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Abstract

The Hosoya index is associated with many thermodynamic properties such as
boiling point, entropy, total w-electron energy. Transfer matrix technique is exten-
sively utilized in mathematical chemistry for various enumeration problems. In this
paper, we introduce the k-matching vector at a certain edge of graph G. Then by
using the k-matching vector and two recurrence formulas, we get reduction formulas
to compute k-matching number p(G, k) of any benzenoid chains for Vk > 0 whose
summation gives the Hosoya index of the chain. In conclusion, we compute p(G, k)
of any benzenoid chains via an appropriate multiplication of three 4(k+1) x 4(k+1)
dimensional transfer matrices and a terminal vector which can be obtained by given
two algorithms.

1 Introduction

Let G = (V, E) be a graph. A matching in G is a set of independent edges such that no
two edges have a common vertex. A matching containing k independent edges is called a
k-matching. Maximum possible number of k-matching in G is called k-matching number
and it is denoted by p(G, k), for some results about k-matching number (for 0 < k < 6)
of certain graphs see [1,7,8,18,19]. Relatedly, Hosoya index (Z index) of G is defined as
the sum of all p(G, k) in G, where p(G,0) = 1, and it is denoted by Z(G) = >, _, p(G, k),
where p(G,r) # 0 whereas p(G,r + 1) = 0, for details, see [12]. Hosoya index has
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significant importance and therefore, is extensively studied in mathematical chemistry to
determine and quantify physical and structural properties of organic molecules, see for
more details [9,20].

Benzenoid (hexagonal) systems are graph forms of benzenoid hydrocarbons that have
practical role in theoretical chemistry. A benzenoid system is represented as a finite 2-
connected graph whose regions are hexagons excluding exterior region. Inner dual of a
benzenoid system G is defined as a graph G’ that each hexagon of G is represented as
a vertex in G’ and if two hexagons are adjacent in G, then corresponding vertices are
adjacent in G’. A cata-condensed hexagonal system G is a hexagonal system that G’ is
a tree, for more information and research, see [10]. If every hexagon adjacent at most
two hexagon in a cata-condensed hexagonal system, then it is called a hexagonal chain.
Extremal properties of hexagonal chains were studied in [5,11,22].

Some studies on the number of k-matchings of specific molecular graphs can be found
in [2,3,21]. In [15], Klabjan and Mohar presented a way to compute the number of
k-matchings in hexagonal systems for k < 5.

In chemical graph theory, graph-theoretical and combinatorial enumeration problems
can be solved by using recurrence relations repeatedly. However, these ways are often
quite challenging to apply even with a computer for large and complex systems such as
polycyclic graphs [4,17]. At this point, two efficient and practical methods were pre-
sented by Hosoya and Ohkami [13], Randi¢ et al. [17] to surpass these challenges that
are called operator technique and transfer matrix technique, respectively. In [13], Hosoya
and Ohkami obtained the recurrence equations of characteristic, matching and Z-counting
polynomials for linear, kinked and zig-zag types polyacenes by using the operator tech-
nique. Furthermore, the operator technique was used in the study on some periodic lattice
spaces by Hosoya and Motoyama, for details see [14]. In [17], Randi¢ et al. proposed an
algorithm in which they obtain the matching polynomials of any benzenoid chains via a
product of three 5 x 5 dimensional transfer matrices with an appropriate terminal vector.
With this technique, they also studied the number of Kekulé structures, the Hosoya in-
dices and characteristic polynomials of arbitrary benzenoid chains. Analogously in [16],
Polansky et al. computed the Wiener numbers of arbitrary benzenoid chains by using
three 5 x 5 dimensional transfer matrices and an appropriate terminal vector. Moreover,

in the same paper, it was shown that the Wiener numbers of large benzenoid systems are
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accessible by using various dimensional augmented transfer matrices.

In the transfer matrix technique [16,17], a vector v is defined by associated with the
corresponding benzenoid system with h hexagons. The desired value is represented in
an entry of v. By multiplying v with an appropriate transfer matrix, the desired value
for the benzenoid system with h 4 1 hexagons is achieved. In this technique, the defined
vector is designed according to the corresponding benzenoid system. Also, each transfer
matrix is obtained according to edge deletion operations to annihilate a hexagon in the
corresponding benzenoid system.

In [6], R. Cruz et al. presented a method to compute the Hosoya index of a given cata-
condensed hexagonal system by introducing a Hosoya vector and using the transfer matrix
technique. As a sequel of the papers [6,15,17], first of all we introduce a 4(k + 1) x 1
dimensional vector at an edge of a hexagon of a given benzenoid chain that we call
as k-matching vector. After that, by using this vector and two significant recurrence
formulae, we present reduction formulae to compute p(G, k) of the benzenoid chain via
an appropriate multiplication of three 4(k + 1) x 4(k + 1) dimensional transfer matrices

and a terminal vector where k > 0.

2 Computation of k-matchings in benzenoid chains

The most important recurrence formula to calculate the k-matching number of a graph

G is as follows:

p(HUS, k) = p(H7 k)p(S, 0)+p(H, k— 1)])(57 1) + -+p(H7 l)p(sv k— 1) +p(H7 O)p(s, k)v
(1)

where G = HU S and H, S are two connected components of G.
p(G, k) =p(G—e,k)+p(G—a—bk—1) (2)

for an edge e = ab, see [13]. In the next definition, we present a k-matching vector of a

graph G at a given edge to compute p(G, k) of G.

Definition 2.1. Let G' be a graph and ab be an edge of G. The k-matching vector of G
at the edge ab is defined as
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pab(G7 k) =

g d

Figure 1. The graph in Thms. 2.1
and 2.3
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Figure 2. Graph in Thm. 2.2

Theorem 2.1. Let G = (V, E) be a graph derived from the edge-coalescence of the graph
S and a hexagon at the edge cd of S (See Fig. 1). Then

Pan(G, k) = Q- pea(S, )

where the transfer matriz Q is a 4(k + 1) x 4(k + 1) dimensional matriz as follows:
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3 10 010 1 20 010 2 0 010 0 1 0 0
01 31 0,0 0 1 2 0,0 0 1 2 0,0 001 1
| L |
0 01 3 110 00 1 200 -0 1 20000 0 1
0 00 1 3.0 00 0 1,00 - 0 0 1,000 0 0 0
0 00 0 1!0--- 00 0 000 --0 0 00000 0 0
‘171 00 -~ 00 1 10--0/01 0 0-- 00010 0 - 0
001 10010 0 110001 0000010 0
I I I
I I I
0 -~ 01 1 00 -0 1 1'00 -~ 0 1 00000 0 1
0+ 00 1 1000 0 110 0 0 110000 0 0
4.-0090 10.-00 0 000--00 00000--- 0 0
1717700010 1 00 --01/0 170 - 0/0010 0 -0
001 10 --0,0 0 100,00 1 1 0,0 001 0 0
| | |
0 01 1 010 00 1 0100 001 110000 -~ 0 1
0 00 1 1,0 00 0 100 0 0 1,00 00 - 0 0
0 -~ 00 0 1'!0--00 0 0/00--010 00000 :- 0 0
10 00 --00 1 00--0/01 0 000010 0 - 0
001 0000 0 10000 1 0 000001 0 0
I I I
I I I
0 01 0 0!0 01 000 --0 1 00000 - 0 1
0 -~ 00 1 000 00 0 100 --0 0 10000 - 0 0
0 - 00 0 110 00 0 000 -0 0 00000 - 0 0

Proof. First of all, we deal with the calculation of p(G, k), p(G — a, k), p(G — b, k) and
p(G — a — b, k) by deleting the edges gd and cf. Subsequently, we use the recurrence

relations 1 and 2 as follows:

p(G k) =p(G—gd—cf,k)+p(G—gd—c— f,k—1)+p(G—g—d—cf k—1)
+p(G—g—d—c— f,k—2)=p(SUPy,k)+p((S—c)UPsk—1)
+p((S—d)UPs,k—1)+p((S—c—d)U P,k —2)
=p(S,k) +3p(S,k — 1)+ p(S,k —2) + p(S — ¢,k — 1) + 2p(S — ¢,k — 2)
+p(S—dk—1)+2p(S —d,k —2) + p(S — ¢ — d, k — 2)
+p(S—c—dk-3)=(1,3,1,0,--,0,0,1,2,0,--,0,0,1,2,0,--
0,0,0,1,1,0,--,0) - pea($S, k),

p(Gfa,k): p(G—a—gd—cf,k)+p(G—a—gd—c— fk—1)
+p(G-a—-g—d—cfik-1)+p(G-a—-g—d—c— f,k—2)
=p(SUPLUPyLE)+p((S—c)UPyk—1)+p((S—d)UPLUPLE—1)
+p((S—c—d)UP,k—2)=p(S,k)+p(S,k—1)+p(S—c,k—1)
+p(S—c,k—2)+p(S— dk71+p(57(,7dk 2)
1,1,0,0,---,0,0,1,1,0,---,0,0,1,0,0,---,0,0,0,1,0,0,
-,0) 'pcd(Sv k)7
p(G—=bk)=p(G—b—gd—cf,k)+p(G—b—gd—c— f,k—1)
+p(G=b—g—d—cf,k—=1)+p(G-b—g—d—c— f,k—2)
=p(SUPLUPy k) +p((S—c)UPLUPLEk—1)+p((S—d)U Py, k—1)
+p((S—c—d)UP,k—2)=p(S, k) +p(S,k—1)+p(S —c,k—1)
+p(S—dk—1)+p(S—dk—2) +pS—c—dk—2)

P
P
=
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=(1,1,0,0,---,0,0,1,0,0,---,0,0,1,1,0,---,0,0,0,1,0,0,

2 0) - pealS, ),
p(G—a—bk)=p(G—a—b—gd—cf,k)+p(G—a—b—gd—c— f,k—1)

+p(G—a-b—g—d—cfk—1)+p(G—a—-b—g—d—c— f,k—2)

=p(SUPLUPLE)+p((S—c)UP k1)

+p((S—d)UPLk—1)+p(S—c—d k—2)

=p(S,k)+p(S—c,k—1)+p(S—dk—1)+p(S—c—d k—2)

=(1,0,0,0,---,0,0,1,0,0,--- ,0,0,1,0,0, - ,0,0,0,1,0,0,

0 50) - pea(S; k).

By the definition of a k-matching vector of G at the edge ab, the vectors
(1)371707"' 3070)17270)"' 70707132707"' 703070>17170)"' 70)7

(17170707”' 70707171707"' 70707170707"' 7070707170707'” 70)7
(17170’07“' 70705170107"' ’070)171705"' ;07070,170;07"' ,0)

and

(17070507"' 70705170107"' ’070)170705"' 70707())170:07"' ’0)

are the first, (k +2)-th, (2k + 3)-th and (3k + 4)-th rows of the coefficient matrix, respec-
tively. Moreover, it is need to compute p(G, k—1),--- , p(G, 1), p(G,0), p(G—a,k—1),--- ,
p(G —a,1),p(G —a,0), p(G—bk—1), -+ ,p(G—10,1),p(G —b,0) and p(G —a — b,k —
1),--+,p(G—a—"5b,1),p(G —a—b,0) to get pu(G, k). However, there is no need to com-
pute these values separately as we can deduce these values as a product of a vector and
Pea(S, k) from the equations above. Thus, after computing the first, (k+2)-th, (2k+3)-th
and (3k + 4)-th rows, we get the coeflicient matrix in the echelon form in every sixteen
part, briefly submatrices shown in matrix () with dashed lines. Consequently, we get
Pab(G, k) = Q - pea(S, k) where the transfer matrix @ is a 4(k + 1) x 4(k + 1) dimensional

matrix. | |

It is clear that when S is isomorphic to P, where P; is path graph with two vertices,

we have
pab(G,k):Q-[O .- 0110010010 --0 I}T

by the previous theorem.
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Theorem 2.2. Let G = (V, E) be a graph derived from the edge-coalescence of the graph
S and a hezagon at the edge fc of S (See Fig. 2). Then

Pabr(G, k) = P pye(S, k)

where the transfer matriz P is a 4(k + 1) x 4(k + 1) dimensional matriz as follows:

1 3 10 --00 1 20-- 001 2 0 00011 0 -+ 0
01 31--0,0 0 12--0/00 1 2 00001 1 - 0
| | |
0 01 3 110 00 1 2100 01 210000 - 0 1
0 00 1 3,0 00 0 1,00 0 0 1,0000 - 0 0
0 --- 00 0 1!0 --- 00 0 000 00 000000 0 0
‘12 00 - 00 0 00--001 10000000 -+ 0
01 20 010 0 00 -+ 000 1 1 010000 0 0
I I I
I I I
0 01 2 00 000 000 -0 1 10000 - 0 0
0 00 1 210 00 0 00000 10000 - 0 0
6..-000 10.-00 0 000-.-00 00000 - 0 0
11 00 0/0 1 10001 0 0 -~ 010010 0 -0
01 10 0/0 0 11 --0/00 1 0 -+ 0,00071 0 0
| L |
0 01 1 0i0 - 00 1 1100 -0 1 00000 - 0 1
0 00 1 1/0 -+ 00 0 1,00 0 0 1,0 000 - 0 0
0 --00 0 1,0 -~ 00 0 0,00 ---0 0 0,0000 0 0
TTT00 0000 00001 0 0 --S00000 0 -7 0
01 10 010 0 00 - 000 1 0+ 00000 0 0
I [ I
I [ I
0 01 1 0'0 00 0 000 01 00000 0 0
0+ 00 1 110 - 00 000 - 0 1'0000 -+ 0 0
0 - 00 0 10 --00 0 000 -0 0 00000 - 0 0

Proof. Tt is needed to compute the values p(G, k), p(G—a, k), p(G—b, k) and p(G—a—b, k)

by deleting appropriate forms of the edges dec and fa to get the subgraph S apart from
the hexagon. Later on, we use the recurrence relations 1 and 2 that are given at the

beginning of the section as follows:

p(G,k) =p(G—dc— fa,k)+p(G—dc— f—a,k—1)+p(G—d—c— fa,k—1)
4p(G—d—c—f—ak—2)=p(SUPLE) +p((S— f)UPsk—1)
+p((S=c)UPs,k=1)+p((S— f—c)UPp, k—2)
= p(S,k) +3p(S,k — 1) + p(S,k —2) +p(S — frk — 1) +2p(S — f.k —2)
+p(S—c,k—1)+2p(S —c,k—2) +p(S — f—c,k—2)
Tp(S—f—ck—3)=(1,31,0,---,0,0,1,2,0,--,0,0,1,2,0, -,
0,0,0,1,1,0, -+ ,0) - po(S, k),

p(G—a,k)=p(G—a—de,k)+p(G—a—d—c,k—1)=p(SUDPs,k)
+p((S—c)UPo,k—1)=p(S, k) +2p(S,k— 1)+ p(S—c,k—1)
+p(S — ¢,k —2) =(1,2,0,0,---,0,0,0,0,0,--,0,0,1,1,0,- - ,
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0,0,0,0,0,0,-+,0) - pre(S, k),
p(G—bk)=p(G—b—dc— fa, k) +p(G—b—dc— f—ak—1)

4 p(G—b—d—c—fak—1)+p(G—-b—d—c—f—ak—2)

—p(SUPLUPyLK) +p((S— f)UPsk—1) +p((S— ) UP,UPLE—1)

+p((S—f—c)UPL,k—2)=p(S,k)+p(S;k—1)+p(S— f.k—1)

A p(S—fk—2) 4+ p(S—ck—1)+p(S—f—ck—2)

=(1,1,0,0,---,0,0,1,1,0,---,0,0,1,0,0,-- -,

0,0,0,1,0,0,-++ ,0) - pse(S, k),

p(G—a—0bk)=p(G—-—a—-b—de,k)+p(G—a—-b—d—c,k—1)

=p(SUPy k) +p((S—c)UP,k—1) =p(S,k) +p(S,k—1)

(S — ek —1)=(1,1,0,0,---,0,0,0,0,0, - ,0,0,1,0,0, - ,

0,0,0,0,0,0,-+,0) - pra(S, k).

By the definition of a k-matching vector of G at the edge ab, the vectors
(17371707"' 70707172707"' 70707172707"' 707070>171707"' 70)7

(1,2,0,0,---,0,0,0,0,0,---,0,0,1,1,0,---,0,0,0,0,0,0,-- -, 0),
(17170)07”' ,0,0,1,1,0,---,0,0,1,0,0,---,0,0,0,1,0,0, - - 70)

and

(17170)07”' 70703070707"' 70707170703”' 707070v070707'” 70)

are the first, (k+2)-th, (2k+3)-th and (3% +4)-th rows of coefficient matrix, respectively.
Also we need to calculate p(G,k — 1),--- ,p(G,1),p(G,0), p(G — a,k — 1),---, p(G —
a,1),p(G—a,0), p(G=b,k—1),--- ,p(G=b,1),p(G—0,0), and p(G—a—b,k—1),--- ,p(G—
a—"0,1),p(G —a—0b,0) to find pu(G, k). Then, we deduce these values as a product of a
vector and py.(S, k) by using achieved equations above. Then, we have that the coefficient
matrix is in the echelon form in every sixteen parts, shortly submatrices shown in matrix
P with dashed lines. Consequently, we obtain the equation p.,(G, k) = P-py.(S, k) where
the transfer matrix P is a 4(k + 1) x 4(k + 1) dimensional matrix. |

Theorem 2.3. Let G = (V, E) be a graph derived from the edge-coalescence of the graph
S and a hexagon at the edge cd of S (See Fig. 1). Then

pbg(Ga k) =R- pcd(Sa k)

where the transfer matriz R is a 4(k + 1) x 4(k + 1) dimensional matriz as follows:
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1 3 10 0:0 1 2 0:0 1 2 0.0 11 0 0

01 31 0,0 0 1 2 0,0 0 1 2 0,0 00 1 1 0
| | |

0 01 3 110 00 1 200 -0 1 20000 0 1

0 00 1 3.0 00 0 1,00 -0 0 1,0000 0 0

0 00 0 1'0--00 0 000 00 000000 -+ 0 0

‘171 00 -~ 00 1 00 --001 1 0--00010 0 - 0

001 10010 0 100001 1000010 0
I I I
I I I

0 01 1 0'0 00 1 000 --0 1 10000 - 0 1

0 00 1 110 00 0 1100 -0 0 10000 - 0 0

4..-000 10.-00 0 000-.-00 00000 - 0 0

1720000 1 100100 0 0--00000 0 0

001 20 --00 0 11--0,00 0 0--0,0000 0 0
| L |

0 01 2 010 00 1 1100 00 00000 - 0 0

0 00 1 20 00 0 1,00 0 0 0/0000 - 0 0

0 -~ 00 0 1'0--00 0 000 00 00000 0 0

‘171 00 --0/0 T 00--0/00 0 0--00000 0 - 0

01 10 010 0 10 0100 0 0 -+ 010000 0 0
I [ I
I I I

0 01 1 0!0 00 1 000 --0 0 00000 - 0 0

00 1 110 0 0 1100 -0 0 00000 0 0
0 00 0 110 00 0 0100 00 00000 - 0 0

Proof. As a beginning, by the proof of Theorem 2.1, we have already known the two
equation below:
p(G,k)=(1,3,1,0,---,0,0,1,2,0,---,0,0,1,2,0,---,0,0,0,1,1,0,---,0) - pea(S, k),
p(G—b,k) =(1,1,0,0,---,0,0,1,0,0,---,0,0,1,1,0,---,0,0,0,1,0,0,- - ,0) - pea(S, k).
Then, we need to compute just k-matching numbers of the graphs G —¢g and G—b—g
by deleting the edge cf. After that, we use the recurrence relations 1 and 2 as shown

below:

p(G—g,k) =p(G—g—cf,k) +p(G—g—c—f,k—1)=p(SUPs,k)

+p((S—c)UPa,k—1)=p(S, k) +2p(S,k—1)+p(S—c,k—1)
+p(S—c,k—2)=(1,2,0,0,---,0,0,1,1,0,---,0,0,0,0,0, - - ,
0,0,0,0,0,0,--- ,0) - pea(S, k),

p(G—b—g,k)=p(G—-b—g—cfk)+p(G-b—g—c—fk—1)
=p(SUPy k) +p((S—c)UPL,k—1)
=p(S, k) +p(S,k—1)+p(S —c, k—1)
=(1,1,0,0,---,0,0,1,0,0,---,0,0,0,0,0, - ,0,0,0,0,0,0,- - ,0) - pea(S, k).

By the definition of a k-matching vector of G at the edge bg, the vectors

(1)371707"' 3070717270)"' 70707132707"' 70v070>17170)"' 70)7
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(11170707'” 7070>17070:"' 70707171707"' 70707[]»17070:"' 70)7
(1,2,0,0,++,0,0,1,1,0,+,0,0,0,0,0,- - ,0,0,0,0,0,0,- -+ ,0)

and

(1,1,0,0,---,0,0,1,0,0,---,0,0,0,0,0,---,0,0,0,0,0,0,--- ,0)

are the first, (k+2)-th, (2k+3)-th and (3% +4)-th rows of coefficient matrix, respectively.
Also we need to calculate p(G,k — 1),---,p(G,1),p(G,0), p(G — b,k —1),---, p(G —
b,1),p(G—b,0), p(G—g, k1), - ,p(G—g, 1), p(G—g,0) and p(G—b—g,k—1), - , p(G—
b—g,1),p(G —b—g,0) to find pyy(G, k). We derive these values as a product of a vector
and peq(S, k) by using the obtained equations above. Thus, after calculating the first,
(k + 2)-th, (2k + 3)-th and (3k + 4)-th rows, we achieve that the coefficient matrix is
in the echelon form in every sixteen parts, namely submatrices shown in matrix R with
dashed lines. As a result, we get pyy(G, k) = R - p.a(S, k) where the transfer matrix R is
a 4(k+ 1) x 4(k + 1) dimensional coefficient matrix. |

3 Algorithms

In this section, we present two algorithms designed in MATLAB to obtain required transfer
matrix forms Q, P, R and pu,( P2, k) that are introduced in Section 2 more directly. In the
first algorithm, based on entered k value, sixteen parts of matrices are obtained in the
echelon form that are explained in the proofs of Thms. 2.1, 2.2 and 2.3. In the second
algorithm, based on entered k value, for a path graph P, with the edge e = ab, k-matching

vector of P, at the edge ab is obtained follows:
pa(Poyk)=[0 -~ 01 10 -~ 010 --010--01]".

Thanks to the Algorithm 1, we get the transfer matrices @, P, R for corresponding
value of k by adding a few number of steps at the beginning before the step L(1,:) = L1.
Let us present these steps.

For the transfer matrix @, it is needed to add the steps consecutively as follows:

L1 = zeros(1,4*k+4); L1(1) =1; L1(2) =3; L1(3) = 1; L1(k +3) = 1; L1(k +4) = 2;
L1(2%k+4) = 1; L1(2%k+5) = 2; L1(3xk+6) = 1; L1(3xk+7) = 1; L2 = zeros(1,4xk+4);
L2(1)=1; L2(2) = 1; L2(k+3) = 1; L2(k+4) = 1; L2(2xk+4) = 1; L2(3%k+6) = 1;
L3 = zeros(1,4% k +4); L3(1) = 1; L3(2) = 1; L3(k+3) = 1; L3(2*xk + 4) = 1;
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Algorithm 1: Algorithm to set the transfer matrix forms @, P, R for correspond-
ing k.

Input: Enter the value of k.

Result: Required echelon matrix form according to the rows 1, k + 2,2k + 3 and 3k + 4.

L =zeros(d+xk+4,4%k+4),

"Here, the steps given after this algorithm, will be added according to the desired

matrix";

L(1,:) = L1;

L(k+2,:) = L2

L(2xk+3,:)=L3;

L(3xk+4,:) = L4;

for fromi=1to k+1 do

for from j =i to k do
L(i+1,5+1) = L(i,§);
Li+1,j+k+2)=L3Gj+k+1);
L(i+1,j+2xk+3)=L>G,j7+2%k+2);
L(i+1,j+3xk+4)=L(i,j +3xk+3);

end

end

for fromi=k+2 to2xk+1 do

for from j =1 to k do
L(i+1,j+1)=L(3,j);
Li+1,j+k+2)=L3Gj+k+1);
L(i+1,j+2%k+3)=L(i,j +2xk+2);
L(i+1,j+3%k+4)=L(i,j+3xk+3);

end

end

for fromi=2xk+3 to3xk+2do

for from j =1 to k do
Li+1,j41) = L(4,5);
Li+1,j+k+2)=L3Gj+k+1);
L(i+1,j4+2xk+3)=L3GJ+2%k+2);
L(i+1,j+3%xk+4)=L(i,j+3%k+3);

end

end

for fromi=3xk+4 todxk+3do

for from j =1 to k do
L(i+1,j+1)=L(j);
Li+1,j+k+2)=L3Gj+k+1);
L(i+1,j+2%k+3)=L(i,j +2xk+2);
L(i+1,j+3xk+4)=L>7+3+k+3);

end

end
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L3(2%k+5)=1, L3(3xk+6) =1; L4 = zeros(1,4x k+4); L4(1) = 1; L4(k+3) = 1;
L42xk+4)=1; L4B3xk+6) =1

For the transfer matrix P, it is needed to add the steps consequtively as follows:
L1 =zeros(1,4xk+4); L1(1) =1; L1(2) = 3; L1(3) = 1; L1(k+3) = 1; L1(k + 4) = 2;
L1(2%k+4) = 1; L1(2%k+5) = 2; L1(3%k+6) = 1; L1(3%k+7) = 1; L2 = zeros(1,4xk+4);
L2(1) = 1; L2(2) = 2; L2(2* k+4) = 1; L2(2% k + 5) = 1; L3 = zeros(1,4 x k + 4);
L3(1) =1: L3(2) = 1; L3(k+3) = 1; L3(k+4) = 1; L3(2 %k +4) = 1; L3(3 %k +6) = 1;
L4 = zeros(1,4x k+4); L4(1) =1; L4(2) = 1; L42*k+4) =1,

For the transfer matrix R, it is needed to add the steps consequtively as follows:
L1 =zeros(l,4xk+4); L1(1) = 1; L1(2) = 3; L1(3) = 1; L1(k+3) = 1; L1(k + 4) = 2;
L1(2%k+4) = 1; L1(2%k+45) = 2; L1(3xk+6) = 1; L1(3xk+T7) = 1; L2 = zeros(1, 4xk+4);
L2(1) =1; L2(2) = 1; L2(k+3) = 1; L2(2xk+4) = 1; L2(2xk+5) = 1; L2(3%k+6) = 1;
L3 = zeros(1,4 x k +4); L3(1) = 1; L3(2) = 2; L3(k +3) = 1; L3(k +4) = 1,
L4 = zeros(1,4xk+4); L4(1) =1; L4(2) = 1; L4(k+ 3) = 1;

Algorithm 2: Algorithm to set p,,(Ps, k), where a and b are vertices of P,.
Input: Enter the value of k.
Result: pgp (P, k).
M= zer09(1 4xk+4);
M(k) =
M(k+ 1)
M2k + 2) =1
M@Bxk+3)=1;
MAxk+4)=1;
V = transpose(M);

Figure 3. A benzenoid chain used in Example 3.1

Example 3.1. Let G be a benzenoid chain as shown in Fig. 3. Then let us calculate the

25-matching number p(G,25) of G by using the vector p.,(G,25) and Thms. 2.1, 2.2, 2.3:
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pan(G,25) = Q-R-P-Q-R-P-Q-R-R-P-P-Q-p,.(P,25).
Then by using two algorithms (in MATLAB) to get Q, P,R and p,.(P,25) the result is

achieved as follows:
Pab(G, 25) =[295 26797 852250 13424314 123419183

730990381 2978491338 8744585185 19135395999 32010001312 41726187514
43004516257 35425168253 23506162672 12627874147 5506347162 1948864426
558326651 128704829 23635365 3404687 375772 30634

1736 61 1 e 58 .

As a result, we get p(G,25) = 295,p(G,24) = 26797, p(G, 23) = 852250, - -, p(G,3) =
30634, p(G,2) = 1736, p(G, 1) = 61 and p(G,0) = 1.

As shown in the example, every k-matching number can be calculated by utilizing
the defined k-matching vector and the transfer matrices @), P, R that are obtained in
Thms. 2.1, 2.2, 2.3 for any benzenoid chain. Moreover, thanks to k-matching vector and
Thms.2.1,2.2,2.3, not only k-matching numbers of any benzenoid chain but also Hosoya

index of the corresponding benzenoid chain can be achieved.
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