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Abstract

The Merrifield-Simmons index of a graph G is defined as the summation of
the number i(G, k) of k-independent sets in G. It has applications in structural
chemistry such as correlation with the thermodynamic properties of hydrocarbons.
For this reason, enumeration of i(G, k) of molecular graphs comes into prominence.
In this paper, a method based on the transfer matrix technique is presented for
enumerating i(G, k) in benzenoid chains. As a consequence, for all k& > 0, each
i(G, k) in arbitrary benzenoid chains is obtained via an appropriate product of three
transfer matrices with dimension 5(k + 1) x 5(k + 1) and a vector. In addition,
we present two algorithms to make easier application of the method so that the
applicability remains the same when the k value increases.

1 Introduction

Let G be a graph with vertex set V' and edge set E. A set consisting of all adjacent
vertices to a vertex v is called the neighborhood set of v, and it is denoted by Ng(v).
The union of the sets Ng(v) and {v} forms the closed neighborhood Ng[v]. If all vertices
in a subset S C V are pairwise nonadjacent, then S is called an independent set. An
independent set with k& vertices is called a k-independent set. The number of possible

independent sets in G with k vertices is called the number of k-independent sets of G and
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it is denoted by (G, k). In connection with k-independent sets, the Merrifield-Simmons

index is defined as

o(G) =Y _i(G, k)

£>0
where i(G,0) = 1 and it is trivial that (G, 1) = |V].

The Merrifield-Simmons index has an important role in mathematical chemistry as it is
used to predict thermodynamic properties of corresponding molecules by using molecular
graphs, for a detailed survey, see [7,8,16].

Hexagonal systems are molecular graphs of benzenoid hydrocarbons so that they are
also called benzenoid systems. A benzenoid system is a 2-connected planar graph in which
each finite region is a regular hexagon. In a benzenoid system, a vertex that is contained
by three hexagons is called the internal vertex. A benzenoid system without any internal
vertex is called catacondensed benzenoid system, [3]. If every hexagon is adjacent to at
most two hexagons in a catacondensed benzenoid system, then it is called a benzenoid
chain. Benzenoid chains are one of the prominent subclasses of catacondensed benzenoid
systems and a great deal of mathematical and chemical studies are carried out on them.
Some topological indices of benzenoid chains were studied in [4, 6,10, 12,15|. Extremal
properties of hexagonal chains were studied in [9,18-20].

The transfer matrix method has been used on several enumeration problems in combi-
natorial and chemical graph theory, [13,14|. Enumeration of independent sets in various
molecular structures has been the topic of several studies. In [1,2,17], the numbers of
independent sets of small size in various fullerene graphs are computed. In [5], explicit for-
mulae are presented for the number of independent sets of certain types of chain hexagonal
cacti. Moreover, a method is presented for calculating the Merrifield-Simmons index of
any benzenoid chains in [11]. However, for every k > 0, i(G, k) values were not computed,
separately. In this paper, we familiarize the k-independence vector at an edge of a hexagon
of a given benzenoid chain and we use the transfer matrix technique to construct a method
for enumerating (G, k) values in arbitrary benzenoid chains. The method is based on an
appropriate multiplication of three transfer matrices with dimension 5(k 4+ 1) x 5(k + 1)
and a vector with dimension 5(k + 1) x 1, where k > 0. Furthermore, in Section 3, we
design two algorithms to facilitate the application of the method as k values increase.

Two significant recurrence relations for computing the number of k-independent sets
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in a graph G are given as follows:
((SUH, k) =i(S,k)i(H,0)+i(S, k—1)i(H,1)+---+i(S, 1)i(H, k—1)+i(S,0)i(H, k), (1)
where G = SU H and S, H are two connected components of G. Moreover,

i(G,k) = i(G —uz, k) —i(G — Ng[u] — N¢glz], k — 2),e = uz € G. (2)

-i- -ii-

Figure 1. Benzenoid chain structures used in the next theorems

In Fig. 1, we show two isomorphic graphs with different vertex labels for the future

use.

2 Enumeration of k-independent sets
in benzenoid chains

Let us now introduce the k-independence vector of G at a given edge to compute (G, k)

of G.

Definition 2.1. Let G = (V, E) be a graph and e = uz € E. The k-independence vector
of G at e = uz is as shown below:

i,k
i(Gk—1)

i(G.0)
i(G — Noful, k)
i(G — Nolul. k1)

i0s(GL E) =
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(V,E) be a graph obtained by fusing a graph H and a hezagon

Theorem 2.1. Let G

with the edge cd in common (see Fig. 1 (i)). Then

ta(GL k) = My -ica(H, k)

0
0
0

co ocoo cooio
I I

cococo)! coco)!

I I

co occooloo ooolo
(== UOOU”OO OO\U”O
(== 0000”00 000”0
I I

oo =) =)
I I

co ocococooco ocoolo

0

000 0 0

000 0 0

0

000 0 0

0

000 0 0

000 0 0

0

000 0 O

000 0 O

000 0 0

000

where My is a transfer matriz with dimension 5(k + 1) x 5(k + 1) as follows:

0

0

0 -

Proof. By the definition of the k-independence vector at the edge ab of G, firstly let us

aim to get the values i(G, k),i(G — Nglal, k), i(G — Ng[b], k), (G — a, k) and i(G — b, k)

as a product of a vector and i.(H, k). To achieve this purpose, let us delete suitable

combinations of edges c¢f and dg from each corresponding subgraph. Thus, we can get

desired equations by using the recurrence relations 1 and 2 as follows:
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(G, k)= i(G —cf —dg,k) —i(G — cf = Ngld] — Nalgl, k — 2) — i(G — Ngld — Na[f].k - 2)
= i(PyUH,k)—i(Py U (H — Ngld]), k — 2) — i(Py U (H — Neld), k — 2)
= i(H, k) + 4i(H, k — 1) + 3i(H, k — 2) — i(H — Ngd), k — 2) — 2i(H — Ngd), k — 3)
— i(H — Ngld, k — 2) — 2i(H — Ng[d, k — 3)
= (1,4,3,0,---,0,0,0,—1,-2,0,---,0,0,0,—1,—2,0,--- ,0,0,--- ,0,0,- - ,0) - icq(H, k),
i(G = Nglal,k) = (G — Ngla] — dg, k) —i(G — Nela] - Ngld] — Nglgl. k - 2)
= (PyUH,k)—i(H — Ngld),k —2)
= i(H,k) +i(H,k—1) —i(H — Ngld, k- 2)
= (1,1,0,0,--+,0,0,---,0,0,0,—1,0,- - ,0,0,-- ,0,0,- - ,0) - iua(H, k),
(G — Nglbl, k) = i(G — Ng[b] — cf, k) —i(G — Ng[b] — Na(d — Na[f], k —2)
= (P UH, k) —i(H - Nglel,k —2)
= i(H,k)+i(H, k1) —i(H — Ngld, k - 2)
= (1,1,0,0,---,0,0,0,—1,0,---,0,0,---,0,0,--,0,0,--- ,0) - icq(H, k),
i(G—ak)= (G —a—cf—dgk)—i(G—a—-cf—Ngld - Nglgl,k—2)
— (G —a— Ngld — Nglfl, k- 2)
= i(PLUP,UH,k) —i(Py U (H — Ngld)),k —2) — i(Py U (H — Ngld), k — 2)
= i(H,k)+ 3i(H,k — 1) + 2i(H,k — 2) — i(H — Ng[d),k — 2) — i(H — Ng[d], k — 3)
— i(H — Ngld, k —2) — 2i(H — Ng[d, k — 3)
= (1,3,2,0,---,0,0,0,-1,—2,0,---,0,0,0,~1,~1,0,---,0,0,---,0,0,--- ,0) - ica(H, k),
WG —bk)= (G —b—cf —dg,k) —i(G—b—cf — Neld| — Nelgl, k — 2)
- G —b—Ngld - Nglf],k—2)
= i(PLUP,UH,k) —i(P2U(H — Ng[d)), k —2) — i(P1 U (H — Ngld]), k — 2)
= i(H,k)+ 3i(H,k — 1) + 2i(H,k — 2) — i(H — Ng[d), k — 2) — 2i(H — Ng[d), k — 3)
— i(H - Ngld, k —2) —i(H — Ngld, k — 3)
= (1,3,2,0,---,0,0,0,—1,—1,0,--- ,0,0,0,—1,-2,0,--- ,0,0, -+ ,0,0,-- ,0) - i¢a(H, k).

Then, by using the five obtained equations, it is deducable that the k value decreases
only for i(G,k—1), ---, i(G,0), i(G— Ngla],k—1),--- , i(G — N¢lal,0), i(G — Ngbl, k —
1),--+,i(G — Ng[b],0),i(G—a,k—1),--- ,i(G—a,0) and i(G — b,k —1),--- ,i(G —b,0).
Hence i, (G, k) is obtained as the product of i.q(H, k) and a 5(k+1) x 5(k+1) dimensional
matrix whose the first, (k + 2)-th, (2k + 3)-th , (3k + 4)-th and (4k + 5)-th rows are the
vectors as follows, respectively:
(1,4,3,0,---,0,0,0,—1,-2,0,---,0,0,0,—1,-2,0,---,0,0,---,0,0,---,0),
(1,1,0,0,---,0,0,---,0,0,0,—1,0,---,0,0,---,0,0,--- ,0),
(1,1,0,0,---,0,0,0,—1,0,---,0,0,---,0,0,---,0,0,---,0),
(1,3,2,0,---,0,0,0,-1,-2,0,---,0,0,0,—-1,-1,0,---,0,0,---,0,0,---,0),
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70707"'

The remaining rows of the matrix excluding the first, (k + 2)-th, (2k + 3)-th, (3k + 4)-

,0,0,0,—1,-2,0,--

707070771771707'”,

(17372707”'

th and (4k + 5)-th rows, are determined in the echelon form in every 25 submatrices

by depending on these rows since just k value decreases in the equations of i(G,k — 1),

(G —

, i(G — Nglal,0), i(G — Ng[b],k — 1),---
—b,0). In conclusion,

-, i(G,0), i(G — Nglal,k — 1),---

Ng[b],0),i(G—a,k—1),---

72(

M - i.q(H, k) where M; is the given matrix above with

,i(G—a,0) and i(G—b,k—1),---

it is reached that i.(G, k)

dimension 5(k + 1) x 5(k + 1).

in the case of S is isomorphic to path graph P,

As a natural result of Theorem 2.1

it is obtained that

o1 1],

0110

0

1

1

0210 0

:]\/1.[0

iab(GL k)

(V,E) be a graph obtained by fusing a graph H and a hezagon

Theorem 2.2. Let G

with the edge fc in common (see Fig. 1 (ii)). Then

M - iy (H, k)

tap(G, k)

where My is a transfer matriz with dimension 5(k + 1) x 5(k + 1) as follows:
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Proof. We need to compute (G, k), i(G — Nglal, k), i(G — Ng[bl, k),i(G —a, k) and i(G —

b, k) by deleting appropriate combinations of edges dc and fa to get the subgraph .S apart

from the hexagon. Afterwards, we utilize the recurrence relations 1 and 2 as the following:
(G, k)= (G — fa—cd,k) —i(G — fa— Ngld — Nald), k —2) —i(G — N[f] — Nelal, k — 2)
= (PAUH,k)—i(PsU(H — Ngld), k —2) —i(P2 U (H — Ng[f]),k — 2)
i(H, k) + 4i(H, k — 1) + 3i(H, k — 2) — i(H — Ng[d], k — 2) — 2i(H — Ngld, k — 3)
— (H = Nglfl,k —2) = 2i(H — Ng[f], k — 3)
= (1,4,3,0,---,0,0,0,—1,-2,0,---,0,0,0,—1,—2,0,--- ,0,0,---,0,0,--- ,0) - i (H,k),
i(G - Nglal,k) = (G — Nela] — ed, k) — i(G — Nela) — Nele] — Neld), k — 2)
= (PU(H - f),k) —i(H — Neld, k —2)
i(H — f,k) + 2i(H — f,k — 1) —i(H — Ng[d], k — 2)
(0,-++,0,0,-++,0,0,0,—1,0,-- ,0,1,2,0,--,0,0,--- ,0) - i.(H, k),
i(G = Nglbl,k) = (G — Ngb] — ed, k) — i(G — Ng[b] — Nale] — Ngld), k - 2)
(P U H, k) — i(H — Ngld, k- 2)

i(H, k)+z(H k*l)*l(H Nc[c] k—2)
= (1,1,0,0,---,0,0,---,0,0,0,=1,0,---,0,0,---,0,0,---,0) - if.(H, k),

i(G—a,k) = i(G—a—cdk)—i(G—a-Ngld - Neld,k—2)
= i(PsUH,k)—i(P1U(H — Nald), k —2)
= i(H, k) + 3i(H,k — 1)+ i(H,k — 2) — i(H — Ngld, k — 2) — i(H — Ngd, k — 3)
= (1,3,1,0,-++,0,0,---,0,0,0,—1,~1,0,--- ,0,0,- - ,0,0,--- ,0) - ifo(H, k),
(G —bk)= i(G—b— fa—cdk)—i(G—b— fa— Ngld — Ngld),k —2) —i(G —b— Ng|f] - Nglal,k — 2)
= i(PLUP,UH, k) —i(Py U(H — Ngld),k—2) —i(P, U (H — Ng[f]),k — 2)
= i(H, k) + 3i(H, k — 1) + 2i(H, k — 2) — i(H — Ng|d, k — 2) — i(H — Ng[c], k — 3)
— i(H = Nglf), k—2) = 2i(H — Ng[f], k- 3)
= (1,3,2,0,---,0,0,0,—1,-2,0,---,0,0,0,—1,—1,0,--- ,0,0,--- ,0,0,--- ,0) - i (H, k).

From the five equations obtained above, other required equations in which only & value
decreases for i(G, k—1), - - -, i(G,0),i(G—Ng¢la], k—1),- - - , i(G—Ng[al, 0), i(G—Ngb], k—
1), -+ ,i(G = Ng[b],0),i(G—a,k—1), -+ ,i(G—a,0) and i(G — b,k —1),--- ,i(G—b,0)
are obtained in the form of a product of a vector and is.(H, k). Consequently, i, (G, k)
is reached as the product of is.(H, k) and 5(k + 1) x 5(k + 1) dimensional matrix whose
the first, (k+ 2)-th, (2k + 3)-th, (3k +4)-th and (4k + 5)-th rows are the vectors as given
below, respectively:
(1,4,3,0,---,0,0,0,-1,-2,0,---,0,0,0,—-1,-2,0,---,0,0,---,0,0,---,0),
(«,---,0,0,---,0,0,0,—1,0,---,0,1,2,0,---,0,0,---,0),
(1,1,0,0,---,0,0,---,0,0,0,—1,0,---,0,0,---,0,0,--- ,0),
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70707..,

70,07...

70707'” 70707077177170:"'

(17371707”'

,0,0,0,—1,-1,0, - -

7070707_1~,_2707"',

(17372707"'

Since only k value decreases for other equations, the rest of the rows of the matrix exist

in the echelon form in each of the 25 submatrices by depending on the stated rows above.

M, i (H, k).

Let us call the above matrix by M. Then we get the result as iq (G, k)

(V,E) be a graph obtained by fusing a graph H and a hezagon

Theorem 2.3. Let G

ommon (see Fig. 1). Then

d in c

with the edge

Ms -icq(H, k)

ibg(Gv k)

where M3 is a transfer matriz with dimension 5(k 4+ 1) x 5(k + 1) as follows:

co cocococioo coocico o —~ico coococico cooco
I I I I
coool coo! [ cocoo! cooo
I I I I
oo 0000”00 000”00 100”00 0000”00 cococo
o o OOUUHOU 000”00 OUUHOU 0000”00 cococo
oo cccocies cooiea cccies ccooweo cooco
- I o I
oo Piioo o~ oo ISRS]
o I i I
oo cooooo oo cooloo o cooco
oo coocooco oo cooloo cococo
I I
cocooi! oo cool! cooco
| '
i i
oo coooco oo cooco coco
oo coocooco oo coojoo cooco
co coooloo oo cooloo cooco
I I I I
oo =3 oo =3 o o

1410W llOW OUUW 22,10” —m o
| I | |
o ™ -0 o000 —oc oo cocoea » = o0~ m—=o o
| | | |
™ cocooo~ cococo coo™mm —oc oo™ o oo
I I I I
<+ ”11 ”00 ”31 P ”31
| | | |
— o coocoi~o cocoioo cooiHo cococoiHo cocoo

Proof. First of all, three of the values required for the proof have already been determined

in the proof of Theorem 2.1 as presented below:

,0) ica(H, k),

-,0,0,---

10,0,

,0,0,0,-1,-2,0,---

,0,0,0,-1,-2,0,---

=(1,4,3,0,---

i(G, k)

,0) - icq(H, k),

,0,0,---,0,0,---

,0,0,- -

,0,0,0,—1,0,---

i(G — Ng[b], k) = (1,1,0,0,-- -

10) ~ica(H, k).

£,0,0,---

,0,0,--

,0,0,0,-1,-2,0,---

,0,0,0,—1,—1,0,---

(1,3,2,0, -

(G — b, k)
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Hence, we need to compute just i(G — Ng[g], k) and i(G — g, k) by deleting the edge cf.

Then by utilizing the recurrence relations 1 and 2 we get equations as below:

i(G — Nglgl, k) = i(G — Nglg] - ¢f, k) —i(G — Nalg] — Neld — Nelf], k - 2)
= i(P2U(H —d), k) —i((H — Ngld]),k —2)
= i(H-d,k)+2i(H—dk—1)—i(H— Nglc],k —2)
= (0,---,0,0,0,—1,0,---,0,0,---,0,0,---,0,1,2,0,---,0) - icq(H, k),
i(G—g,k) = i(G—g—cfk)—i(G—g—Ngld - Nglfl.k - 2)

= i(P3UH,k)—i(PyU(H — Nglc)), k — 2)
= i(H,k)+3(H,k—1)+i(H,k—2) —i(H — Na[d,k —2) —i(H — Na[d, k — 3)

= (1,3,1,0,---,0,0,0,—1,-1,0,-+-,0,0,-+-,0,0,-++,0,0,- - ,0) - icq(H, k).

It is deducable that only the k value decreases for the rest of the entries of the vector
ing(G, k), each of these values can be achieved as a product of i.q(H, k) and a 5(k+1) x 1
dimensional vector by using the equations above. Then it is clear that i,,(G, k) can be
written as Ms - icq(H, k) where Ms is a 5(k + 1) x 5(k + 1) dimensional matrix whose the
first, (k + 2)-th, (2k + 3)-th, (3k + 4)-th and (4k + 5)-th rows are the following vectors,
respectively, and remaining rows are in the echelon form in each of the 25 submatrices:
(1,4,3,0,---,0,0,0,—1,-2,0,---,0,0,0,—1,-2,0,---,0,0,---,0,0,---,0),
(1,1,0,0,---,0,0,0,-1,0,---,0,0,---,0,0,---,0,0,---,0),
(,---,0,0,0,-1,0,---,0,0,---,0,0,---,0,1,2,0,---,0),
(1,3,2,0,---,0,0,0,—-1,-1,0,---,0,0,0,—-1,-2,0,---,0,0,---,0,0,---,0),
(1,3,1,0,---,0,0,0,—1,-1,0,---,0,0,---,0,0,---,0,0,---,0).

Consequently, this completes the proof. |

3 Algorithms

In Section 2, we presented the theoretical part of our method used to compute the k-
independent sets in benzenoid chains. This method is based on three transfer matrices
and a vector that we called My, My, M3 and i.q(Ps, k), respectively. However, when the k
value increases, computation is getting difficult because of the dimensions of the transfer
matrices and the vector. Therefore, in this section we present two algorithms that are
designed in MATLAB to easily get M, Ma, M3 and i.q(Ps, k) for all k& > 0. In the first
algorithm, based on the input that is k value, for a path graph P, with the edge cd,



102

ica( P2, k) is obtained as follows:
ia(Pok)=[0 - 0210010 --010--0110--011]",

Let us present Algorithm 1 below:

Algorithm 1: Algorithm to obtain i.4( Pz, k) where cd is the edge of P,.

Input: Enter the value of k.
Result: i.q(P2, k).

V = zeros(1,5* k +5);
V(k)=2;
V(k+1)=1;
V(E2xk+2)=1;
V@B+xk+3)=1;
V(dxk+3)=1;
V(dsk+4)=1;
V(5xk+4)=1;
V(5xk+5)=1;

V1 = transpose(V);

In the Algorithm 2, based on the input k value, we get the transfer matrices My, My, M3
by adding a couple of steps at the beginning before the step "M (1,:) = T'1;” as follows:
For the transfer matrix Mj, it is needed to add the steps consequtively as follows:

T1 = zeros(1,5%k+5); T1(1) =1; T1(2) =4; T1(3) =3; T1(k+4) = -1; T1(k+5) =
-2, T12xk+5) = =1; T12+k+6) = =2; T2 = zeros(1,5* k + 5); T2(1) =
1; T2(2) = 1; T2(2xk+5) = —1; T3 = zeros(1,5 % k +5); T3(1) = 1; T3(2) =
1; T3(k+4) = —1; T4 = zeros(1,5xk+5); T4(1) = 1; T4(2) = 3; T4(3) = 2; T4(k+4) =
—1; TA(k+5) = =2; T42«k+5) = —1; T42+k +6) = —1; T5 = zeros(1,5x k +
5); TH(1) =1; T5(2) =3; T5(3) =2; Th(k+4) = —1; T5(k+5) = —1; T5(2+xk+5) =
—1; T5(2xk+6) = —2;

For the transfer matrix Ms, it is needed to add the steps consequtively as follows:
T1 = zeros(1,5%k+5); T1(1) =1; T1(2) =4; T1(3) =3; T1(k+4) = —1; T1(k+5) =
=2, T12xk+5)=—1; T1(2xk+6) = —2; T2 = zeros(1,5xk+5); T2(2xk +5) =
—1; T2(3xk+4)=1; T2(3xk+5)=2; T3 =zeros(1,5xk+5); T3(1)=1; T3(2) =
1; T3(2*k+5) = —1; T4 = zeros(1,5 x k +5); T4(1) = 1; T4(2) = 3; T4(3) =
1; T4(2xk+5) = —1; T4(2%k+6) = —1; T5 = zeros(1,5xk+5); T5(1) =1; T5(2) =
3; T5(3) =2; T5(k+4) =—1; T5(k+5) = =2; T5(2*xk+5) = —1; T5(2xk+6) = —1;

For the transfer matrix M3, it is needed to add the steps consequtively as follows:

T1 = zeros(1,5%k+5); T1(1) =1; T1(2) =4; T1(3) =3; T1(k+4) = —1; T1(k+5) =
-2, T12xk+5) = —1; T12+k+6) = —2; T2 = zeros(1,5* k + 5); T2(1) =
1; T2(2) = 1; T2(k+4) = —1; T3 = zeros(1,5%k+5); T3(k+4) = —1; T3(4xk+5) =
1; T34 xk+6) = 2; Td = zeros(1,5 x k +5); T4(1) = 1; T4(2) = 3; T4(3) =
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% TA(k+4) = —1; TA(k+5) = —1; TA(2+k+5) = —1; T42+k +6) = —2; T5 =
zeros(1,5xk+5); T5(1) =1; T5(2) =3; T5(3) =1; T5(k+4) = —1; T5(k+5) = —1;

Now, let us present the Algorithm 2, which runs according to the inputs above:

Algorithm 2: Algorithm to obtain the transfer matrices My, My, M3 according
to k.

Input: Enter the value of k.

Result: M, My and Ms.

M = zeros(5xk + 5,5k + 5);

"According to the transfer matrix desired to be obtained, the steps given before the algorithm will be entered in
this part ";

M(1,:)=T1;

M(k+2,:) =T2;

M(2%k+3,

M(3 % k+4,:) = T4;

M(4xk+5,:)=T5;

for fromi=1to k+1do

for from j =i to k do

M(i+1,j+1) = M(i,j);

M(i+1,5+k+2)=M@i,j+k+1);

M(i+1,j+2%k+3) = M(i,j+ 2k +2);

MGi+1,j+3%k+4)=M(i,j+3*k+3);

M(i+1,j+4%k+5) = M(i,j+4%k+4);

end
end
for fromi=k+2 to2xk+1do

for from j =1 to k do

M(i+ 1,5+ 1) = M(i,j);
M@+1,j+k+2)=M(@G,j+k+1);
M(i4 1,5 +2%k+3) = M(i,j+ 2%k +2);
M(i+1,5+3%k+4)=M(@,j+3*k+3);
M(i4+1,j+4xk+5)=M®G,j+4xk+4);

end
end
for fromi=2xk+3 to3xk+2do

for from j =1 to k do
M(i+1,5+1)=M(i,j);
MGE+1,j+k+2)=M(,j+k+1);
M@i+1,j4+2%xk+3)=M(i,j+2xk+2);
M@i+1,j+3%k+4)=M(i,j+3xk+3);
M@i+1,j+4%k+5)=M(i,j+4xk+4);
end

end
for fromi=3%k+4 to4dxk+3do

for from j =1 to k do
M(i+1,5+1) = M(4,5);
M(i+1,5+k+2) = M(i,j+k+1);
MG+ 1,5+2%k+3)=M(®i,j+2%k+2);
M(i+1,5+3%k+4) = M(i,j + 3%k +3);
M(i4 1,5 +4xk+5) = M(i,j+ 4%k +4);
end

end
for fromi=4%k+5 to5+k+4do

for from j =1 to k do

M(i+ 1,5+ 1) = M(i,5);
M(i+1,5+k+2) = M(@i,j+k+1);
MG+ 1,54+2%k+3)=M(®i,j+2%k+2);
M@i+1,j+3xk+4)=M(i,j+3xk+3);
M(i41,j+4%k+5)=M(i,j+4%k+4);

end
end

Example 3.1. Let G be a benzenoid chain with 11 hexagons as shown in Fig. 2.
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Figure 2. Benzenoid chain with 11 hexagons

For allk > 0, i(G,k) of G can be computed by means of the vector i (G, k) and Thms.
2.1, 2.2, 2.3 as follows:
(G k) = My -ig (ST k),

= M- M; i (ST, k),

= M- Mz Ms-ig(S", k),
= M- Mz Ms- M;-i;(S™, k),
= M, M;z- Ms- My M,-iy(SV, k),
= M Mz Mz Mz My My i, (SVE),
= M Mz M- Mz My My M -i,,(SV k),
= My Mz My~ Mz My~ My My - M i, (SY k),
= M, Mz Mz Mz My My M- M- My-ig(STX k),

= My Ms- M- M- My- M- My - My - M- M iy, (SX, k),

= My -M;s-M;z-Ms-My-My- M- M- M- M- M - iy (Pa, k),
where ST, 8™ ... SX are corresponding subgraphs.
Hence desired k value can be chosen in the last equation above to get iq(G, k). Since
the vector iq.(G, k) contains the numbers of all k-independent sets in G up to the k value
including k value, all of these are obtained. Let us choose k = 25 as follows:

iap(G,25) = My M- My~ Ms- My My~ My - My - My My - My - iy (Ps, 25)
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By using this equation together with Algorithms 1 and 2, the result is obtained as fol-

lows:

ia(G,25) =10 0 2 145 4268 68002
662662 4240055 18729664 59359916 139073582 246477981 336273579
357809386 299711119 198824106 104766545 43837794 14510552 3768649
757403 115209 12802 979 46 1 0

0 0 1 73 1960 29072 267747
1626798 6828646 20539053 45535285 76028515 97152079 96128659
74239291 44953503 21366091 7950163 2299484 510343 85075
10289 851 43 1 0 0 0

1 67 1981 30694 284616 1718068 7138367
21247946 46673132 77340774 98256520 96812984 74552134 45058462
21391547 7954496 2299974 510376 85076 10289 851

43 1 0 0 1 72 2308
38930 394915 2613257 11901018 38820863 93538297 170449466
239121500 261680727 225471828 153870603 83400454 35887631 12211068
3258306 672328 104920 11951 936 45 1

0 0 1 78 2287 37308 378046
2521987 11591297 38111970 92400450 169137207 238017059 260996402
225158985 153765644 83374998 35883298 12210578 3258273 672327
104920 11951 936 45 1]T.

As a consequence, the entries starting from the first entry to the twenty-sizth entry give

the following values, respectively:

i(G,25) = 0, i(G,24) = 0, i(G,23) = 2, i(G,22) = 145, i(G,21) = 4268, i(G,20) =

68002, (G, 19) = 662662, i(G, 18) = 4240055, (G, 17) = 18729664,i(G, 16) = 59359916,
i(G,15) = 139073582, i(G, 14) = 246477981, i(G, 13) = 336273579, i(G, 12) = 357809386,
i(G,11) = 299711119, (G, 10) = 198824106, i(G,9) = 104766545, i(G,8) = 43837794,
i(G,7) = 14510552, i(G,6) = 3768649, i(G,5) = 757403, i(G,4) = 115209, i(G,3) =
12802, i(G,2) =979, i(G,1) = 46 and i(G,0) = 1.

In addition, for k = 25, the first and second entries of i. (G, 25) are equal to zero and it
means that the mazimum k value is 23 for nonzero i(G, k). Therefore, by the definition of
the Merrifield-Simmons indez, the summation of i(G, 23),i(G,22),--- ,i(G, 1) and i(G,0)
gives the Merrifield-Simmons index of G. Hence, by summing the first, - - -, twenty-sizth
entries of ia(G,25), the Merrifield-Simmons index of G is achieved as 1829004447. Note
that, since i(G,24) = 0, the selection k = 23 in iu(G, k) will actually be sufficient for
computing the Merrifield-Simmons index of G.

Alternatively, for all k > 0, the same i(G,k) values can be obtained by using the

following vectors and equations:



106
iya(G,25) = My Ms- Ms- Ms- My My - My - My - My - My - My - iy (P2, 25),

(G, 25) Ms - My - My - Mz - My - My - My - My - Mz - My - My -0 (P, 25).

The difference between the equations of the vectors iq,(G, 25), iye(G, 25) and iy.(G,25)
is Just the My, My, M3z matrices obtained due to the reduction difference in the first step.

Finally, i(G, k) values can also be computed by using the k-independence vector of G
at the edge xw as follows:

ipw(G,25) = My My My My My Ms-M;- My My My - M - iga( Py, 25).

In conclusion, for all k¥ > 0, (G, k) can be computed by using the k-independence
vector and Thms. 2.1, 2.2, 2.3 for arbitrary benzenoid chains. Furthermore, for the
maximum k& > 0 such that (G, k) # 0, since the sum of the rows of i,,(G, k) between
the first and (k 4 1)-th corresponds to the Merrifield-Simmons index of G, this value is
obtained by using the method. Similarly, the sum of the rows of 74 (G, k) between k + 2
and 2k + 2, 2k + 3 and 3k + 3, 3k + 4 and 4k + 4, 4k + 5 and 5k + 5 corresponds to the
Merrifield-Simmons indices of G — Ngla|, G — Ng[b], G — a, G — b, respectively. Hence,

all of these values are achieved by utilizing the method.
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