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Abstract

For a reaction network N with species set S , a log-parametrized
(LP) set is a non-empty set of the form E(P, x∗) = {x ∈ RS

> |
log x− log x∗ ∈ P⊥} where P (called the LP set’s flux subspace) is
a subspace of RS , x∗ (called the LP set’s reference point) is a given
element of RS

> , and P⊥ (called the LP set’s parameter subspace) is
the orthogonal complement of P . A network N with kinetics K is
a positive equilibria LP (PLP) system if its set of positive equilib-
ria is an LP set, i.e., E+(N ,K) = E(PE , x

∗) where PE is the flux
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subspace and x∗ is a given positive equilibrium. Analogously, it is a
complex balanced equilibria LP (CLP) system if its set of complex
balanced equilibria is an LP set, i.e., Z+(N ,K) = E(PZ , x

∗) where
PZ is the flux subspace and x∗ is a given complex balanced equilib-
rium. An LP kinetic system is a PLP or CLP system. This paper
studies concentration robustness of a species on subsets of equilib-
ria, i.e., the invariance of the species concentration at all equilibria
in the subset. We present the “species hyperplane criterion”, a nec-
essary and sufficient condition for absolute concentration robustness
(ACR), i.e., invariance at all positive equilibria, for a species of a
PLP system. An analogous criterion holds for balanced concen-
tration robustness (BCR), i.e., invariance at all complex balanced
equilibria, for species of a CLP system. These criteria also lead
to interesting necessary properties of LP systems with concentra-
tion robustness. Furthermore, we show that PLP and CLP power
law systems with Shinar-Feinberg reaction pairs in species X, i.e.,
their rows in the kinetic order matrix differ only in X, in a link-
age class have ACR and BCR in X, respectively. This leads to a
broadening of the “low deficiency building blocks” framework in-
troduced by Fortun and Mendoza (2020) to include LP systems
of Shinar-Feinberg type with arbitrary deficiency. Finally, we ap-
ply our results to species concentration robustness in LP systems
with poly-PL kinetics, i.e., sums of power law kinetics, including a
refinement of a result on evolutionary games with poly-PL payoff
functions and replicator dynamics by Talabis et al (2020).

1 Introduction

A log-parametrized (LP) set is a non-empty subset of RS
> (the set of pos-

itive real-valued functions with domain S ) of the form E(P, x∗) := {x ∈
RS

> | log x− log x∗ ∈ P⊥} where P (called the LP set’s flux subspace) is a

subspace of RS , x∗ (called the LP set’s reference point) is a given element

of RS
> , and P⊥ (called the LP set’s parameter subspace) is the orthogo-

nal complement of P . Feinberg, Horn, and Jackson discovered interesting

relationships between positive equilibria and LP sets of the stoichiometric

subspace of a mass action system (i.e., a system with mass action kinet-

ics) in the early 1970’s, which are recorded in Feinberg’s 1979 Wisconsin

Lecture Notes [7]. In particular, for a reaction network N with kinetics

K and which is absolutely complex balanced, i.e., those where the non-

empty sets of positive equilibria E+(N ,K) and complex balanced equi-
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libria Z+(N ,K) coincide, one has E+(N ,K) = Z+(N ,K) = E(S, x∗)

where S is the stoichiometric subspace of N and x∗ is a given equilib-

rium. Abstracting from this pioneering work, we call a kinetic system “of

positive equilibria LP (PLP) type” (“of complex balanced equilibria LP

(CLP) type”) if its non-empty set of positive equilibria (complex balanced

equilibria) is an LP set. A system of LP type (or simply an “LP system”)

is a system of PLP or CLP type.

Various LP systems beyond mass action systems have been studied.

In 2014, S. Müller and G. Regensburger [24] showed that any complex

balanced generalized mass action system (GMAS) is a CLP system whose

flux subspace S̃ is its kinetic order subspace. GMAS include all power law

systems (i.e., systems with power law kinetics) where branching reactions

of any reactant complex have identical rows in the kinetic order matrix

(called reactant-determined kinetic (PL-RDK) systems). In 2018, Talabis

et al [26] demonstrated that all systems satisfying the Deficiency One The-

orem for power law systems with T̂ -rank maximal kinetics (PL-TIK) are

of PLP type. In 2019, part of the Deficiency Zero Theorem of Fortun et

al [13] established that the class of non-PL-RDK systems (called PL-NDK

systems) are of PLP type. A broad generalization of this result was derived

by B. Hernandez and E. Mendoza [18]. Subsets of poly-PL systems (i.e.,

sums of power law systems) and Hill-type systems have also been shown

to be LP systems [14,16].

In this paper, we study properties of concentration robustness of species

in LP systems. G. Shinar and M. Feinberg [25] introduced the concept

of absolute concentration robustness (ACR) in a mass action system: a

species has ACR if its value at all positive equilibria of the system is the

same. They presented a sufficient condition for ACR in deficiency one net-

works which was remarkably abstracted from subsystems in the bacterium

Escherichia coli. They called the condition “structural” as it was based on

the occurrence of a pair of complexes in the network. In 2018, Fortun et

al [12] extended their result to deficiency one PL-RDK systems by reinter-

preting the properties of the pair of complexes in terms of the kinetic orders

of the corresponding reaction pairs (which are called Shinar-Feinberg pairs

or SF-pairs), indicating the primarily kinetic nature of the condition. In
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2020, N. Fortun and E. Mendoza [15] extended the SF-pair condition to

deficiency zero systems using dynamic equivalence, further highlighting the

property’s primarily kinetic character. They also introduced the weaker

concept of balanced concentration robustness (BCR) which required that

species have the same value only on a subset of complex balanced equi-

libria. These low deficiency networks, i.e., with deficiency 0 or 1, became

“building blocks” of concentration robustness in larger and higher defi-

ciency power law systems in independent (for ACR) and incidence indepen-

dent (for BCR) decompositions of the systems. Concentration robustness

has also been studied in poly-PL and Hill-type systems [14,16].

Our approach is based on a necessary and sufficient condition for ACR

in PLP systems, and its analogue for BCR in CLP systems, in terms of

their LP set’s parameter subspaces’ containment in species hyperplanes,

i.e., subspaces of the form {x ∈ RS | xX = 0} for a species X. A novel

result is a necessary condition yielding an upper bound for the number

of species in which the system admits concentration robustness. It also

provides a simple procedure for determining species with concentration

robustness. Since most of the systems mentioned above are LP systems,

this approach provides a uniform view for many known results as well.

Our results on LP systems enable their novel use as “control com-

ponents” for concentration robustness in decompositions (see Section 4).

LP systems of Shinar-Feinberg type, i.e., those with SF-pairs, led us to

broaden the “building blocks” framework for constructing larger systems

with concentration robustness studied in [10,15]. Besides the low deficiency

building blocks already considered, higher deficiency weakly reversible LP

systems with SF-pairs could be utilized in constructing appropriate decom-

positions. New computational approaches for determining independence

presented by B. Hernandez and R. De la Cruz [17] and for detecting in-

cidence independence by L. Fontanil and E. Mendoza [9], which will be

useful for the broader framework, are also briefly reviewed.

The paper is organized as follows: Section 2 collects basic concepts

and results on chemical reaction networks and kinetic systems needed in

the later sections. In Section 3, after the fundamentals of LP sets and

LP systems are introduced, results on LP mass action systems and power
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law systems are reviewed before the necessary and sufficient condition

(the species hyperplane criterion) for concentration robustness is derived.

Section 4 discusses the role of LP subnetworks as “control components”

in decompositions. In Section 5, some benefits from adding LP systems of

Shinar-Feinberg type to the “building block” framework for concentration

robustness are presented. Section 6 provides some new computational

approaches based on the results of the previous sections. Finally, summary

and conclusion constitute Section 7.

Abbreviations used in this paper are listed in Table 1 of the Appendix.

2 Fundamentals of chemical reaction

networks and kinetic systems

In this section, we discuss fundamental concepts and results about chemical

reaction networks and chemical kinetic systems. Moreover, we explore

reaction networks as a digraph with vertex labeling.

Definition 2.1. A chemical reaction network (CRN) is a digraph

(C ,R) where each vertex has positive degree and stoichiometry, i.e., there

is a finite set S (whose elements are called species) such that C is a

subset of RS
≥ . Each vertex is called a complex and its coordinates in RS

≥

are called stoichiometric coefficients. The arcs are called reactions.

We denote a CRN N as N = (S ,C ,R).

In this paper, RS , RC , and RR denote the vector spaces of real-valued

functions with domain S , C , and R, respectively. A subscript of ≥ or >

denotes restriction to nonnegative or positive real numbers, respectively.

We denote the number of species withm, the number of complexes with

n, and the number of reactions with r. We implicitly assume the elements

of the sets are numbered and let S = {X1, . . . , Xm}, C = {C1, . . . , Cn},
and R = {R1, . . . , Rr}, representing the set of species, complexes, and

reactions, respectively. Furthermore, we denote the set of reactions as

R ⊂ C × C . (Ci, Cj) ∈ R corresponds to the familiar notation Ci → Cj .
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Consider the reaction

αX1 + βX2 → γX3

where X1, X2, and X3 are the species. The complexes are αX1 + βX2

and γX3. In particular, αX1 + βX2 is called the reactant (or source)

complex and γX3 is the product complex. The number of reactant

complexes is denoted by nr. The stoichiometric coefficients are the non-

negative integer coefficients α, β, and γ.

Definition 2.2. The reactant map ρ : R → C maps a reaction (Ci, Cj)

∈ R to its reactant complex Ci ∈ C .

Definition 2.3. Given a CRN N = (S ,C ,R), the incidence map Ia :

RR → RC is a linear map such that for each reaction R = (Ci, Cj) ∈ R,

the basis vector ωR is mapped to the vector ωCj
− ωCi

∈ C .

Definition 2.4. Given a CRN (S ,C ,R), the reactions map ρ′ : RC →
RR is given by f : C → R mapped to f ◦ ρ where ρ is the reactant map.

Definition 2.5. The stoichiometric subspace of a reaction network

(S ,C ,R) is the linear subspace of RS given by S = span{Cj −Ci ∈ RS |
(Ci, Cj) ∈ R}. The rank of the network is given by s = dim S.

Definition 2.6. The linkage classes of a CRN are the subnetworks of

its reaction graph where for any complexes Ci and Cj of the subnetwork,

there is a path between them. The number of linkage classes is denoted by

ℓ.

The linkage class is said to be a strong linkage class if there is a

directed path from Ci to Cj , and vice versa, for any complexes Ci and

Cj of the subnetwork. The number of strong linkage classes is denoted by

sℓ. Moreover, terminal strong linkage classes, the number of which is

denoted as t, are the maximal strongly connected subnetworks where there

are no edges (reactions) from a complex in the subgraph to a complex

outside the subnetwork. Complexes belonging to terminal strong linkage

classes are called terminal; otherwise, they are called nonterminal.
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Example 2.7. Consider the following CRN:

R1 : 2X1 → X3

R2 : X2 +X3 → X3

R3 : X3 → X2 +X3

R4 : 3X4 → X2 +X3

R5 : 2X1 → 3X4.

We have

S = {X1, X2, X3, X4}

C = {C1 = 2X1, C2 = X2 +X3, C3 = X3, C4 = 3X4}.

Thus, there are m = 4 species, n = 4 complexes, nr = 4 reactant com-

plexes, and r = 5 reactions. The number of linkage classes is ℓ = 1:

{2X1, X3, X2 +X3, 3X4}; the number of strong linkage classes is sℓ = 3:

{X3, X2 +X3}, {2X1}, {3X4}; and the number of terminal strong linkage

classes is t = 1: {X3, X2 +X3}. The rank of the CRN is s = 3.

Definition 2.8. A CRN with n complexes, nr reactant complexes, ℓ link-

age classes, sℓ strong linkage classes, and t terminal strong linkage classes

is called

(i) weakly reversible if sℓ = ℓ;

(ii) t-minimal if t = ℓ;

(iii) point terminal if t = n− nr; and

(iv) cycle terminal if n− nr = 0.

As observed in Example 2.7, since sℓ = 3 ̸= 1 = ℓ, the network is not

weakly reversible. t = 1 = ℓ implies that the network is t-minimal. Lastly,

t = 1 ̸= 0 = 4− 4 = n− nr implies that the network is not point terminal

but is cycle terminal.

Definition 2.9. The deficiency of a CRN is the integer δ = n − ℓ − s
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where n is the number of complexes, ℓ is the number of linkage classes,

and s is the rank.

In Example 2.7, the deficiency of the network is δ = n − ℓ − s =

4− 1− 3 = 0.

Definition 2.10. A kinetics of a CRN N = (S ,C ,R) is an assignment

of a rate function KCi→Cj
: ΩK → R≥ to each reaction (Ci, Cj) ∈ R where

ΩK is a set such that RS
> ⊆ ΩK ⊆ RS

≥ and

KCi→Cj
(c) > 0 for all c ∈ ΩK .

The kinetics of a network is denoted K = [K1, . . . ,Kr]
T . The pair (N ,K)

is called a chemical kinetic system (CKS).

A kinetics gives rise to two closely related objects: the species formation

rate function and the associated ordinary differential equation system.

Definition 2.11. The species formation rate function (SFRF) of a

CKS is defined as

f(x) = NK(x) =
∑

Ci→Cj

KCi→Cj
(x)(Cj − Ci)

where N is called the stoichiometric matrix and K(x) is called the

kinetic vector (or kinetics) of the CKS. The equation ẋ = f(x) is the

ordinary differential equation (ODE) system or dynamical system

of the CKS.

The dynamical system of the CRN in Example 2.7 can be written as

Ẋ =


Ẋ1

Ẋ2

Ẋ3

Ẋ4

 =


−2 0 0 0 −2

0 −1 −1 1 0

1 0 0 1 0

0 0 0 −3 3




k1X

f11
1

k2X
f22
2 Xf23

3

k3X
f33
3

k4X
f44
4

k5X
f51
1

 = NK(X).

Definition 2.12. The set of positive equilibria of a CKS (N ,K) is

given by

E+(N ,K) = {x ∈ RS
> | f(x) = 0}
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where f is the SFRF of the CKS.

Analogously, the set of complex balanced equilibria of a CKS

(N ,K) [19] is given by

Z+(N ,K) = {x ∈ RS
> | IaK(x) = 0} ⊆ E+(N ,K)

where Ia is the incidence map.

A positive vector c ∈ RS is complex balanced if K(c) is contained

in the kernel Ker Ia, and a CKS is complex balanced if it has a complex

balanced equilibrium.

An ODE system is under power law kinetics (PLK) if its kinetics

has the form

Ki(x) = ki

m∏
j=1

x
fij
j for 1 ≤ i ≤ r

with ki ∈ R> (called the rate constant associated with reaction Ri) and

fij ∈ R (called the kinetic order of species xj). PLK is defined by an

r×m matrix F = [fij ] called the kinetic order matrix and vector k ∈ Rr

called the rate vector. We refer to a CRN with PLK as a power law

system. A particular example of PLK is the well-known mass action

kinetics (MAK) where the kinetic order matrix consists of stoichiometric

coefficients of the reactants. We refer to a CRN with MAK as a mass

action system.

In Example 2.7, we assumed PLK (see illustration after Definition 2.11)

so that the kinetic order matrix is

F =


f11 0 0 0

0 f22 f23 0

0 0 f33 0

0 0 0 f44

f51 0 0 0

 .

We associate three linear maps to a positive element k of RR.

Definition 2.13. For a reaction R ∈ R, the k-diagonal map diag(k)

maps the basis vector ωR to kRωR. The k-incidence map Ik is defined
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as the composition diag(k) ◦ ρ′ where ρ′ is the reactions map. The k-

Laplacian map Ak : RC → RC is defined as the composition Ak = Ia ◦Ik
where Ia is the incidence map.

Definition 2.14. A power law system has reactant-determined kinet-

ics (of type

PL-RDK) if for any two reactions Ri and Rj with identical reactant com-

plexes, the corresponding rows of kinetic orders in F are identical, i.e.,

fik = fjk for k = 1, . . . ,m. A power law system has non-reactant-

determined kinetics (of type PL-NDK) if there exist two reactions with

the same reactant complexes whose corresponding rows in F are not iden-

tical.

3 A species hyperplane criterion for concen-

tration robustness in systems of LP type

In this section, we review the concept of a log-parametrized (LP) set in

the species space RS of a network, and recall some results of Feinberg,

Horn, and Jackson about such sets, which determine important properties

of kinetic systems of LP type. We then provide an overview of the known

examples of such systems. Finally, after reviewing the fundamentals of

concentration robustness, we present simple criteria for the property in

systems of LP type and illustrate it with some examples.

3.1 Fundamentals of LP sets and systems of LP type

We begin with the concept of an LP set of a CKS.

Definition 3.1. Given a set of species S , a log-parametrized (LP)

set is a non-empty subset of RS
> of the form E(P, x∗) := {x ∈ RS

> |
log x − log x∗ ∈ P⊥} where P (called the LP set’s flux subspace) is

a subspace of RS , x∗ (called the LP set’s reference point) is a given

element of RS
> , and P⊥ (called the LP set’s parameter subspace) is the

orthogonal complement of P . The positive cosets of P are called the LP

set’s flux classes.
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In [7], M. Feinberg derived the following important property of an LP

set based on the work by F. Horn and R. Jackson:

Proposition 3.2 (from [20]). For an LP set E = E(P, x∗) and any of its

flux classes Q, |E ∩Q| = 1.

For a proof of Proposition 3.2, see [20].

We now introduce concepts relating LP sets and equilibria sets of ki-

netic systems.

Definition 3.3. A subset E of the set of positive equilibria E+(N ,K) of

a CKS (N ,K) is of LP type (or simply an LP system) if E is an LP

set, i.e., E = E(P, x∗) for a subspace P of RS and an element x∗ ∈ E.

A CKS is a positive equilibria LP system (of PLP type or simply a

PLP system) if E+(N ,K) ̸= ∅ and of LP type for a subspace PE of

RS . A CKS is a complex balanced equilibria LP system (of CLP

type or simply a CLP system) if its set of complex balanced equilibria

Z+(N ,K) ̸= ∅ and of LP type for a subspace PZ of RS . An LP system

is a PLP or CLP system. It is a bi-LP system if it is both PLP and

CLP with PE = PZ . PE and PZ are the LP system’s flux subspaces, P⊥
E

and P⊥
Z its parameter subspaces, and the positive cosets of PE and PZ are

the LP system’s flux classes.

The following proposition justifies the term “parameter subspace” for

P⊥
E and P⊥

Z :

Proposition 3.4 (from [20]). Let (N ,K) be a CKS.

(i) If (N ,K) is a PLP system with flux subspace PE and reference point

x∗ ∈ E+(N ,K), then the map Lx∗ : E+(N ,K) → P⊥
E given by

Lx∗(x) = log x− log x∗ is a bijection.

(ii) If (N ,K) is a CLP system with flux subspace PZ and reference

point x∗ ∈ Z+(N ,K), then the restriction to Z+(N ,K) of Lx∗ :

Z+(N ,K) → P⊥
Z is a bijection.

For a proof of Proposition 3.4, see [20].

The following theorem collects the important properties of LP systems

derived from the results of Feinberg, Horn, and Jackson reviewed above:
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Theorem 3.5 (from [20]). Let (N ,K) be a CKS.

(i) If (N ,K) is a PLP system, then |E+(N ,K)∩Q| = 1 for any of its

flux classes Q.

(ii) If (N ,K) is a CLP system, then |Z+(N ,K)∩Q| = 1 for any of its

flux classes Q.

(iii) If (N ,K) is a bi-LP system, then it is absolutely complex bal-

anced, i.e., E+(N ,K) = Z+(N ,K).

For a proof of Theorem 3.5, see [20].

The first (and best-known) example of an LP system is the set of com-

plex balanced mass action systems studied by F. Horn and R. Jackson in

1972 [19]. In this case, as shown in the succeeding formulation of their re-

sult in M. Feinberg’s 1979 lectures [7], the LP system property is equivalent

to other significant characteristics of the system.

Theorem 3.6 (from [7]). Let N = (S ,C ,R) be a CRN. Suppose (N ,K)

is a mass action system with stoichiometric subspace S and SFRF f . If

there exists c∗ ∈ RS
> such that

AkψK(c∗) = 0,

where Ak is the k-Laplacian map and ψK is a factor map of K, then

f(c)(log c− log c∗) ≤ 0 for all c ∈ RS
> .

Moreover, for c ∈ RS
> , the following are equivalent:

(i) f(c)(log c− log c∗) = 0;

(ii) log c− log c∗ ∈ S⊥;

(iii) AkψK(c) = 0; and

(iv) f(c) = 0.

Statements (ii) and (iii) establish that the set of complex balanced

mass action systems are CLP systems with PZ = S. Furthermore, the
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inference (iv) ⇒ (iii) shows that the systems are absolutely complex bal-

anced, i.e., every positive equilibrium is complex balanced. Hence, they

are also bi-LP since PE = PZ .

The other class of mass action systems with strong LP characteristics

are those with independent linkage classes. This is equivalent to δ =

δ1+ . . .+δℓ where δ is the deficiency of the network and δi is the deficiency

of linkage class i [6]. B. Boros [4] lists the following known relationship

between E+(N ,K) and E(S, x∗) in general:

Proposition 3.7 (from [4]). Let (N ,K) be a mass action system with

stoichiometric subspace S, deficiency δ = δ1 + . . . + δℓ where δi is the

deficiency of linkage class i, and set of positive equilibria E+(N ,K) ̸= ∅.

Then the LP set E(S, x∗) ⊆ E+(N ,K) for any x∗ ∈ E+(N ,K).

According to the Deficiency One Theorem which M. Feinberg proved

in 1995 [8], if for a weakly reversible mass action system with deficiency

δ = δ1+ . . .+δℓ (where δi is the deficiency of linkage class i) we have δi ≤ 1

for all i, then equality holds in Proposition 3.7, i.e., E(S, x∗) = E+(N ,K)

so that (N ,K) is a PLP system. B. Boros extended this result to a class

of t-minimal networks by providing a necessary and sufficient condition for

such systems to have a positive equilibrium [3].

3.2 A review of power law systems of LP type

In this section, we collect the known results on LP systems among PL-RDK

and

PL-NDK systems. In 2014, S. Müller and G. Regensburger introduced

generalized mass action systems in [23] as follows:

3.2.1 PL-RDK systems of LP type

Definition 3.8. A generalized mass action system (GMAS) is a triple

(G,φ, φ̃) where G = (V,E) is a digraph (V the set of vertices and E the

set of edges), φ : V → Rm, and φ̃ : VS → Rm (VS is the subset of source

vertices and m is the number of species in the system).
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The set of PL-RDK systems can be mapped bijectively to the subset

of GMAS where φ is injective and φ̃ maps the zero complex (if it is a

source) to the zero vector in Rm. In this bijection, the subset of factor

span surjective systems is mapped to the GMAS where, additionally, φ̃ is

injective.

One of the key concepts of the GMAS theory is that of the kinetic

order subspace S̃ := span{φ̃(v′)− φ̃(v)} for any edge v → v′ of a cycle

terminal digraph, i.e., VS = V . S. Müller and G. Regensburger showed

that, analogous to mass action systems, any complex balanced PL-RDK

system is a CLP system with PZ = S̃. However, in contrast to mass action

systems, only special subsets of PL-RDK systems with positive deficiency

are absolutely complex balanced. They also showed that, for a weakly re-

versible

PL-RDK system, there are rate constants for which the system is com-

plex balanced. In particular, it is complex balanced for all rate constants

if and only if its kinetic deficiency δ̃ := n − ℓ − dim S̃ is 0 (n is the

number of complexes and ℓ is the number of linkage classes in the system).

For PL-RDK systems with independent linkage classes (or, equiva-

lently, with deficiency δ = δ1+ . . .+ δℓ where δi is the deficiency of linkage

class i), Talabis et al [26] identified a subset of PL-RDK systems called T̂ -

rank maximal kinetic (PL-TIK) systems, for which the full analogue

of the Deficiency One Theorem for mass action systems, including Boros’s

criterion, is valid. This class of power law systems is defined with the help

of the T -matrix, a |VS | ×m matrix whose columns are the images φ̃(v). A

kinetics is PL-TIK if and only if the augmented T -matrix T̂ , constructed

by adding rows of the characteristic functions of the linkage classes, has

maximal column rank (see [27] for details). In particular, any PL-TIK

on a t-minimal network with independent linkage classes of low deficiency

(δ = 0 or δ = 1) satisfying Boros’s criterion is PLP with PE = S̃R where

S̃R is called the kinetic reactant flux subspace. The latter is defined

as the image of TIa,R where T is the T -matrix and Ia,R is the restriction

of the incidence matrix to the maximal cycle terminal subnetwork. If the

network is cycle terminal, then S̃R = S̃ follows from this and from [27]

that any weakly reversible PL-TIK system satisfying the Deficiency One
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Theorem for PL-TIK is bi-PL with LP flux subspace S̃.

3.2.2 PL-NDK systems of LP type

Recall that for a CRN N = (S ,C ,R) a covering of N is a collection

of subsets {R1, . . . ,Rk} whose union is R. A covering is called a decom-

position of N if the sets Ri form a partition of R. Alternatively, N

has a decomposition into subnetworks Ni = (Si,Ci,Ri) for i = 1, . . . , k

if S =

k⋃
i=1

Si, C =

k⋃
i=1

Ci, R =

k⋃
i=1

Ri, and Ri ∩ Rj = ∅ for i ̸= j. We

denote a decomposition of N into k subnetworks as N = N1 ∪ . . . ∪ Nk.

For any decomposition, the stoichiometric subspace of N is S =

k∑
i=1

Si

where Si is the stoichiometric subspace of subnetwork Ni, the image of

the incidence map is Im Ia =

k∑
i=1

Im Ia,i where Ia,i is the incidence map of

subnetwork Ni, and the decomposition is independent (incidence indepen-

dent) if the first (second) sum is direct. A decomposition has a network

property (e.g., weakly reversible) or kinetic property (e.g., PL-RDK) if

each subnetwork has the said property.

In [18], PL-NDK systems with weakly reversible PL-RDK decomposi-

tions were investigated and the following application was derived:

Theorem 3.9 (from [18]). Let (N ,K) be a power law system with a

weakly reversible PL-RDK decomposition D : N = N1 ∪ . . . ∪ Nk. If

D is bi-level independent and of PLP type with PE,i = S̃i where PE,i is

the flux subspace of subnetwork Ni and S̃i is the kinetic order subspace of

subnetwork Ni, then (N ,K) is a weakly reversible PLP system with flux

subspace PE =

k∑
i=1

S̃i.

Bi-level independent means that both the decomposition as well as

the induced decomposition of kinetic complexes (the kinetic complexes of

a PL-RDK system are the images of the reactant complexes under the

kinetic map φ̃ of S. Müller and G. Regensburger) are independent.

This result is a broad generalization of the Deficiency Zero Theorem

of Fortun et al [13]. The analogous result for complex balanced PL-NDK
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systems is contained in the following result:

Theorem 3.10 (from [18]). Let (N ,K) be a weakly reversible power law

system with a complex balanced PL-RDK decomposition D : N = N1∪. . .∪
Nk with PZ,i = S̃i where where PZ,i is the flux subspace of subnetwork Ni

and S̃i is the kinetic order subspace of subnetwork Ni. If D is incidence

independent and the induced covering is independent, then (N ,K) is a

weakly reversible CLP system with flux subspace PZ =

k∑
i=1

S̃i.

3.3 The species hyperplane containment criterion for

concentration robustness in LP systems

In this section, after a brief review of the fundamentals of concentration

robustness, we derive a simple criterion, i.e., necessary and sufficient con-

dition, for absolute concentration robustness (ACR) in PLP systems. The

result is that the dimension of the LP set’s flux subspace is an upper bound

for the number of species with concentration robustness. The criterion

also leads to simple computational algorithms for checking concentration

robustness in LP systems. These are discussed in detail in Section 5.

The concept of ACR was introduced by G. Shinar and M. Feinberg in

Science in 2010 [25] as follows: A CKS (N ,K) has ACR in a species X

if the value of X is identical for all positive equilibria of the system. Ab-

stracting from earlier observations by biologists in systems in Escherichia

coli, they derived a sufficient condition for ACR in a species for deficiency

one mass action systems (extensions of this result will be discussed in de-

tail in Section 4). The paper aroused interest in robustness research which

included the work by Karp et al [21] proposing further concentration ro-

bustness concepts such as bounded concentration robustness.

A different type of extension was introduced by N. Fortun and E. Men-

doza in [15]: a complex balanced CKS has balanced concentration robust-

ness (BCR) in a species X if the species has the same value at all complex

balanced equilibria. In a general kinetic system, in contrast to a mass

action system, there may be positive equilibria which are not complex

balanced, so that BCR is a weaker property than ACR. We introduce a
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further generalization.

Definition 3.11. A CKS is concentration robust for a subset E of the

set of positive equilibria in a species X if X has the same value for all equi-

libria in X. A general notation for this property is “(E,X) concentration

robustness”.

A CKS has ACR in a species X if and only if all of its positive equi-

libria lie in the hyperplane xX = c (the so-called “ACR hyperplane”),

where c is a positive constant. This is equivalent to the differences of their

logarithms lying in the species hyperplane xX = 0, due to the bijectivity

of the logarithm on the positive real axis. Hence, a general ACR hyper-

plane criterion is that the span{log x− log x∗ | x, x∗ ∈ E+(N ,K)}, where
E+(N ,K) is the set of positive equilibria, lies in the species hyperplane

xX = 0. For LP sets, this span is equal to the parameter subspace and is

easily computed in terms of network structures as shown below.

We now derive our species hyperplane containment criterion (or

simply species hyperplane criterion) for concentration robustness.

Theorem 3.12. Let (N ,K) be an LP system.

(i) If (N ,K) is a PLP system, then it has ACR in a species X if and

only if its parameter subspace P⊥
E is a subspace of the species hy-

perplane {x ∈ RS | xX = 0}. Similarly, if (N ,K) is a weakly

reversible CLP system, then it has BCR in a species X if and only

if its parameter subspace P⊥
Z is a subspace of the species hyperplane

{x ∈ RS | xX = 0}.

(ii) If mACR is the number of species with ACR, then mACR ≤ dim PE

where PE is the flux subspace. If mBCR is the number of species with

BCR, then mBCR ≤ dim PZ where PZ is the flux subspace.

Proof.

(i) (“⇐”) Since for any p ∈ P⊥
E we have pX = 0, then for any x ∈

E+(N ,K), log xX = log x∗X , and by the bijectivity of the logarithm log :

RS
> → RS , we have xX = x∗X . Conversely (“⇒”), suppose the system has

ACR in X. Then for any x ∈ E+(N ,K), xX = x∗X , which implies that
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log xX = log x∗X . In view of the parametrization, this implies that pX = 0

for any p ∈ P⊥
E . An analogous argument clearly holds for CLP systems,

complex balanced equilibria, and P⊥
Z elements.

(ii) It follows from (i) that if the system has ACR in the species

X1, . . . , XmACR , then P
⊥
E is contained in

mACR⋂
i=1

{x ∈ RS | xXi = 0}. Hence,

dim P⊥
E ≤ m −mACR or mACR ≤ m − dim P⊥

E = m − (m − dim PE) =

dim PE . An analogous inequality clearly holds for mBCR.

Definition 3.13. A CRN N = (S ,C ,R) with stoichiometric subspace S

is said to be conservative if there exists an m ∈ S⊥ such that m ∈ RS
> or,

equivalently, S⊥∩RS
> ̸= ∅. Otherwise, it is said to be nonconservative.

Example 3.14. Consider the CRN of Anderies et al’s pre-industrial car-

bon cycle model presented in Fortun et al [11]:

R1 : A1 + 2A2 → 2A1 +A2

R2 : A1 +A2 → 2A2

R3 : A2 → A3

R4 : A3 → A2.

The species set of the network is S = {A1, A2, A3} while its stoichio-

metric subspace is S = ⟨A1 − A2, A3 − A2⟩. Since the network has m = 3

species and rank s = 2, the orthogonal complement S⊥ has dimension

1. A basis vector for S⊥ is
[
1 1 1

]⊤
∈ RS

> . Therefore, the CRN is

conservative.

Our species hyperplane criterion has the following interesting conse-

quences for mass action systems:

Corollary 3.15.

(i) An LP mass action system with ACR or BCR in at least one species

is nonconservative.

(ii) A conservative mass action system with ACR or BCR in at least one

species is not an LP system.
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(iii) A complex balanced conservative mass action system does not have

ACR or BCR in any species.

Proof.

(i) follows from the fact that the flux subspace is S, and hence every

vector of the parameter subspace S⊥ has at least one zero coordinate.

(ii) is just a reformulation of (i).

(iii) follows from (i) and the result of F. Horn and R. Jackson that any

complex balanced mass action system is a CLP system.

4 LP subsystems as control components

for concentration robustness

in decompositions

In this section, we first use the species hyperplane criterion to construct a

simple computational procedure for determining concentration robustness

in a species of an LP system. We then discuss how the procedure enables

the role of an LP subsystem as a “control component” for concentration

robustness in a decomposition.

4.1 A simple computational approach to concentra-

tion robustness in LP systems

The following proposition provides a simple computational procedure to

determine for which species concentration robustness in an LP system

holds:

Proposition 4.1. Let {v1, . . . , vE} be a basis of the parameter subspace

P⊥
E of a PLP system (N ,K). The system has ACR in species X if and

only if the coordinate corresponding to X in each basis vector vi,X = 0 for

each i = 1, . . . , E. Similarly, if {w1, . . . , wZ} is a basis of the parameter

subspace P⊥
Z of a CLP system, then the system has BCR in species X if

and only if the coordinate corresponding to X in each basis vector wi,X = 0

for each i = 1, . . . , Z.
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The proof is straightforward. Hence, one only needs to construct a

basis for the parameter subspace P⊥
E or P⊥

Z to determine which species in

the system has ACR or BCR.

Example 4.2. For complex balanced mass action systems, the dimension

of the flux subspace of its LP set E is dim PE = s where s is the rank of

the system, so that the number of species with ACR is mACR ≤ s.

This is an interesting relationship which, to our knowledge, has not

been published to date. If a complex balanced mass action system has a

unique positive equilibrium, then it has ACR in all species, so thatmACR =

m (the number of species in the system). By Proposition 4.1, it follows

that s = m. Hence, the system is open, i.e., the linear space generated by

the reaction vectors is the whole species space RS . A conservative complex

balanced mass action system, therefore, has at most m − 1 species with

ACR.

Example 4.3. Consider Schmitz’s global pre-industrial carbon cycle model

presented in Fortun et al [13]:

Ṁ1 = k21M
0.4
2 + k51M5 + k61M6 − k13M1 − k′15M

0.36
1

Ṁ2 = k42M4 − k21M
9.4
2

Ṁ3 = k13M1 − k34M3

Ṁ4 = k34M3 − k42M4

Ṁ5 = k′15M
0.36
1 − k51M5 − k56M5

Ṁ6 = k56M5 − k61M6

The authors showed that the following subnetwork of Schmitz’s global

pre-industrial carbon cycle model is a PLP system with flux subspace PE =

S̃ = S̃1 ⊕ S̃2 (where S̃ and S̃i are the kinetic order subspaces of N and

Ni, respectively) defined by the following decomposition D :

N = N1 ∪ N2
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where

N1 = {r1 :M5 →M1, r2 :M1 →M5, r3 :M5 →M6, r4 :M6 →M1}

N2 = {r5 :M2 →M1, r6 :M4 →M2, r7 :M1 →M3, r8 :M3 →M4}.

The rank of N , N1, and N2 are s = 5, s1 = 2, and s2 = 3, respectively.

This implies that the decomposition is independent.

The kinetic order subspaces of the subnetworks induced by D are

ÑD,1 = {r̃1 :M5 → 0.36M1, r̃2 : 0.36M1 →M5, r3 :M5 →M6,

r̃4 :M6 → 0.36M1}

ÑD,2 = {r̃5 : 9.4M2 →M1, r̃6 :M4 → 9.4M2, r7 :M1 →M3,

r8 :M3 →M4}.

Set ÑD = ÑD,1 ∪ ÑD,2. The number of complexes is ñ = 7 and the

number of linkage classes is ℓ̃ = 2. So, ñ− ℓ̃ = 5. The rank of ÑD , ÑD,1,

and ÑD,2 are s̃ = 5, s̃1 = 2, and s̃2 = 3, respectively. This implies that

ÑD = ÑD,1 ∪ ÑD,2 is an independent decomposition.

We now apply Proposition 4.1. The flux subspace induced by D is S̃

and we wish to determine a basis for S̃⊥ to identify which species has ACR.

Note, first of all, that the set of species of ÑD is S = {M1,M2,M3,M4,

M5,M6}.
S̃ is represented by the following stoichiometric matrix:

ÑD =



0.36 −0.36 0 0.36 1 0 −1 0

0 0 0 0 −9.4 9.4 0 0

0 0 0 0 0 0 1 −1

0 0 0 0 0 −1 0 1

−1 1 −1 0 0 0 0 0

0 0 1 −1 0 0 0 0


.

The columns of ÑD are vectors in RS (or R6, loosely speaking, keeping

in mind the order in which we listed the species above). This makes S̃ a

linear subspace of R6.
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We take the transpose of ÑD to get the “reaction matrix” R̃D where

each row represents a reaction:

R̃D = ÑT
D =



0.36 0 0 0 −1 0

−0.36 0 0 0 1 0

0 0 0 0 −1 1

0.36 0 0 0 0 −1

1 −9.4 0 0 0 0

0 9.4 0 −1 0 0

−1 0 1 0 0 0

0 0 −1 1 0 0


.

A basis B for R̃D consists of reactions r̃1, r3, r̃5, r̃6, r7:

B =


0.36 0 0 0 −1 0

0 0 0 0 −1 1

1 −9.4 0 0 0 0

0 9.4 0 −1 0 0

−1 0 1 0 0 0

 .

We now want to determine the orthogonal complement S̃⊥ = {x ∈ R6 |
Bx = 0}. To do this, we write the augmented matrix [B | 0] in its reduced

row echelon form (rref). In the following, we do not include the 0 column

from the augmented matrix. The species corresponding to each column are

also labeled:

rref B =

0M1 M2 M3 M4 M5 M6


01 0 0 0 0 −2.77780

00 1 0 0 0 −0.29550

00 0 1 0 0 −2.77780

00 0 0 1 0 −2.77780

00 0 0 0 1 −10

.

Using B in rref, we write the matrix in its system of equations form.

We also express the pivots in terms of the nonpivots (the column for M6
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is a nonpivot column):

M1 = 2.7778M6

M2 = 0.2955M6

M3 = 2.7778M6

M4 = 2.7778M6

M5 = M6.

Therefore, the desired orthogonal complement is the set

S̃⊥ =





M1

M2

M3

M4

M5

M6


=



2.7778

0.2955

2.7778

2.7778

1

1


M6


.

The vector beside the nonpivot is the basis vector for S̃⊥. Since there is

no zero coordinate for the vector, the species M1, . . . ,M6 have no ACR in

the system.

The result in Example 4.3 contradicts the conclusion in Example 3

of [15], indicating an error in the scope of Theorem 2 of the said paper.

The theorem should be restricted to PL-RDK systems where the reactions

of Shinar-Feinberg pairs lie in the same linkage class (as formulated in

Theorem 6 of the said paper and which is independently proven in its Ap-

pendix). Consequently, the statements for deficiency zero building blocks

in Propositions 7 and 8 in [15] need to be adjusted. Furthermore, the

algorithms based on these propositions, as presented in [10], need to be

refined to meet the restriction.
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4.2 The “control component” role of LP subsystems

in a decomposition for concentration robustness

In the next proposition, we collect some important properties of concentra-

tion robustness for a species in a decomposition subnetwork, particularly

in relation to its concentration robustness in the whole network.

Proposition 4.4. Let N = N1∪ . . .∪Nk be a decomposition of the CRN

N = (S ,C ,R) with Ni = (Si,Ci,Ri) for i = 1, . . . , k. Denote by SACR

(SBCR) and SACR,i (SBCR,i) the sets of species with ACR (BCR) of the

network N and the subnetwork Ni, respectively.

(i) If species X has concentration robustness in Ni, then X ∈ Si, i.e.,

|SACR,i| ≤ |Si| and |SBCR,i| ≤ |Si|.

(ii) If species X has ACR in Ni and the decomposition is independent,

then X has ACR in N , i.e., |SACR,i| ≤

∣∣∣∣∣
k⋃

i=1

SACR,i

∣∣∣∣∣ ≤ |SACR|.

(iii) If species X has BCR in Ni and the decomposition is incidence in-

dependent, then X has BCR in N , i.e., |SBCR,i| ≤

∣∣∣∣∣
k⋃

i=1

SBCR,i

∣∣∣∣∣ ≤
|SBCR|.

Proof.

(i) If a species does not occur in a subnetwork, since the set of equilibria

for the subsystem includes elements with all positive values in that species,

then concentration robustness in that species is impossible.

(ii) If the decomposition is independent, then the theorem of M. Fein-

berg says that the set of equilibria of the whole system is the intersection

of the equilibria sets of the subnetworks. Hence, the set of equilibria of

the whole network is a subset of the set of equilibria for each subnetwork,

implying the claim.

(iii) The argument is analogous in view of the theorem of Fariñas

et al [5, 6] for complex balanced equilibria under incidence independent

decompositions.
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If a subnetwork is an LP system, the simple procedure for determin-

ing which of the species occurring in that subsystem have concentration

robustness allows the easy computation of the sets and bounds given in

the proposition. This provides us a way of checking the “amount” of con-

centration robustness occurring in the system. The higher the presence of

LP subnetworks in a decomposition, the more accurate the “control” of

concentration robustness can be effected.

Remark 4.5. In Example 4.3 and in the generalization of the Deficiency

Zero Theorem of Fortun et al derived in [13], all subnetworks are PLP

systems, so that the entire network is also a PLP system. However, in

cases where not all subnetworks are LP systems, the set of species in those

which are LP systems still provides a useful lower bound for the set of

species with ACR for the whole network.

5 Concentration robustness in LP power law

systems of SF-type

In this section, we present a further application of the species hyperplane

criterion for concentration robustness in LP systems by broadening the

“building blocks” framework for power law systems introduced by N. For-

tun and E. Mendoza in [15]. Specifically, we add LP systems with Shinar-

Feinberg reaction pairs (SF-pairs) of arbitrary deficiency to the original

low deficiency (δ = 0 or δ = 1) building blocks in the framework. This ad-

dition will allow easier identification of concentration robustness in larger

networks with arbitrary deficiency.

5.1 A review of concentration robustness in power law

systems of SF-type

We briefly review concepts and results needed in the next section.

Definition 5.1. A pair of reactions in a power law system is called a

Shinar-Feinberg pair (SF-pair) in species X if their kinetic order vectors
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differ only in X. A network that contains an SF-pair is said to be of

Shinar-Feinberg type (of SF-type).

The pioneering work of G. Shinar and M. Feinberg was extended by

Fortun et al [12] to the following theorem:

Theorem 5.2 (from [12]). Let N = (S ,C ,R) be a deficiency one CRN

and suppose that (N ,K) is a PL-RDK system which admits a positive

equilibrium. If Ci, Cj ∈ C are nonterminal complexes whose kinetic order

vectors differ only in species X, then the system has ACR in X.

N. Fortun and E. Mendoza [15] showed that the presence of SF-pairs

in a linkage class implied concentration robustness in weakly reversible

deficiency zero PL-RDK systems.

The next proposition enables us to determine if a power law system

has ACR in a species. Unlike other similar results on ACR, this propo-

sition does not have any deficiency restriction imposed on the underlying

network. This allows us to deal with higher deficiency systems including

higher deficiency mass action systems. Thus, we consider it as a framework

for constructing systems with ACR in a species using “building blocks”

with low deficiency (δ = 0 or δ = 1).

Proposition 5.3 (based on [15]). Let (N ,K) be a power law system with

a positive equilibrium and an independent decomposition N = N1 ∪ . . . ∪
Nk. If there is a subnetwork (Ni,Ki) of deficiency δi with SF-pair in

species X such that

(i) δi = 0 and (Ni,Ki) is a weakly reversible PL-RDK system with the

SF-pair in a linkage class; or

(ii) δi = 1, (Ni,Ki) is a PL-RDK system, and the SF-pair’s reactant

complexes are nonterminal;

then (N ,K) has ACR in X.

The analogous “building blocks” framework for BCR is the following:

Proposition 5.4 (based on [15]). Let (N ,K) be a power law system with

a complex balanced equilibrium and an incidence independent decomposi-
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tion N = N1 ∪ . . . ∪ Nk. If there is a subnetwork (Ni,Ki) of deficiency

δi with SF-pair in species X such that

(i) δi = 0 and (Ni,Ki) is a weakly reversible PL-RDK system with the

SF-pair in a linkage class; or

(ii) δi = 1, (Ni,Ki) is a PL-RDK system, and the SF-pair’s reactant

complexes are nonterminal;

then (N ,K) has BCR in X.

Computational procedures for these frameworks were presented in [10].

5.2 Concentration robustness in a class of LP PL-

RDK systems of SF-type

The following proposition is the basis for broadening the frameworks:

Proposition 5.5. Let (N ,K) be a cycle terminal PL-RDK system of LP

type with flux subspace S̃. If the system has an SF-pair in species X in a

linkage class, then it has ACR in X.

Proof. Without loss of generality, we consider the PLP case. If ỹ and ỹ′

constitute the kinetic complexes of the SF-pair, then ỹ − ỹ′ is an element

of S̃. By definition, ỹ − ỹ′ has zero coordinates except in X. Hence, the

scalar product ⟨v, ỹ− ỹ′⟩ = 0 if and only if vX = 0. Hence, if v ∈ S̃⊥, then

vX = 0. By the species hyperplane criterion, the system has ACR in X.

Remark 5.6. Proposition 5.5 generalizes an earlier result of Jose et al [20]

on weakly reversible PL-TIK systems with consecutive SF-pairs.

The broadened framework for ACR is the following:

Proposition 5.7. Let (N ,K) be a power law system with a positive equi-

librium and an independent decomposition N = N1 ∪ . . .∪Nk. If there is

a subnetwork (Ni,Ki) of deficiency δi with SF-pair in species X such that

(i) δi = 1, (Ni,Ki) is a PL-RDK system, and the SF-pair’s reactant

complexes are nonterminal; or
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(ii) (Ni,Ki) is cycle terminal, a PL-RDK system with the SF-pair in a

linkage class, and a PLP system with flux subspace S̃i;

then (N ,K) has ACR in X.

Example 5.8. Consider Anderies et al’s pre-industrial carbon cycle model

presented by Fortun et al in [11]:

Ȧ1 = a1A
−1.89423
1 A0.425693

2 − a2A
−0.270554
1 A0.438628

2

Ȧ2 = a2A
−0.270554
1 A0.438628

2 + amβA3 − a1A
−1.89423
1 A0.425693

2 − amA2

Ȧ3 = amA2 − amβA3.

A power law system which is dynamically equivalent to the one in Ex-

ample 3.14 is

R1 : A1 + 2A2 → 2A1 +A2

R2 : 2A1 +A2 → A1 + 2A2

R3 : A2 → A3

R4 : A3 → A2.

Take the subnetwork {R1, R2}, two reactions forming an SF-pair in

species A2. It is obviously a PLP system. Since subnetwork this is non-

branching, by Proposition 12 in [2], it is PL-RDK. Observe that it has

n = 2 complexes, nr = 2 reactant complexes, ℓ = 1 linkage class, and

δ = 0 deficiency. Since n− nr = 2− 2 = 0, then this subnetwork is cycle

terminal. Furthermore, the SF-pair is in the same linkage class. There-

fore, by Proposition 5.7, the given network has ACR in A2.

6 Concentration robustness in poly-PL sys-

tems of LP type

In this section, we identify subsets of poly-PL systems which are of LP

type to which we can apply our new results. We first review the known

results about LP poly-PL systems and then derive sufficient conditions
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for the subsets of PL-equilibrated and PL-complex balanced poly-PL sys-

tems to be PLP and CLP, respectively. We verify that weakly reversible

poly-power law systems with T̂ -rank maximal kinetics (PY-TIK) are PL-

complex balanced and are CLP systems. Towards the end of the section,

we establish concentration robustness with an example of an evolutionary

game with replicator dynamics.

6.1 A review of previous results on poly-PL systems

of LP type

The set of poly-PL kinetics was introduced in 2019 by Talabis et al [28]

where they arose in reaction network representations of evolutionary games

and was further studied by Magpantay et al in [22].

Definition 6.1. A kinetics K : RS
> → RR is a poly-PL kinetics (PYK)

if

Ki(x) = ki

hi∑
j=1

aijx
fij for all i = 1, . . . , r

written in lexicographic order with ki > 0, aij ≥ 0, fij ∈ R, and hi the

number of terms in reaction i. If h = maxhi, we normalize the length of

each kinetics to h by replacing the last term with h − hi + 1 terms with
1

h− hi + 1
xfi,hi . We call this the canonical PL-representation of a

poly-PL kinetics. We refer to a CRN with PYK as a poly-PL system.

We set Kj(x) := kijx
fij with kij = kiaij where i = 1, . . . , r for each

j = 1, . . . , h. (N ,Kj) is a power law system with kinetic order matrix Fj .

From Definition 6.1, a PYK can be represented (in a canonical manner)

as the sum of PLK. This allows the extension of various results on power

law systems to interesting subsets of poly-PL systems. In [28], the set

of PY-TIK systems is shown to coincide with the set of sums of PL-TIK

systems and that any weakly reversible PY-TIK system is complex bal-

anced for all rate constants. Furthermore, it is shown that for a complex

balanced PY-TIK system, Z+(N ,K) = {x ∈ RS
> | log x − log x∗ ∈ S̃⊥

j }
where S̃j is the kinetic reactant flux subspace of any of the (N ,Kj).



58

6.2 PL-complex balanced and PL-equilibrated poly-

PL kinetics

We recall the definitions of two subsets of complex balanced and positively

equilibrated poly-PL systems.

Definition 6.2. A poly-PL system (N ,K) is PL-complex balanced if

the set of complex balanced equilibria ∅ ̸= Z+(N ,K)

=

h⋂
j=1

Z+(N ,Kj). Analogously, (N ,K) is

PL-equilibrated if the set of positive equilibria ∅ ̸= E+(N ,K)

=

h⋂
j=1

E+(N ,Kj).

Example 6.3. As mentioned above, it has been shown that any weakly re-

versible

PY-TIK system is unconditionally complex balanced, i.e., it is complex

balanced for any set of rate constants. Furthermore, for each such sys-

tem, Z+(N ,K) = Z+(N ,Kj) for each j = 1, . . . , h. This implies that

Z+(N ,K) =

h⋂
j=1

Z+(N ,Kj), i.e., any PY-TIK system is PL-complex

balanced. It is also clearly a CLP system.

The following proposition generalizes the above example:

Proposition 6.4. Let (N ,K) be a PL-complex balanced poly-PL system

with (N ,Kj) of CLP type with flux subspace PZ,j for j = 1, . . . , h. Then

(N ,K) is a CLP system with flux subspace PZ =

h∑
j=1

PZ,j.

Proof. Clearly,

h⋂
j=1

Z+(N ,Kj) =

x ∈ RS
>

∣∣∣∣ log x− log x∗ ∈
h⋂

j=1

P⊥
Z,j

.

Since we have

h⋂
j=1

P⊥
Z,j =

 h∑
j=1

PZ,j

⊥

and, by assumption

∅ ̸= Z+(N ,K) =

h⋂
j=1

Z+(N ,Kj), we obtain the claim.
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Example 6.5. After S. Müller and G. Regensburger, every complex bal-

anced PL-RDK system is a CLP system. Since a poly-PL system has

reactant-determined kinetics (PY-RDK) if and only if each (N ,Kj) for

j = 1, . . . , h is a PL-RDK system, it follows that any PL-complex balanced

PY-RDK system is a CLP system.

The following proposition is the analogue for PLP systems:

Proposition 6.6. Let (N ,K) be a PL-equilibrated poly-PL system with

(N ,Kj) of PLP type with flux subspace PE,j for j = 1, . . . , h. Then

(N ,K) is a PLP system with flux subspace PE =

h∑
j=1

PE,j.

6.3 Concentration robustness in evolutionary games

with replicator dynamics

6.3.1 Review of previous results

Recall that Talabis et al showed in [28] that any evolutionary game with

replicator dynamics can be represented as a kinetic system (N ,K) where

N consists of m species Xi and 2m reactions {Xi → 2Xi, 2Xi → Xi}
for i = 1, . . . ,m. The kinetics for the ith forward reaction is Xifi(x) and

the kinetics for the ith backward reaction is Xiϕ(x) where fi(x) is the ith

payoff function and ϕ(x) =

r∑
i=1

Xifi(x) is the average payoff. Note that

the representation is only possible if all the payoff functions are nonnega-

tive. Hence, in a poly-PL replicator game, all the coefficients of the payoff

functions must be nonnegative.

The main result in [28] about poly-PL replicator games is the following:

Theorem 6.7 (from [28]). (m variables, h′ terms) If the payoff functions

of an m-variable replicator system with h′ terms are of the form

fp(x) =

h′∑
i=1

api m∏
j=1

X
gp
ij

j

 where 1 ≤ p ≤ m,

if for each j the sets Gij = {gpij | 1 ≤ p ≤ m, p ̸= j} for 1 ≤ j ≤ m

where 1 ≤ i ≤ h′ are singleton {gij} such that gij ̸= gjij for 1 ≤ j ≤ m
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where 1 ≤ i ≤ h′, then the replicator system has a positive equilibrium

(necessarily complex balanced).

The sufficient condition ensures that the associated augmented T -ma-

trices have maximal column rank for each j and hence the system is a

weakly reversible PY-TIK system which is then unconditionally complex

balanced, i.e., has a complex balanced equilibrium for any set of rate con-

stants (Theorem 3 of [28]).

6.3.2 The uniqueness of the positive equilibrium of a poly-PL

replicator game

The result in the paper that implies the uniqueness of the equilibrium is

Theorem 4 of [28]:

Theorem 6.8 (from [28]). Let (N ,K) be a weakly reversible poly-PL

system with poly T -matrices T1, . . . , Th and kinetic reactant deficiency δ̂ =

0. Consider an arbitrary poly T -matrix Tk.

(i) If Z+(N ,K) ̸= ∅ and x∗ ∈ Z+(N ,K), then

Z+(N ,K) = {x ∈ Rm
> | log x− log x∗ ∈ S̃⊥

k }

where S̃k is the kinetic reactant flux subspace of (N ,Kk).

(ii) If Z+(N ,K) ̸= ∅, then |Z+(N ,K) ∩ Qk| = 1 for each positive

kinetic reactant flux class Qk.

Remark 6.9. The index k in Theorem 6.8 is the index i in Theorem 6.7.

We formulate our result as a corollary:

Corollary 6.10 (Corollary to Theorem 6.7). Any poly-PL replicator game

satisfying the sufficient condition of Theorem 6.7 has a unique positive

equilibrium.

Proof. It follows directly from the definition of the block matrix as direct

sum of the poly T -matrices that a PY-RDK system (N ,K) is a PY-TIK

system if and only if each of its summands (N ,Kj) for j = 1, . . . , h is a
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PL-TIK system. Since after [3], any weakly reversible PL-TIK system is

unconditionally complex balanced, it follows from the result of S. Müller

and G. Regensburger that such a PL-TIK system has zero kinetic defi-

ciency, i.e., δ̃ = 0. This is equivalent to s̃j = nj − ℓ where s̃i is the rank of

(N ,Kj), nj is the number of complexes in (N ,Kj), and ℓ is the number

of linkage classes of N . For the replicator system, n − ℓ = 2m −m = m

where n and m represent the number of complexes and species, respec-

tively, of the network. Thus, the kinetic order subspace S̃j = Rm. Hence

Z+(N ,Kj) = {x ∈ Rm
> | log x − log x∗ ∈ S̃⊥

j = 0}, i.e., it consists of a

single element. According to (i) of Theorem 6.8, Z+(N ,K) coincides with

this set.

Example 6.11. Consider the following payoff functions of a 2-variable

replicator system with 2 terms:

f1(x) = a1x
f11
1 xf122 + a2x

f21
1 xf222

f2(x) = b1x
g11
1 xg122 + b2x

g21
1 xg222 .

The average payoff is

ϕ = a1x
f11+1
1 xf122 + a2x

f21+1
1 xf222 + b1x

g11
1 xg12+1

2 + b2x
g21
1 xg22+1

2 .

Consequently, we have four 4× 4 poly-T̂ matrices (columns indexed by

the reactant complexes x1, 2x1, x2, 2x2):

T̂1 =


f11 + 1 f11 + 2 g11 f11 + 1

f12 f12 g12 + 1 f12 + 1

1 1 0 0

0 0 1 1



T̂2 =


f11 + 1 g11 + 1 g11 g11

f12 g12 + 1 g12 + 1 g12 + 2

1 1 0 0

0 0 1 1


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T̂3 =


f21 + 1 f21 + 2 g21 f21 + 1

f22 f22 g22 + 1 f22 + 1

1 1 0 0

0 0 1 1



T̂4 =


f21 + 1 g21 + 1 g21 g21

f22 g22 + 1 g22 + 1 g22 + 2

1 1 0 0

0 0 1 1

 .
Setting a linear relation for the 4 columns of each poly-T̂ matrix, we

obtain the coefficients α, −α, β, and −β, respectively. Thus,

α1 = β1(g11 − f11 − 1)

β1(g12 − f12) = 0

α2(f11 − g11) = 0

β2 = α2(f12 − g12 − 1)

α3 = β3(g21 − f21 − 1)

β3(g22 − f22) = 0

α4(f21 − g21) = 0

β4 = α4(f22 − g22 − 1).

If we set f11 ̸= g11, f12 ̸= g12, f21 ̸= g21, and f22 ̸= g22, then αi =

β1 = 0 for i = 1, . . . , 4. With this, each poly-T̂ matrix has a maximal rank

equal to 4. Hence, each kinetic reactant deficiency δ̂ = 0. Therefore, the

replicator system has a positive equilibrium (necessarily complex balanced)

and, by Corollary 6.10, this positive equilibrium is unique.

Remark 6.12.

(i) The conclusion of Corollary 6.10 also follows from (ii) of Theorem

6.8, which is a general consequence for a CLP system.

(ii) Corollary 6.10 can be generalized to the following proposition: Let

(N ,K) be a weakly reversible PL-RDK system with zero kinetic de-

ficiency and n − ℓ = m where m, n, and ℓ represent the number of

species, number of complexes, and number of linkage classes, respec-

tively. Then (N ,K) has a unique complex balanced equilibrium for

each set of rate constants.

(iii) In [4], it is shown that any PL-complex balanced PY-RDK system is
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a CLP system with parameter subspace

 h∑
j=1

S̃j

⊥

where the S̃j are

the kinetic order subspaces (after S. Müller and G. Regensburger)

of the PL-RDK summands of the PY-RDK system. In a PY-TIK

system, the intersection is over the same parameter subspace. In

other words, the parameter subspace of a PY-TIK system is smaller

than that of other PL-complex balanced PY-RDK systems, resulting

in a larger equilibria parameter subspace.

7 Summary and conclusions

A CKS (N ,K) is a PLP system if its set of positive equilibria is an LP

set, i.e., E+(N ,K) = E(PE , x
∗) where PE is the flux subspace and x∗ is

a given positive equilibrium. Analogously, the CKS is a CLP system if its

set of complex balanced equilibria Z+(N ,K) = E(PZ , x
∗) where PZ is the

flux subspace and x∗ is a given complex balanced equilibrium. Various LP

systems beyond mass action systems have already been studied. In this

paper, we studied the properties of concentration robustness of species in

LP systems.

We presented the species hyperplane criterion, a necessary and suffi-

cient condition for ACR and BCR. Our approach was based on a necessary

and sufficient condition for ACR in PLP systems and its analogue for BCR

in CLP systems in terms of their LP subspaces. In Theorem 3.12, we pre-

sented a necessary condition yielding an upper bound for the number of

species in which the system admits concentration robustness. Through

Propositions 4.1 and 4.4, it can be determined in which species concen-

tration robustness in an LP system holds and which LP systems can be

used as control components for concentration robustness in decomposition

subnetworks. Further application of the species hyperplane criterion for

concentration robustness in LP systems of SF-type (presented in Proposi-

tion 5.7) led us to broaden the “building blocks” framework for construct-

ing larger systems with concentration robustness studied in [10, 15]. It

allows easier identification of concentration robustness in larger networks
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with arbitrary deficiency. The results were applied to species concentration

robustness in LP systems with poly-PL kinetics from evolutionary game

theory (see Section 6).
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Appendix A List of abbreviations

Table 1. List of abbreviations

Abbreviation Meaning
ACR Absolute Concentration Robustness
BCR Balanced Concentration Robustness
CKS Chemical Kinetic System
CLP Complex Balanced Equilibria Log-Parametrized
CRN Chemical Reaction Network
GMAS Generalized Mass Action System
LP Log-Parametrized
MAK Mass Action Kinetics
ODE Ordinary Differential Equation
PL-NDK Power Law System with Non-Reactant-Determined Kinetics
PL-RDK Power Law System with Reactant-Determined Kinetics

PL-TIK Power Law System with T̂ -Rank Maximal Kinetics
PLK Power Law Kinetics
PLP Positive Equilibria Log-Parametrized
PY-RDK Poly-Power Law System with Reactant-Determined Kinetics

PY-TIK Poly-Power Law System with T̂ -Rank Maximal Kinetics
PYK Poly-Power Law Kinetics
SF Shinar-Feinberg
SFRF Species Formation Rate Function
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