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Abstract 

In addition to our model based on the sum of the differences in the net atomic charges 
between a cation and a neutral flavonoid (

s(C)
 ΔNACCat-Neut) over the carbon atoms in the 

flavonoid skeleton, here I present two complementary models for the estimation of the first 
electrochemical oxidation potential, Ep1. The models were also based on the sum of 
differences in the net atomic charges, but between other species of a flavonoid; between a 
radical and an anion of a flavonoid, 

s(C)
 ΔNACRad-Anion, and between a radical and a neutral 

flavonoid,
s(C)
 ΔNACRad-Neut. These three variables are connected with different mechanisms 

(SET-PT, SPLET and HAT) of electron loss during the electrochemical oxidation of a 
flavonoid. It was shown that the best model for the given set of 29 flavonoids was obtained 
by using mean values of all of the three variables as a variable (R2 = 0.974, S.E. = 0.042 
and S.E.cv = 0.45) which could mean that all three mechanisms are equally possible. 

 

1 Introduction 

In our last paper [1], we presented a new theoretical model for the estimation of the first 

oxidation potential, Ep1, of flavonoids. It was based on the sum (over carbon atoms in the 

skeleton of flavonoids; 1’-6’ C atoms in B ring and 2-10 C atoms in CA moiety, Scheme 1) of 

differences in the net atomic charges between a cation (formed after electron abstraction) and a 
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neutral flavonoid,
s(C)
 ΔNACCat-Neut (Eq. 1). Earlier [2-4] we developed a model based on the sum 

of atomic orbital spin populations over the carbon atoms in the skeleton of a flavonoid radical 

molecule, 
s(C)
 AOSPRad. A comparison of our models with the model using hydrogen bond 

dissociation energy (BDE), which is one of the most important variables for antioxidant activity 

modeling [5,6], showed inferiority of the BDE model for estimating Ep1 values [1-4]. 

 

Scheme 1. An example of a flavonoid molecule with numbered carbon atoms in the skeleton. 

In this study, I used the same set of 29 flavonoids as in Ref. [1] and their measured Ep1 

(Table 1), and introduced two new models. The models were based on the sum of differences 

in the net atomic charges between a flavonoid radical and an anion of a flavonoid formed after 

the abstraction of a hydrogen proton from a neutral molecule, 
s(C)
 ΔNACRad-Anion, and between a 

radical and a neutral flavonoid,
s(C)
 ΔNACRad-Neut, (Eqs. 2 and 3, respectively). I was able to use 

s(C)
 ΔNACCat-Neut, 

s(C)
 ΔNACRad-Anion and 

s(C)
 ΔNACRad-Neut variables for modeling Ep1 because they 

are connected with the electron loss either by Eqs. 1, 2 or 3 corresponding to the mechanisms 

(or part of the mechanisms): single electron transfer-proton transfer (SET-PT), sequential 

proton loss electron transfer (SPLET) and hydrogen atom transfer (HAT), respectively:   

R-OH → R-OH∙+ + e˗        (1) 

R-O˗ → R-O∙ + e˗        (2) 

R-OH → R-O∙ + H        (3) 
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2 Calculations 

MOPAC calculations 

The geometries of 29 flavonoids and their cations, anions and radicals in water were 

optimized using the MOPAC2016™ PM6 method [7]. All of the initial structures were taken as 

planar, except hesperetin and its glycosides (21, 26 and 27, Table 1), which we explained in our 

last paper [1]. The eigenvector following (EF) the optimization procedure was carried out with a 

final gradient norm under 0.01 kcal mol-1 Å-1. The solvent contribution to the enthalpies of 

formation was computed employing COSMO (Conductor-like Screening Model) calculations 

implemented in MOPAC2016™.  

 

Regression calculations 

Regression calculations, including the leave-one-out procedure (LOO) of cross-validation, 

were done using the CROMRsel program [8]. The standard error of the cross-validation estimate 

was defined as: 

2

cvS.E.  = i

i

X

N


         (4) 

where ΔX and N denoted cv residuals and the number of reference points, respectively. 

 

3 Results and discussion  

After a very good regression based on a variable connected with the electron loss during 

the SET-PT mechanism, 
s(C)
 ΔNACCat-Neut, on Ep1 [1]: 

Ep1 = a1
s(C)
 ΔNACCat-Neut + a2(

s(C)
 ΔNACCat-Neut)2 + b    (5) 

R2 = 0.954, S.E. = 0.055 and S.E.cv = 0.059 
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I tried a quadratic regression using 
s(C)
 ΔNACRad-Anion on the same set of flavonoids. The regression 

using 
s(C)
 ΔNACRad-Anion, the sum of differences in the net atomic charges after a loss of an electron 

in a SPLET mechanism (Eq. 2), yielded very similar statistics; R2 = 0.955, S.E. = 0.054 and S.E.cv 

= 0.059 (Fig. 1). 

 

Figure 1. The dependence of experimental Ep1 (pH = 3) on 
s(C)
 ΔNACRad-Anion for the set of 29 flavonoids. 

Quadratic regression yielded R2 = 0.955, S.E. = 0.054 and S.E.cv = 0.059.  
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statistics, R2 = 0.864, S.E. = 0.094 and S.E.cv = 0.103. But, the regression on 23 flavonoids, without 

the aforementioned six flavonoids, yielded results (R2 = 0.961, S.E. = 0.055 and S.E.cv = 0.62, Fig. 

2) comparable to the results obtained by regressions using the other two variables on 29 flavonoids. 

 

Figure 2. The dependence of experimental Ep1 (pH = 3) on 
s(C)
 ΔNACRad-Neut for the set of 29 flavonoids. 

Quadratic regression yielded R2 = 0.961, S.E. = 0.055 and S.E.cv = 0.62 when flavonoids 3, 5, 8, 
14, 18 and 23 were excluded from the regression. (The regression on the full set would yield R2 
= 0.864, S.E. = 0.094 and S.E.cv = 0.103). 
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Figure 3. The dependence of experimental Ep1 (pH = 3) on the mean values of 
s(C)
 ΔNACCat-Neut, 

s(C)


ΔNACRad-Anion and 
s(C)
 ΔNACRad-Neut (variables 1, 2 and 3, Table 1) for the set of 29 flavonoids. 

Quadratic regression yielded R2 = 0.974, S.E. = 0.042 and S.E.cv = 0.45. 
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mean values of all three variables yielded by far the best results, R2 = 0.985, S.E. = 0.031 and 

S.E.cv = 0.037 (N = 29). The introduction of pH as a variable [1-4] allowed the estimation of Ep1 

values at pHs of both 3 and 7 (N = 58), and the statistics obtained by mean variable was of similar 

quality; R2 = 0.982, S.E. = 0.039 and S.E.cv = 0.043 (Fig. 4). 

 

Figure 4. Correlation of experimental (for the set of 29 flavonoids at pHs 3 and 7) vs. theoretical Ep1 values 
calculated using the mean values of 

s(C)
 ΔNACCat-Neut, 

s(C)
 ΔNACRad-Anion and 

s(C)
 ΔNACRad-Neut 

variables, number of OH groups (NOH) and pH (Ep1 = a1
s(C)
 mean + a2(mean)2 + a3NOH + a4pH + 

b;). The correlation yielded r = 0.991, S.E. = 0.039 and S.E.cv = 0.043 (N = 58). 
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The case of daidzein is also related to the disruption of the aromaticity similarly as in the 

case of flavonoids without a C2=C3 double bond (12, 13, 15-17, 19, 21, 25-27). They were 

supposed to be explained together in our last paper [1], but daidzein was inadvertently dropped. 

 

4 Conclusion 

By showing that a quadratic regression using
s(C)
 ΔNACRad-Anion is as good model (S.E. = 

0.054, Fig. 1) for the estimation of Ep1 as the same kind of regression using 
s(C)
 ΔNACCat-Neut (Eq. 

5, S.E. = 0.055), we can conclude that during the oxidation of the flavonoids both the SET-PT and 

SPLET mechanisms are equally possible. Although the 
s(C)
 ΔNACRad-Neut quadratic regression 

yielded poor statistics (S.E. = 0.094, Fig. 2), by regression using the mean values of all three 

variables, 
s(C)
 ΔNACCat-Neut, 

s(C)
 ΔNACRad-Anion and 

s(C)
 ΔNACRad-Neut, on Ep1 I obtained the best 

statistics (S.E. = 0.042, Fig. 3) regarding regressions using any of the variables alone. These were 

also significantly better than the standard errors obtained on the same set of flavonoids using 
s(C)


AOSPRad (S.E. = 0.063 [1]) or BDE (S.E. = 0.085 [1]) which is usually considered as the best 

variable for the estimation of antioxidant activity [5,6].  

The presented results show that 
s(C)
 ΔNACCat-Neut and 

s(C)
 ΔNACRad-Anion are better variables 

for the estimation of Ep1 than 
s(C)
 ΔNACRad-Neut, either on the set of 29 or 23 (without 3, 5, 8, 14, 18 

and 23) flavonoids. This led me to the conclusion that SET-PT and SPLET are more preferable 

mechanisms for the electrochemical oxidation of the flavonoids than the HAT mechanism. 

However, regressions using mean values of pairs and all three variables showed that the HAT 

mechanism is also important, especially when flavonoids with an active hydroxyl group on the 3C 

or 8C atoms are present in the set. The best model, on a full set of flavonoids (N = 29), was obtained 

under the assumption that all mechanisms equally contribute (mean of 
s(C)
 ΔNACCat-Neut, 

s(C)


ΔNACRad-Anion and 
s(C)
 ΔNACRad-Neut) to the electrochemical oxidation of the flavonoids. 
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