterized type-
V stereoisograms. The priority sequence is presumed to be
A 1○ > B 2○ > p 3○ > p 4○ > H 5○.
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The symmetry-itemized enumerations of cubane derivatives under the

point group Oh have been reported by Fujita [33], where the partial-cycle-

index method of Fujita’s USCI approach was adopted. Table 1 of the

report [33] has listed cubane derivatives with the composition H4ABpp,

which are assigned to be 19 derivatives of the point group C1 and 12

derivatives of the point group C ′
s. The present type-itemized enumeration

indicates that each of the 13 type-III stereoisograms (Figure 10) contains

two pairs of enantiomers, while each of the three type-II stereoisograms

(the top row of Figure 13) contains one pair of enantiomers. Hence, we have

totally 13 × 2 + 3 × 1 = 29, which is consistent with 29 C1-derivatives.

Moreover, each of the six type-V stereoisograms shown in the lower part of

Figure 13 contains two achiral cubane derivatives, so that we have totally

6 × 2 = 12, which is consistent with 12 C ′
s-derivatives.

4.5.5 The factor-group method applied to category-3 cases —

Coexistence of categories 1 and 2

Category-3 stereoisograms are determined if the ratioO/OÎ in list FP[j]

is neither equal to 1 nor equal to 2. The data examined in the present arti-

cle are collected in Table 4. For applying the factor-group method to these

data, the values listed in the E-column should be estimated. The E-value

in each row of Table 4 is estimated by (a) drawing type-V stereoisograms

manually and count the number x of type-V stereoisograms; (b) then E

= A - 2 × x, where A represents the number of achiral promolecule and

2 × x is the total number of achiral promolecules contained in x type-V

stereoisograms. Then, the values of E’s are calculated to be as follows:

E = 6−0 = 6 for list3 FPCat3B[1], E = 11−2×3 = 5 for list3 FPCat3B[2],

E = 10−2×2 = 6 for list3 FPCat3B[3], E = 14−2×4 = 6 for list3 FPCat3B[4],

E = 16−2×6 = 4 for list3 FPCat3B[5], E = 26−2×12 = 2 for list3 FPCat3B[6],

and E = 28−2×12 = 4 for list3 FPCat3B[7].

These values are listed in the list3 FPCat3B-[E]-column of Table 8.

In order to execute the factor-group method, the 6th to 10th values

listed in the intersection between each j-th row and the list3 FP-column

of Table 4 are extracted to give templist. The resulting five-membered

list templist is regarded as a fixed-point vector list3 FP[j], which is
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Table 8. Type-Itemized Enumerations by the Factor-Group Method
(Category 3: Coexistence of Category 1 and Category 2)

j list3 partitions list3 FPCat3B [III V II I IV]type[
A

(Eq. 40),
B

(Eq. 41),
C

(Eq. 42),
D

(Eq. 43),E

]

1 [4, 0, 0, 0, 0, 0, 2, 2, 0, 0] [22, 6, 10, 10, 6] [2, 0, 2, 2, 6]
2 [4, 2, 0, 0, 0, 0, 1, 1, 0, 0] [35, 11, 9, 9, 5] [4, 3, 2, 2, 5]
3 [4, 0, 0, 0, 0, 0, 1, 1, 1, 1] [70, 10, 6, 18, 6] [12, 2, 0, 6, 6]
4 [2, 2, 0, 0, 0, 0, 2, 2, 0, 0] [114, 14, 22, 18, 6] [18, 4, 8, 6, 6]
5 [2, 0, 0, 0, 0, 0, 2, 2, 1, 1] [210, 16, 18, 36, 4] [37, 6, 7, 16, 4]
6 [2, 2, 2, 0, 0, 0, 1, 1, 0, 0] [210, 26, 18, 18, 2] [38, 12, 8, 8, 2]
7 [2, 2, 0, 0, 0, 0, 1, 1, 1, 1] [420, 28, 12, 36, 4] [88, 12, 4, 16, 4]

multiplied by the inverse of the mark table tom matrix of the factor group

O\Ohσ̃Î . For example, the first row of Table 4 gives the list templist

= [22, 6, 10, 10, 6] (list3 FP[j] of Table 8, j = 1), which is multiplied by

tom matrix(−1), as shown in the following GAP code:

gap> tom_matrix :=

> [[4,0,0,0,0],

> [2,2,0,0,0],

> [2,0,2,0,0],

> [2,0,0,2,0],

> [1,1,1,1,1]];;

gap> list3_partitions :=[];;

gap> list3_FP := [];;

gap> list3_III_V_II_I_Vtype := [];;

gap> list3_partitions[1] := [ 4, 0, 0, 0, 0, 0, 2, 2, 0, 0 ];; ###########22/16

gap> list3_FP[1] :=

> [ 22, 14, 16, 16, 12, 22, 6, 10, 10, 6];; ### E = 6-0 = 6

gap> templist :=

> [list3_FP[1][6],list3_FP[1][7],list3_FP[1][8],list3_FP[1][9],list3_FP[1][10]];

[ 22, 6, 10, 10, 6 ]

gap> list_temp := templist * tom_matrix^(-1);;

gap> Print("list3_III_V_II_I_Vtype[", 1, "] := ", list_temp, "; \n");

list3_III_V_II_I_Vtype[1] := [ 2, 0, 2, 2, 6 ];

gap>

The resulting list3 III V II I Vtype[1] (= [2, 0, 2, 2, 6]) is the type

list to be calculated. Similar procedures can be executed to calculate the

other cases, where we can obtain the lists appearing in the intersection

between each j-th row and the [III V II I IV]type-column of Table 8.
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4.5.6 Examples of calculation data of category 3

To examine the validity of the factor-group method proposed in the present

article, let us testify several data of type-itemized enumerations of Cate-

gory 3 (Coexistence of Category 1 and 2) collected in Table 8.

Derivatives with Composition H4p
2p2

As for cubane derivatives with composition H4p
2p2, let us first exam-

ine the values collected in the first row of Table 8 (list3 partitions[1]

= [4, 0, 0, 0, 0, 0, 2, 2, 0, 0]). As discussed in the preceding subsection, the

resulting [III V II I IV]type[1] is obtained to be [2, 0, 2, 2, 6], which in-

dicates the appearance of two type-III stereoisograms, two type-II ste-

reoisograms, two type-I stereoisograms, and six type-IV stereoisograms.

No appearance of the type-V stereoisograms is consistent with the pre-

estimated setting of E-value.

Among the derivatives ([III V II I IV]type[1] = [2, 0, 2, 2, 6]) of the

composition H4p2p2, six chiral derivatives (i.e., two type-III stereoiso-

grams, two type-II stereoisograms, and two type-I stereoisograms) are de-

picted in Figure 15. Their point-group symmetries are consistent with

the previous paper [63], where the symmetry-itemized enumeration un-

der the point group Oh (Table 2) has reported the appearance of six

C1-derivatives, two C ′
2-derivatives, one Cs-derivative, one S4-derivative,

one C2v-derivative, one C ′′
2v-derivative, one C2h-derivative, and one C ′

2h-

derivative.

As for the first type-III stereoisogram shown in the top row of Figure

15, both the chiral derivatives 116 and 117 belong to the point group C ′
2,

where the presence of two C ′
2-derivatives is consistent with the previous

symmetry-itemized enumeration [63]. The second type-III stereoisogram

contains the chiral derivatives 118 and 119 both belonging to the point

group C1, where the contribution of two C1-derivatives to the totally six

C1-derivatives is consistent with the previous symmetry-itemized enumer-

ation [63].

As for the type-II stereoisograms collected in the middle row of Figure

15, each of reference promolecules 120 and 122 belongs to the point group

C1, where each of them contributes to the totally six C1-derivatives so as

to be consistent with the previous symmetry-itemized enumeration [63].
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Figure 15. Type-Itemized Enumeration of cubane derivatives with
the composition H4p2p2 (Part 1). Chiral cubane deriva-
tives (two type-III stereoisograms, two type-II stereoiso-
grams, and two type-I stereoisograms) with the composi-
tion H4p2p2.
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As for the type-I stereoisograms collected in the bottom row of Fig-

ure 15, each of reference promolecules 124 and 126 belongs to the point

group C1, where each of them contributes one to the six C1-derivatives.

Totally, the value six for C1 [63] is consistent with the summation 6 =

2× 1 (from the one type-III stereoisogram) + 1× 2 (from the two type-II

stereoisograms) + 1× 2 (from the two type-I stereoisograms).

Let us next examine the assignability of A/C -descriptors to the chiral

derivatives listed in Figure 15. The procedures of the assignments are

collected in Figure 16. It should be noted again that a pair of A/C -

descriptors is assigned not to a pair of enantiomers (due to chirality), but

to a pair of RS -diastereomers (due to RS -stereogenicity).

As for the first type-III stereoisogram collected in the top row of Fig-

ure 16, the front face of 128 derived from 116 is determined to be the

most preferred face, as shown by the four ligands with a grayed priority

number. The cubane derivative is re-oriented to give 129 having a top

preferred face so as to give the configuration number 12132333 to 116,

which shows an anti-clockwise configuration. In a similar way, the corre-

sponding RS -diastereomer 117 is characterized the configuration number

12132333 in a clockwise fashion. On the other hand, their enantiomers are

characterized by an anti-clockwise configuration number 13232133 to 116,

and by a clockwise configuration number 13232133 to 117. Because the

enantiomers 116 and 116 are characterized to be anti-clockwise, so that

they are chirality-unfaithful. In a parallel way, because the enantiomers

117 and 117 are characterized to be clockwise, so that they are chirality-

unfaithful. The chirality-unfaithful nature forces us to be characterized by

lowercase letters c/a. Hence, a pair of enantiomers 116/ 116 is specified by

the codes CU -8-12132333-a/CU -8-13232133-a, while a pair of enantiomers

117/ 117 is specified by the codes CU -8-12132333-c/CU -8-13232133-c.

The type-III stereoisogram collected in the second row of Figure 16 indi-

cates another example of chirality-unfaithful assignment of C/A-descriptors.

Thus, a pair of enantiomers 118/118 is specified by the codes CU -8-

13132332-c/CU -8-12321333-c, while a pair of enantiomers 119/ 119 is

specified by the codes CU -8-13132332-a / CU -8-12321333-a.

Because the assignability of A/C -descriptors depends on the RS -ste-
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Figure 16. Assignment of C/A-descriptors to chiral cubane derivatives
of the composition H4p2p2, which are characterized type-
III or type-I stereoisograms. The priority sequence is pre-
sumed to be p 1○ > p 2○ > H 3○.
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reogenicity and exhibits no dependence on chirality, A/C -descriptors can-

not be assigned to type-II stereoisograms having type index [−, a,−] (chi-

ral, RS -astereogenic, an scleral). This feature of RS -astereogenicity is

confirmed by the type-II stereoisograms collected in the second row of

Figure 15. For example, the horizontal equality symbol between 120 and

121 (or between 122 and 123) provides us with no means of specify-

ing the second kind of handedness. Even if we apply the selection of

the most preferred face according to Figure 16, the ambiguity of selecting

clockwise/anti-clockwise directions occurs during the selection step.

As for the left type-I stereoisograms shown in the bottom line of Figure

16, the diagonal equality symbols in each type-I stereoisogram ([−,−, a]

in Figure 15) assure the coincidence between a pair of RS -diastereomers

and a pair of enantiomers. Hence, the pair of the C/A-descriptors given

to the pair of RS -diastereomers, i.e., CU -8-12231333-C for 124 and CU -

8-12231333-A for 125, can be regarded to be given to the pair of enan-

tiomers, i.e., CU -8-12231333-C for 124 and CU -8-12231333-A for 124 in

a chirality-faithful fashion.

In a similar way, as shown in the right type-I stereoisograms of the

bottom line of Figure 16, the pair of the C/A-descriptors given to the pair

of RS -diastereomers, i.e., CU -8-13132233-C for 126 and CU -8-13132233-

A for 127, can be regarded to be given to the pair of enantiomers, i.e.,

CU -8-13132233-C for 126 and CU -8-13132233-A for 126 in a chirality-

faithful fashion.

Among the derivatives of the composition H4p2p2 collected in the first

row of Table 8 ([III V II I IV]type[1] = [2, 0, 2, 2, 6]), there appear no

type-V derivatives. The remaining achiral derivatives (i.e., six type-IV

stereoisograms) are depicted in Figure 17. The point groups of these achi-

ral derivatives can be confirmed by referring to the previous symmetry-

itemized enumerations [63], i.e., the first type-IV derivative 152 belongs

to the Cs-point group (the mirror plane running through the midpoint

of the edge 1–2, 1–4, 5–6, and 7–8), the second type-IV derivative 154

belongs to the S4-point group (the 4-fold S4-axis through the centers of

the top and bottom planes), the third type-IV derivative 156 belongs to

the C2v-point group (the two-fold axis through the centers of the top and
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Figure 17. Type-Itemized Enumeration of cubane derivatives with the
composition H4p2p2 (Part 2). Achiral cubane derivatives
(six type-IV stereoisograms with the composition H4p2p2).
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the bottom planes, as well as two vertical planes intersecting to give the

two-fold axis), the 4th type-IV derivative 158 belongs to the C ′′
2v-point

group (the two-fold axis through the midpoints of the edges 2–6 and 4–8,

as well as two vertical planes intersecting to give the two-fold axis), the 5th

type-IV derivative 160 belongs to the C ′
2h-point group (the two-fold axis

through the midpoints of the edges 1–5 and 3–7, as well as the horizon-

tal mirror plane 2–4–8–6 perpendicular to the two-fold axis), and the 6th

type-IV derivative 162 belongs to the C2h-point group (the two-fold axis

through the centers of the top and bottom planes, as well as the horizontal

mirror plane perpendicular to the two-fold axis).

Derivatives with Composition H4A
2pp

As a next example of type-itemized enumerations of Category 3 (Coex-

istence of Category 1 and 2) by means of the factor-group method, let us

examine the values collected in the second row of Table 8. The partition

represented as list3 partitions[2] = [4, 2, 0, 0, 0, 0, 1, 1, 0, 0] in the sec-

ond row corresponds to the derivatives with the composition H4A2pp. The

resulting list [III V II I IV]type[2] is obtained to be [4, 3, 2, 2, 5], which

indicates the appearance of four type-III stereoisograms, three type-V ste-

reoisograms, two type-II stereoisograms, two type-I stereoisograms, and

five type-IV stereoisograms. The appearance of three type-V stereoiso-

grams is consistent with the pre-estimated setting of E-value.

Among these cubane derivatives of the composition H4A2pp, Figure 18

collects chiral derivatives with the composition H4A2pp: i.e., four type-III

stereoisograms (([164 164] [165 165])III, ([166 166] [166 167])III,

([168 168] [168 169])III, and ([170 170] [171 171])III), two type-II

stereoisograms (([172 172])II and ([174 174])II), as well as two type-I

stereoisograms (([176 176])I and ([178 178])I). They are all chiral so as

to be characterized by the presence of vertical double-headed arrows.

Their point-group symmetries are consistent with the previous pa-

per [33, 63], where the symmetry-itemized enumerations under the point

group Oh conducted by means of the Maple system (Table 1 of Ref. [33])

and by means of the GAP system (Table 2 of Ref. [63]) have reported

the appearance of twelve C1-derivatives, three Cs-derivatives, seven C ′
s-

derivatives, and one Ci-derivative. The stereoisograms collected in Figure
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18 reveals that the sum of 8 (= 2 × 4 for four type-III stereoisograms) +

2 (= 1 × 2 for two type-II stereoisograms) + 2 (= 1 × 2 for two type-I

stereoisograms) is equal to 12, which is equal to the value of the twelve

C1-derivatives.

Among the enumerated derivatives with the composition H4A2pp listed

in the column [III V II I IV]type[2] = [4, 3, 2, 2, 5], Figure 19 collects

stereoisograms of achiral derivatives, i.e., five type-IV stereoisograms (i.e,

([180])IV, ([182])IV, ([184])IV, ([186])IV, and ([188])IV) along with three

unusual type-V stereoisograms (i.e., ([190] [191])V, ([192] [193])V, and

([194] [195])V), They are characterized by vertical equality symbols, be-

cause they are all achiral.

Their point-group symmetries are consistent with the previous paper

[33, 63]. The symmetry-itemized enumerations under the point group Oh

have been conducted by means of the Maple system (Table 1 of Ref. [33])

and by means of the GAP system (Table 2 of Ref. [63]). As achiral deriva-

tives of the composition H4A2pp, the presence of three Cs-derivatives,

seven C ′
s-derivatives, and one Ci-derivative has been reported.

Among the derivatives collected in Figure 19, one type-IV stereoiso-

gram ([180])IV (one achiral cubane derivative) and one type-V stereoiso-

gram ([190] [191])V (two achiral cubane derivatives forming one pair of

RS -diastereomers) correspond to the three Cs-derivatives. In addition,

three type-IV stereoisograms (i.e., ([182])IV, ([184])IV, and ([186])IV) as

well as two type-V stereoisograms (i.e., ([192] [193])V and ([194] [195])V)

correspond to the sevenC ′
s-derivatives. Finally, one type-IV stereoisogram

([188])IV) corresponds to the one Ci-derivative.

Moreover, the three type-V stereoisograms shown in the lower part of

Figure 19 can be attached with C/A-descriptors, even though they are

achiral, as shown later in Figure 20. This point also reflects the other

reasoning for the fact that the assignment of C/A-descriptors is not based

on chirality, but on RS -stereogenicity. They are chirality-unfaithful cases

represented by a lower-case letters c/a.
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Figure 18. Type-Itemized Enumeration of cubane derivatives with
the composition H4A2pp (Part 1). Chiral cubane deriva-
tives (four type-III stereoisograms, two type-II stereoiso-
grams, and two type-I stereoisograms) with the composi-
tion H4A2pp.
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Figure 19. Type-Itemized Enumeration of cubane derivatives with the
composition H4A2pp (Part 2). Achiral cubane derivatives
(five type-IV stereoisograms, and three type-V stereoiso-
grams) with the composition H4A2pp.
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Figure 20. Assignment of C/A-descriptors to cubane derivatives of the
composition H4A2pp, which are characterized to be type-
V stereoisograms. The priority sequence is presumed to be
A 1○ > p 2○ > p 3○ > H 4○.

5 Type-V stereoisograms for elucidating

“extended pseudoasymmetry”

5.1 Importance of the proligand-promolecule model

in enumerations under point groups

For discussing the characteristics of type-V stereoisograms on the basis of

Fujita’s stereoisogram approach, we should again emphasize the impor-

tance of the proligand-promolecule model (See Subsection 1.3, Item No. 1)

proposed also by Fujita.

According to IUPAC 1996 [10], the term “pseudo-asymmetric carbon

atom” is defined that “The traditional name for a tetrahedrally coordi-

nated carbon atom bonded to four different entities, two and only two of

which have the same constitution but opposite chirality sense.” and that

“The r/s descriptors of pseudoasymmetric carbon atoms are invariant on

reflection in a mirror (i.e. r remains r, and s remains s), but are reversed

by the exchange of any two entities (i.e. r becomes s, and s becomes
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r). Because IUPAC 1996 [10] also defines elsewhere that “An asymmet-

ric atom (chirality centre) is the traditional example of this stereogenic

unit.”, the term “pseudoasymmetric stereogenic unit” can be produced as

an extension by starting the term “pseudoasymmetric carbon atom”. At

the same time, we can say that “the c/a-descriptors of the newly-defined

“pseudoasymmetric stereogenic units” may be defined to be invariant on

reflection in a mirror (i.e. c remains c, and a remains a)”, if we adopt the

C/A-descriptors of a cube [60] according to the indexing system Chemical

Abstracts [61]. This extension can be a promising way, only if the “four

different entities” described above are defined more distinctively, otherwise

than “two and only two of which have the same constitution but opposite

chirality sense.”

To establish the concrete basis of gross enumerations and symmetry-

itemized enumerations of 3D structures under point groups, the author

(Fujita) has developed the proligand-promolecule model (See Subsection

1.3, Item No. 1) [64–66] and applied to gross-enumerations of alkyl deriva-

tives and alkanes as 3D structures [40, 67–69]. In the process of these

enumerations under point groups, the concept of a proligand, which is a

structureless but having chirality/achirality for constituting Fujita’s pro-

ligand-promolecule model, is defined in place of “four different entities”

described above (IUPAC 1996 [10]). The nature of structureless should

be stressed as a key concept of Fujita’s proligand-promolecule model.

Thereby, a promolecule is defined as a skeleton with an appropriate number

of such achiral or chiral proligands, where the concepts of sphericity and

chirality fittingness are proposed as essential requisites for characterizing

substitution modes of proligands (See Subsection 1.3, Item No. 2).

Fujita’s USCI approach has been developed to give the four methods of

symmetry-itemized enumerations, which is briefly discussed in Subsection

1.3 (Item No. 3) by using cubane derivatives under the point group Oh.
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5.2 Importance of the proligand-promolecule model

in type-itemized enumerations of stereoisograms

Fujita’s proligand method (for gross enumerations of 3D structures) and

Fujita’s USCI approach (for symmetry-itemized enumerations of 3D struc-

tures) under point groups have been extended to propose Fujita’s stereo-

isogram approach (for type-itemized enumerations of RS -stereoisomers),

which is also based on the proligand-promolecule model, but extended to

be based on RS -stereoisomeric groups (See Figure 2).

The importance of the proligand-promolecule model in Fujita’s stereo-

isogram approach has been discussed as above, during the introduction of

type-itemized enumerations of stereoisograms by the half-size-subgroup

method (Subsection 4.4) and by the factor-group method (Subsection

4.5). The calculated numbers of types are classified into type-I to type-V.

Among the five types, type-V stereoisograms provide us with important

clues for discussing pseudoasymmetry base on Fujita’s stereoisogram ap-

proach (See Figure 2 and compare this figure with Figure 1).

The six type-V stereoisograms of the composition H4ABpp have been

depicted in the bottom part of Figure 13. Their features of “extended

pseudoasymmetry” [62] can be found by comparing two achiral promol-

ecules contained in each type-V stereoisogram, which is characterized by

the presence of equality symbols along the vertical direction. These two

achiral promolecules can be differentiated by a/c-descriptors collected in

Figure 14. For example, the first type-V stereoisogram shown in the sec-

ond row of Figure 13 is differentiated to be ([80] [81])V, where the pair

of achiral RS -diastereomers, i.e., [80] and [81], is designated by the pair

of a/c-descriptors, i.e., CU -8-14255535-a and CU -8-14255535-c. Because

being chirality-unfaithful due to vertical equality symbols, this pair cannot

be used in place of a pair of enantiomers, so that the lowercase letters a/c

are adopted in place of the uppercase letters A/C. The remaining achi-

ral pairs of RS -diastereomers collected in Figure 13, i.e., ([82] [83])V,

([84] [85])V, ([86] [87])V, ([88] [89])V, and ([90] [91])V, are also re-

ferred to by the pairs of a/c-descriptors obtained by the procedures of

Figure 14.
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On the other hand, the three type-V stereoisograms of the composition

H4A2pp have been depicted in the bottom part of Figure 19, where each

type-V nature is characterized by the presence of equality symbols along

the vertical direction. Their features of “extended pseudoasymmetry” [62]

can be also found by comparing two achiral promolecules contained in

each type-V stereoisogram. These two achiral promolecules can be differ-

entiated by a/c-descriptors collected in Figure 20. For example, the first

type-V stereoisogram shown in the third row of Figure 19, is differentiated

to be ([190] [191])V, where the pair of achiral RS -diastereomers, i.e.,

[190] and [191], is designated by the pair of a/c-descriptors, i.e., CU -8-

14142434-c and CU -8-14142434-a.

The remaining achiral pairs of RS -diastereomers collected in Figure 19,

i.e., ([192] [193])V and ([194] [195])V, are also referred to by the pairs

of a/c-descriptors obtained by the procedures of Figure 20.

5.3 Cubanes vs. cubic complexes

Among all 12 model polyhedra for 7-, 8-, and 9-coordinate complexes cited

in E. STEREOCHEMISTRY AND STEREOPARENTS (III. Coordina-

tion compounds. (g) Stereochemical descriptors) of Chem. Abstr. Index

Guide [61], cubic complexes (No. 4) are discussed by means of their con-

figuration numbers. As found in the example shown in Figure 21, such a

cubic complex as 208 is characterized by the configuration number and the

CA-descriptor, i.e., CU -8-13242542-A. On the other hand, its stereoisomer

209 produced by neighboring exchange is a stereoisomer of 208 but not

an RS -stereoisomer, where 209 is also characterized by the configuration

number and the CA-descriptor, i.e., CU -8-13242542-A.

If we obey Figure 2, Figure 21 is regarded to be controlled by the

RS -stereoisomeric group Ohσ̃Î (order |Ohσ̃Î | = 96) and the stereoisomeric

group S
[8]

Ohσ̃Î

(order |S[8]

Ohσ̃Î

| = S[8] × 2 = 40320 × 2 = 80640). Hence,

there appear the maximum number |S[8]

Ohσ̃Î

|/|Ohσ̃Î | (= 80640/96 = 840)

of cosets to explain the isomerization processes of 208 to 209 depicted by

such as Figure 21. Because we adopt Figure 2, we should treat cubic com-

plexes (based on an octacoordinated skeleton) by means of the following
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Figure 21. Assignment of C/A-descriptors to hexahedral
protoactinium complexes with the composition
Pa(NH3)(H2O)2Cl−3 Br−F−. These two complexes
are stereoisomeric but not RS -stereoisomeric to each
other. The priority sequence is presumed to be
Br− 1○ > Cl− 2○ > F− 3○ > H2O 4○ > NH3 5○.

scheme:

RS -stereoisomerism ⊄
=
stereoisomerism (51)

In contrast, for referring to cubane derivatives (based on a cubane skele-

ton), we should obey the following scheme:

RS -stereoisomerism = stereoisomerism (52)

It should be emphasized again that the theoretical framework of the RS -

stereoisogram approach based on the RS -stereoisomeric group Ohσ̃Î is

commonly effective, even if select either cubane derivatives (Eq. 52) or

cubic complexes (Eq. 51). Although the behaviors of cubane derivatives

are different from cubic complexes, cubane derivatives are also designated

by the configuration number and the CA-descriptor.

5.4 Skeletons for the proligand-promolecule model: the

concept for covering stereogenic units

The term “stereogenic units” (rather than “stereogenicity”) is used widely

in IUPAC Recommendations 2013 (P-92.1.1) [55] in accord with Mislow-

Siegel’s stereogenicity, mainly on the basis of the theoretical framework of

Figure 1.

If we re-use the term “stereogenic units” as it is in the theoretical frame-
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work of Figure 2, unnecessary verbal transmutations [70, 71] may be in-

duced unconsciously. Hence, the term “stereogenic units” will be replaced

by the term “skeletons” in the context of the proligand-promolecule model,

although the term “stereogenic” or “stereogenicity” will be maintained in

the the theoretical framework of Figure 2 after “RS -stereogenicity” is ex-

tracted as a key concept. Thereby, we are able to differentiate between

Eq. 51 for cubic complexes (based on an octacoordinated skeleton) and Eq.

52 for cubane derivatives (based on a cubane skeleton). This course has

merit to have a regard for IUPAC Recommendations 2013 (P-92.1.1) [55]

which depend highly on the term “stereogenic units”. In addition, it has

merit to permit the flexible usage of the term “skeleton” of the proligand-

promolecule model during the practices of Fujita’s stereoisogram approach.

Finally, it is important to understand the difference between chirality

and RS -stereogenicity by paying attention to the difference between re-

flections and permutations of proligands during the processes of applying

the proligand-promolecule model to Fujita’s stereoisogram approach. Al-

though a reflection operation on an orbit of proligands (along the vertical

direction of a stereoisogram) converts a chiral promolecule (⊃ molecule)

into its enantiomer (mirror image), the reflection operation requires no

bond breaking but with the inversion of chirality sence of each proligand

(⊃ ligand). In contrast, a permutation operation on an orbit of proli-

gands (along the horizontal direction of a stereoisogram) converts an RS -

stereogenic promolecule (⊃ molecule) into its RS -diastereomer, where the

operation necessitates bond breaking but with no inversion of chirality

sence of each proligand (⊃ ligand). Note that the resulting enantiomer

(according to chirality as the first kind of handedness) and the resulting

RS -diastereomer (according to RS -stereogenicity as the second kind of

handedness) would be identical only if a type-I case [−,−, a] [54].

6 Conclusions

Van’t Hoff’s way and Le Bel’s way are compared as two ways of investiga-

tion of organic stereochemistry. For emphasizing Le Bel’s way, combinato-

rial enumerations of 3D structures under point groups are first discussed to
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develop Fujita’s proligand method and Fujita’s USCI approach, where (1)

the proligand-promolecule model based on a given skeleton, (2) the concept

of sphericity of an orbit and chirality fittingness, (3) the concept of the

USCI-CF of an orbit, (4) the concept of sphericity of a cycle and chirality

fittingness, (5) the emphasis on equivalence relationships and equivalence

classes (orbits), and (6) the application of the GAP system after the de-

velopment of combined-permutation representations (CPRs) as computer-

oriented utilities are listed as foundations for further developments. On

the basis of these foundations, the concepts of RS -stereoisomerism and

stereoisomerism have been developed to support synthetic studies of ste-

reoisomers for emphasizing van’t Hoff’s way. By selecting a cubane skele-

ton of the point group Oh as probes, RS -stereoisomeric groups Ohσ̃Î and

stereoisograms as their diagrammatic expressions are developed. After

five types (type I to type V) of stereoisograms are classified into three

categories (i.e., Category 1 (types I/IV), Category 2 (types II/III/V), and

the co-existence case), the half-size-subgroup method and the factor-group

method have been developed for type-itemized enumerations of stereoiso-

grams. The enumeration results based on the factor-group method dis-

cussed mainly. Type-V stereoisograms for characterizing “extended pseu-

doasymmetry” are discussed by assigning their configuration numbers and

CA-descriptors. Importance of the proligand-promolecule model is empha-

sized in enumerations under point groups (Fujita’s proligand method and

Fujita’s USCI approach) as well as in enumerations of RS -stereoisomeric

groups (Fujita’s stereoisogram approach).
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Appendix A

The following CI-CFs are used in the respective calculations of itemized

numbers:

CI-CF(O, bd) (Eq. 35) CICF O cube

CI-CF(Oh, $d) (Eq. 36) CICF Oh cubeX

CI-CF(Oσ̃, bd (Eq. 37) CICF Os cubeX

CI-CF(Oσ̂, $d) (Eq. 38) CICF OI cubeX

CI-CF(Ohσ̃Î , $d) (Eq. 39) CICF OhsI cube

CI-CF(A) (Eq. 40) CICF O cube

CI-CF(B) (Eq. 41) CICF Oh cubeX net

CI-CF(C) (Eq. 42) CICF Os cubeX nets

CI-CF(D) (Eq. 43) CICF OI cubeX netI

The ligand inventory is changed from the original symbols [H,A,B,X,Y,-

Z, p,p,q,q] to the symbols [A,B,C,D,V,W,p,P,q,Q] for sake of easiness of

typesetting. The results of type-itemized enumerations are collected in

Table 1 (Category 1), Tables 2 and 3 (Category 2), as well as Table 4

(Category 3: Coexistence of Category 1 and 2).

#Read("c:/fujita000/fujita2021/cubaneTypeK4/gap2/enumOh_Os_OI_cubaneK4C.gap");

LogTo("c:/fujita000/fujita2021/cubaneTypeK4/gap2/enumOh_Os_OI_cubaneK4Clog.txt");

#Read("c:/fujita00/fujita2018/subductionOh/gap/CICFgenCC.gapfunc"); #Loading of CICFgenCC.gapfunc

Read("c:/fujita000/fujita2021/cubaneTypeK4/gap2/CICFgenCC.gapfunc"); #Loading of CICFgenCC.gapfunc

b_1 := Indeterminate(Rationals, "b_1"); b_2 := Indeterminate(Rationals, "b_2");

b_3 := Indeterminate(Rationals, "b_3"); b_4 := Indeterminate(Rationals, "b_4");

b_5 := Indeterminate(Rationals, "b_5"); b_6 := Indeterminate(Rationals, "b_6");

b_7 := Indeterminate(Rationals, "b_7"); b_8 := Indeterminate(Rationals, "b_8");

a_1 := Indeterminate(Rationals, "a_1"); a_2 := Indeterminate(Rationals, "a_2");

a_3 := Indeterminate(Rationals, "a_3"); a_4 := Indeterminate(Rationals, "a_4");

a_5 := Indeterminate(Rationals, "a_5"); a_6 := Indeterminate(Rationals, "a_6");

a_7 := Indeterminate(Rationals, "a_7"); a_8 := Indeterminate(Rationals, "a_8");

c_2 := Indeterminate(Rationals, "c_2"); c_4 := Indeterminate(Rationals, "c_4");

c_6 := Indeterminate(Rationals, "c_6"); c_8 := Indeterminate(Rationals, "c_8");

###From FatorG-CICF-typeDlog.txt##############

##################### O ####

CICF_O_cube := 1/24*b_1^8+1/3*b_1^2*b_3^2+3/8*b_2^4+1/4*b_4^2;

#################### enantiomeric ############

CICF_Oh_cubeX :=

1/48*b_1^8+1/8*a_1^4*c_2^2+1/6*b_1^2*b_3^2+3/16*b_2^4+1/12*c_2^4+1/8*b_4^2+1/6*c_2*c_6+1/8*c_4^2;

CICF_Oh_cubeX_net := 1/4*a_1^4*c_2^2+1/6*c_2^4+1/3*c_2*c_6+1/4*c_4^2;

#################### diasteromeric ############

CICF_Os_cubeX :=

1/48*b_1^8+1/8*b_1^4*b_2^2+1/6*b_1^2*b_3^2+13/48*b_2^4+1/6*b_2*b_6+1/4*b_4^2;
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CICF_Os_cubeX_nets := 1/4*b_1^4*b_2^2+1/6*b_2^4+1/3*b_2*b_6+1/4*b_4^2;

#################### holantimeric ##############

CICF_OI_cubeX :=

1/48*b_1^8+1/48*a_1^8+1/6*b_1^2*b_3^2+3/16*b_2^4+1/6*a_1^2*a_3^2+3/16*c_2^4+1/8*b_4^2+1/8*c_4^2;

CICF_OI_cubeX_netI := 1/24*a_1^8+1/3*a_1^2*a_3^2+3/8*c_2^4+1/4*c_4^2;

##################### OhsI ####

CICF_OhsI_cube :=

1/96*b_1^8+1/96*a_1^8+1/16*b_1^4*b_2^2+1/16*a_1^4*c_2^2+1/12*b_1^2*b_3^2+13/96*b_2^4

+1/12*a_1^2*a_3^2+13/96*c_2^4+1/12*b_2*b_6+1/8*b_4^2+1/12*c_2*c_6+1/8*c_4^2;

A := Indeterminate(Rationals, "A"); B := Indeterminate(Rationals, "B");

C := Indeterminate(Rationals, "C"); D := Indeterminate(Rationals, "D");

V := Indeterminate(Rationals, "V"); W := Indeterminate(Rationals, "W");

p := Indeterminate(Rationals, "p"); P := Indeterminate(Rationals, "P");

q := Indeterminate(Rationals, "q"); Q := Indeterminate(Rationals, "Q");

aa_1 := A + B + C + D + V + W;

aa_2 := A^2 + B^2 + C^2 + D^2 + V^2 + W^2;

aa_3 := A^3 + B^3 + C^3 + D^3 + V^3 + W^3;

aa_4 := A^4 + B^4 + C^4 + D^4 + V^4 + W^4;

aa_5 := A^5 + B^5 + C^5 + D^5 + V^5 + W^5;

aa_6 := A^6 + B^6 + C^6 + D^6 + V^6 + W^6;

aa_7 := A^7 + B^7 + C^7 + D^7 + V^7 + W^7;

aa_8 := A^8 + B^8 + C^8 + D^8 + V^8 + W^8;

bb_1 := A + B + C + D + V + W + p + q + P + Q;

bb_2 := A^2 + B^2 + C^2 + D^2 + V^2 + W^2 + p^2 + q^2 + P^2 + Q^2;

bb_3 := A^3 + B^3 + C^3 + D^3 + V^3 + W^3 + p^3 + q^3 + P^3 + Q^3;

bb_4 := A^4 + B^4 + C^4 + D^4 + V^4 + W^4 + p^4 + q^4 + P^4 + Q^4;

bb_5 := A^5 + B^5 + C^5 + D^5 + V^5 + W^5 + p^5 + q^5 + P^5 + Q^5;

bb_6 := A^6 + B^6 + C^6 + D^6 + V^6 + W^6 + p^6 + q^6 + P^6 + Q^6;

bb_7 := A^7 + B^7 + C^7 + D^7 + V^7 + W^7 + p^7 + q^7 + P^7 + Q^7;

bb_8 := A^8 + B^8 + C^8 + D^8 + V^8 + W^8 + p^8 + q^8 + P^8 + Q^8;

cc_2 := A^2 + B^2 + C^2 + D^2 + V^2 + W^2 + 2*p*P + 2*q*Q;

cc_4 := A^4 + B^4 + C^4 + D^4 + V^4 + W^4 + 2*p^2*P^2 + 2*q^2*Q^2;

cc_6 := A^6 + B^6 + C^6 + D^6 + V^6 + W^6 + 2*p^3*P^3 + 2*q^3*Q^3;

cc_8 := A^8 + B^8 + C^8 + D^8 + V^8 + W^8 + 2*p^4*P^4 + 2*q^4*Q^4;

f_O_cube := Value(CICF_O_cube,

[a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8, c_2, c_4, c_6, c_8],

[aa_1, aa_2, aa_3, aa_4, aa_5, aa_6, aa_7, aa_8,

bb_1, bb_2, bb_3, bb_4, bb_5, bb_6, bb_7, bb_8, cc_2, cc_4, cc_6, cc_8]);;

f_Oh_cube := Value(CICF_Oh_cubeX,

[a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8, c_2, c_4, c_6, c_8],

[aa_1, aa_2, aa_3, aa_4, aa_5, aa_6, aa_7, aa_8,

bb_1, bb_2, bb_3, bb_4, bb_5, bb_6, bb_7, bb_8, cc_2, cc_4, cc_6, cc_8]);;

f_Os_cube := Value(CICF_Os_cubeX ,

[a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8, c_2, c_4, c_6, c_8],

[aa_1, aa_2, aa_3, aa_4, aa_5, aa_6, aa_7, aa_8,

bb_1, bb_2, bb_3, bb_4, bb_5, bb_6, bb_7, bb_8, cc_2, cc_4, cc_6, cc_8]);;

f_OI_cube := Value(CICF_OI_cubeX,

[a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8, c_2, c_4, c_6, c_8],

[aa_1, aa_2, aa_3, aa_4, aa_5, aa_6, aa_7, aa_8,

bb_1, bb_2, bb_3, bb_4, bb_5, bb_6, bb_7, bb_8, cc_2, cc_4, cc_6, cc_8]);;

f_OhsI_cube := Value(CICF_OhsI_cube,

[a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8, c_2, c_4, c_6, c_8],

[aa_1, aa_2, aa_3, aa_4, aa_5, aa_6, aa_7, aa_8,

bb_1, bb_2, bb_3, bb_4, bb_5, bb_6, bb_7, bb_8, cc_2, cc_4, cc_6, cc_8]);;

################################

f_O_cubeX_net := Value(CICF_O_cube,

[a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8, c_2, c_4, c_6, c_8],
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[aa_1, aa_2, aa_3, aa_4, aa_5, aa_6, aa_7, aa_8,

bb_1, bb_2, bb_3, bb_4, bb_5, bb_6, bb_7, bb_8, cc_2, cc_4, cc_6, cc_8]);;

f_Oh_cubeX_net := Value(CICF_Oh_cubeX_net,

[a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8, c_2, c_4, c_6, c_8],

[aa_1, aa_2, aa_3, aa_4, aa_5, aa_6, aa_7, aa_8,

bb_1, bb_2, bb_3, bb_4, bb_5, bb_6, bb_7, bb_8, cc_2, cc_4, cc_6, cc_8]);;

f_Os_cubeX_nets := Value(CICF_Os_cubeX_nets,

[a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8, c_2, c_4, c_6, c_8],

[aa_1, aa_2, aa_3, aa_4, aa_5, aa_6, aa_7, aa_8,

bb_1, bb_2, bb_3, bb_4, bb_5, bb_6, bb_7, bb_8, cc_2, cc_4, cc_6, cc_8]);;

f_OI_cubeX_netI := Value(CICF_OI_cubeX_netI,

[a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8, c_2, c_4, c_6, c_8],

[aa_1, aa_2, aa_3, aa_4, aa_5, aa_6, aa_7, aa_8,

bb_1, bb_2, bb_3, bb_4, bb_5, bb_6, bb_7, bb_8, cc_2, cc_4, cc_6, cc_8]);;

j := 0;

list_partitions :=[];

calcCoeffGentype := function(list_partitions)

local list_ligand_L, l_pp;

list_ligand_L := [A,B,C,D,V,W,p,P,q,Q];

l_pp := list_partitions;

j := j + 1;

Print("list_partitions[", j, "] := ", l_pp, "; \n list_FP[", j, "] := [ ",

calcCoeffGen(f_O_cube,list_ligand_L, list_partitions), ", ",

calcCoeffGen(f_Oh_cube,list_ligand_L, list_partitions), ", ",

calcCoeffGen(f_Os_cube,list_ligand_L, list_partitions), ", ",

calcCoeffGen(f_OI_cube,list_ligand_L, list_partitions), ", ",

calcCoeffGen(f_OhsI_cube,list_ligand_L, list_partitions), ", ",

calcCoeffGen(f_O_cubeX_net,list_ligand_L, list_partitions), ", ",

calcCoeffGen(f_Oh_cubeX_net,list_ligand_L, list_partitions), ", ",

calcCoeffGen(f_Os_cubeX_nets,list_ligand_L, list_partitions), ", ",

calcCoeffGen(f_OI_cubeX_netI,list_ligand_L, list_partitions), ", E]; \n");

end;

calcCoeffGentype([8,0,0,0,0,0,0,0,0,0]);

calcCoeffGentype([7,1,0,0,0,0,0,0,0,0]);

calcCoeffGentype([6,2,0,0,0,0,0,0,0,0]);

calcCoeffGentype([6,1,1,0,0,0,0,0,0,0]);

calcCoeffGentype([5,3,0,0,0,0,0,0,0,0]);

calcCoeffGentype([5,2,1,0,0,0,0,0,0,0]);

calcCoeffGentype([5,1,1,1,0,0,0,0,0,0]);

calcCoeffGentype([4,4,0,0,0,0,0,0,0,0]);

calcCoeffGentype([4,3,1,0,0,0,0,0,0,0]);

calcCoeffGentype([4,2,2,0,0,0,0,0,0,0]);

calcCoeffGentype([4,2,1,1,0,0,0,0,0,0]);

calcCoeffGentype([4,1,1,1,1,0,0,0,0,0]);

calcCoeffGentype([3,3,2,0,0,0,0,0,0,0]);

calcCoeffGentype([3,3,1,1,0,0,0,0,0,0]);

calcCoeffGentype([3,2,2,1,0,0,0,0,0,0]);

calcCoeffGentype([3,2,1,1,1,0,0,0,0,0]);

calcCoeffGentype([2,2,2,2,0,0,0,0,0,0]);

calcCoeffGentype([2,2,2,1,1,0,0,0,0,0]);

calcCoeffGentype([2,2,1,1,1,1,0,0,0,0]);

calcCoeffGentype([7,0,0,0,0,0,1,0,0,0]);

calcCoeffGentype([6,1,0,0,0,0,1,0,0,0]);

calcCoeffGentype([6,0,0,0,0,0,2,0,0,0]);

calcCoeffGentype([6,0,0,0,0,0,1,1,0,0]);

calcCoeffGentype([6,0,0,0,0,0,1,0,1,0]);

calcCoeffGentype([5,2,0,0,0,0,1,0,0,0]);

calcCoeffGentype([5,1,1,0,0,0,1,0,0,0]);
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calcCoeffGentype([5,1,0,0,0,0,2,0,0,0]);

calcCoeffGentype([5,1,0,0,0,0,1,1,0,0]);

calcCoeffGentype([5,1,0,0,0,0,1,0,1,0]);

calcCoeffGentype([5,0,0,0,0,0,3,0,0,0]);

calcCoeffGentype([5,0,0,0,0,0,2,1,0,0]);

calcCoeffGentype([5,0,0,0,0,0,1,1,1,0]);

calcCoeffGentype([4,0,0,0,0,0,4,0,0,0]);

calcCoeffGentype([4,3,0,0,0,0,1,0,0,0]);

calcCoeffGentype([4,0,0,0,0,0,3,1,0,0]);

calcCoeffGentype([4,0,0,0,0,0,3,0,1,0]);

calcCoeffGentype([4,2,0,0,0,0,2,0,0,0]);

calcCoeffGentype([4,0,0,0,0,0,2,2,0,0]);

calcCoeffGentype([4,0,0,0,0,0,2,0,2,0]);

calcCoeffGentype([4,2,1,0,0,0,1,0,0,0]);

calcCoeffGentype([4,2,0,0,0,0,1,1,0,0]);

calcCoeffGentype([4,2,0,0,0,0,1,0,1,0]);

calcCoeffGentype([4,0,0,0,0,0,2,1,1,0]);

calcCoeffGentype([4,0,0,0,0,0,2,0,1,1]);

calcCoeffGentype([4,1,1,1,0,0,1,0,0,0]);

calcCoeffGentype([4,1,1,0,0,0,1,1,0,0]);

calcCoeffGentype([4,1,1,0,0,0,2,0,0,0]);

calcCoeffGentype([4,1,0,0,0,0,1,1,1,0]);

calcCoeffGentype([4,0,0,0,0,0,1,1,1,1]);

calcCoeffGentype([3,3,1,0,0,0,1,0,0,0]);

calcCoeffGentype([3,3,0,0,0,0,1,1,0,0]);

calcCoeffGentype([3,3,0,0,0,0,1,0,1,0]);

calcCoeffGentype([3,3,0,0,0,0,2,0,0,0]);

calcCoeffGentype([3,2,2,0,0,0,1,0,0,0]);

calcCoeffGentype([3,2,0,0,0,0,2,1,0,0]);

calcCoeffGentype([3,2,1,1,0,0,1,0,0,0]);

calcCoeffGentype([3,2,1,0,0,0,1,1,0,0]);

calcCoeffGentype([3,2,0,0,0,0,1,1,1,0]);

calcCoeffGentype([3,1,1,1,1,1,0,0,0,0]);

calcCoeffGentype([3,1,1,1,1,0,1,0,0,0]);

calcCoeffGentype([3,1,1,1,0,0,1,1,0,0]);

calcCoeffGentype([3,1,1,1,0,0,1,0,1,0]);

calcCoeffGentype([3,1,1,0,0,0,1,1,1,0]);

calcCoeffGentype([3,1,0,0,0,0,1,1,1,1]);

calcCoeffGentype([3,0,0,0,0,0,3,2,0,0]);

calcCoeffGentype([3,0,0,0,0,0,3,1,1,0]);

calcCoeffGentype([3,0,0,0,0,0,3,0,1,1]);

calcCoeffGentype([3,0,0,0,0,0,2,2,1,0]);

calcCoeffGentype([3,0,0,0,0,0,2,1,1,1]);

calcCoeffGentype([2,2,2,0,0,0,2,0,0,0]);

calcCoeffGentype([2,2,0,0,0,0,2,2,0,0]);

calcCoeffGentype([2,0,0,0,0,0,3,2,1,0]);

calcCoeffGentype([2,0,0,0,0,0,3,1,2,0]);

calcCoeffGentype([2,0,0,0,0,0,3,1,1,1]);

calcCoeffGentype([2,0,0,0,0,0,2,2,2,0]);

calcCoeffGentype([2,0,0,0,0,0,2,2,1,1]);

calcCoeffGentype([2,0,0,0,0,0,2,1,2,1]);

calcCoeffGentype([2,2,2,1,0,0,1,0,0,0]);

calcCoeffGentype([2,2,2,0,0,0,1,1,0,0]);

calcCoeffGentype([2,2,2,0,0,0,1,0,1,0]);

calcCoeffGentype([2,2,1,0,0,0,2,1,0,0]);

calcCoeffGentype([2,2,1,0,0,0,2,0,1,0]);

calcCoeffGentype([2,2,0,0,0,0,2,1,1,0]);

calcCoeffGentype([2,2,1,1,1,0,1,0,0,0]);

calcCoeffGentype([2,2,1,1,0,0,2,0,0,0]);

calcCoeffGentype([2,2,1,1,0,0,1,1,0,0]);

calcCoeffGentype([2,2,1,1,0,0,1,0,1,0]);

calcCoeffGentype([2,2,1,0,0,0,1,1,1,0]);

calcCoeffGentype([2,2,0,0,0,0,1,1,1,1]);

calcCoeffGentype([2,1,1,1,1,0,2,0,0,0]);

calcCoeffGentype([2,1,1,1,0,0,2,1,0,0]);

calcCoeffGentype([2,1,1,1,0,0,2,0,1,0]);

calcCoeffGentype([2,1,1,1,1,1,1,0,0,0]);
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calcCoeffGentype([2,1,1,1,1,0,1,1,0,0]);

calcCoeffGentype([2,1,1,1,1,0,1,0,1,0]);

calcCoeffGentype([2,1,1,1,0,0,1,1,1,0]);

calcCoeffGentype([2,1,1,0,0,0,1,1,1,1]);

calcCoeffGentype([1,1,1,1,1,1,2,0,0,0]);

calcCoeffGentype([1,1,1,1,1,0,3,0,0,0]);

calcCoeffGentype([1,1,1,1,1,0,2,1,0,0]);

calcCoeffGentype([1,1,1,1,1,0,2,0,1,0]);

calcCoeffGentype([1,1,1,1,0,0,2,1,1,0]);

calcCoeffGentype([1,1,1,0,0,0,2,1,1,1]);

calcCoeffGentype([1,1,1,1,1,1,1,1,0,0]);

calcCoeffGentype([1,1,1,1,1,0,1,1,1,0]);

calcCoeffGentype([1,1,1,1,0,0,1,1,1,1]);

calcCoeffGentype([0,0,0,0,0,0,6,2,0,0]);

calcCoeffGentype([0,0,0,0,0,0,4,4,0,0]);

calcCoeffGentype([0,0,0,0,0,0,4,3,1,0]);

calcCoeffGentype([0,0,0,0,0,0,4,2,2,0]);

calcCoeffGentype([0,0,0,0,0,0,4,2,1,1]);

calcCoeffGentype([0,0,0,0,0,0,3,3,1,1]);

calcCoeffGentype([0,0,0,0,0,0,3,2,2,1]);

calcCoeffGentype([0,0,0,0,0,0,3,1,3,1]);

LogTo();
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[20] O. E. Polansky, Pólya’s method for the enumeration of isomers,
MATCH Commun. Math. Comput. Chem. 1 (1975) 11–31.
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