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Abstract

The square of a graph G, denoted by G2, is a graph with the same vertex set as
G, in which two vertices are adjacent if and only if their distance is at most 2 in G.
For S ⊆ V (G), the Steiner distance d(S) of S is the minimum size of a connected
subgraph of G whose vertex set contains S. The kth Steiner Wiener index SWk(G)
of G is defined as the sum of Steiner distances of all k-element subsets of V (G). In
this paper, we show that for any tree T of order n,

SW3(S
2
n) ≤ SW3(T

2) ≤ SW3(P
2
n),

where Sn and Pn are the star and path of the order n, respectively. Let G be a
connected graph of order n ≥ 5 with connected complement G. We establish the
Nordahaus-Gaddum type result for a connected graph G with connected comple-
ment G:

4

(
n

3

)
≤ SW3(G

2) + SW3(G
2
) ≤ SW3(P

2
n) + SW3(Pn

2
),

and

4 ≤ sdiam3(G
2) + sdiam3(G

2
) ≤




⌈n
2
⌉+ 2 if n ≥ 9

6 otherwise,

where sdiam3(G) is Steiner 3-diameter of G.

1 Introduction

In this paper, we are concerned with finite undirected connected simple graphs. We

refer to [2] for graph theoretical notation and terminology not specified here. The vertex
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and edge sets of G are denoted by V (G) and E(G), respectively. We say |V (G)| the order
of G. The degree and the neighborhood of a vertex u ∈ V (G) are denoted by dG(u) and

NG(u), respectively. The length of a path between two vertices is the number of edges on

that path. The distance between two vertices u and v, denoted by dG(u, v), as being the

length of the shortest path between them. The square of a graph G, denoted by G2, is a

graph with the same vertex set such that two vertices are adjacent in G2 if and only if

their distance is at most 2 in G.

As usual, we use Pn, Sn, Kn to denote the path, the star, the complete graph of order

n, respectively. A tree is called a double star Sp,q if it is obtained from Sp and Sq by

connecting the center of Sp with that of Sq via an edge. The diameter of a graph G,

denoted by diam(G), is the largest distance between two vertices in G.

The Wiener index is a well-known distance-based topological index introduced as a

structural descriptor for acyclic organic molecules [15]. It is defined as the sum of distance

between all unordered pairs of vertices of a simple graph G, i.e.,

W (G) =
∑

u,v∈V (G)

dG(u, v).

For the related results and further references, we refer to a survey [6].

The Steiner distance of a graph, introduced by Chartarand, Oellermann, Tian and

Zou [4] in 1989, is a natural generalization of the distance of two vertices in a graph. For

a graph G = (V,E) and a set S ⊆ V , an S-Steiner tree or a Steiner tree connecting S (

or simply, an S-tree ) is a connected subgraph H = (V ′, E ′) of G with S ⊆ V ′. Let G

be a connected graph of order at least 2 and let S be a nonempty set of vertices of G.

Then the Steiner distance d(S) among the vertices of S (or simply the distance of S) is

the minimum size of a connected subgraph H of G such that S ⊆ V (H). It is clear that

H must be a tree, and if |S| = k, then d(S) ≥ k − 1. In particular, if S = {u, v}, then
dG(S) = dG(u, v).

Let n and k be integers such that 2 ≤ k ≤ n. The Steiner k-eccentricity εk(v) of a

vertex v of G is defined by εk(v) = max{dG(S)| S ⊆ V (G), |S| = k, and v ∈ S}. The

Steiner k-radius of G is sradk(G) = min{εk(v)| v ∈ V (G)}, while the Steiner k-diameter

of G is sdiamk(G) = max{εk(v)| v ∈ V (G)}. Note that for every connected graph G,

srad2(G) = rad(G) and sdiam2(G) = diam(G). For more results on Steiner distance, one

may see [1, 3, 4, 5, 7, 14].



221

With respect to the concept of Steiner distance, Li, Mao, and Gutman [8] generalized

the concept of Wiener index by Steiner Wiener index. For an integer k with 2 ≤ k ≤ n−1,

the Steiner k-Wiener index SWk(G) of G is the sum of Steiner k-distances of all subsets

S of V (G) with |S| = k, that is,

SWk(G) =
∑

S⊆V (G)
|S|=k

d(S).

Clearly, SW2(G) = W (G), SW1(G) = 0 and SWn(G) = n− 1 for a connected graph G of

order n. For more details on Steiner Wiener index, we recommend [8, 11, 12].

The complement G of a graph G is the graph whose vertex set is V (G) and whose

edges are the pairs of nonadjacent vertices of G. In 1956, Nordhaus and Gaddum [13]

proved that for a graph G of order n, 2
√
n ≤ χ(G) + χ(G) ≤ n+ 1, where χ(G) denotes

the chromatic number of G. Since then many research devoted to the sum on various

parameters of a graph and its complement in graph theory, which are known as Nordhaus-

Gaddum-type results. Mao [9, 10] obtained the Nordhaus-Gaddum-type results for the

parameters sdiamk(G) and the Steiner k-Wiener index of graphs.

Motivated by the above results, in this paper, we obtain similar results for sdiam3(G
2)

and the Steiner Wiener index SW3(G
2) of the square of graphs.

2 The Steiner diameter

Lemma 2.1. If dG2(u, v) = r for any positive integer r, then dG(u, v) = 2r or dG(u, v) =

2r − 1.

Proof. If dG(u, v) ≥ 2r + 1, then dG2(u, v) ≥ r + 1. If dG(u, v) ≤ 2r− 2, then dG2(u, v) ≤
r − 1. So the result follows.

Lemma 2.2. Let G be a connected graph of order n (n ≥ 3) and let S ⊆ V be a set of

vertices of G with |S| = 3. If dG(S) = 2, then dG2(S) = 2; if dG(S) ≥ 3, then

dG2(S) =





⌈
dG(S)

2

⌉
, if dG(S) is odd,

⌈
dG(S)

2

⌉
or

⌈
dG(S)

2

⌉
+ 1, if dG(S) is even.

Proof. Let S = {u, v, w}. If T is a Steiner tree connecting S in G with |E(T )| = dG(S),

then T must be a path or have the form Ta,b,c as illustrated in Figure 1(a), where Ta,b,c is
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a tree with a vertex z of degree 3 such that Ta,b,c − z = Pa ∪ Pb ∪ Pc, where a ≥ 1, b ≥ 1,

c ≥ 1 and a+ b+ c ≤ n− 1.

(a) Ta,b,c (b) Ta′,b′,c′

Figure 1. Graphs for Lemma 2.2.

If dG(S) = 2, clearly dG2(S) = 2. Next we assume that dG(S) ≥ 3. The structure

of Steiner tree connecting S in graph G2 is shown in figure 1(b), denote by Ta′,b′,c′ and

|E(Ta′,b′,c′)| = dG2(S). Then dG2(S) = dG2(u,w′) + dG2(w′, w) + dG2(w′, v). Without loss

of generality, let dG2(u,w′) = t, dG2(w′, w) = k, then dG2(w′, v) = dG2(S) − t − k, where

k ≥ 0. If k = 0, then w = w′. Clearly, dG(S) ≤ dG(u,w
′) + dG(w

′, w) + dG(w
′, v). By

Lemma 2.1, dG(S) ≤ 2t+ 2k + 2(dG2(S)− t− k) = 2dG2(S).

Case 1. All Steiner tree T with |E(T )| = dG(S) connecting S is a path in G.

Suppose that the path T is u · · · w · · · v. We divide three subcases in terms of the

parity of dG(u,w) and dG(w, v).

Case 1.1 Both dG(u,w) and dG(w, v) are even.

Let dG(u,w) = 2r, dG(w, v) = 2p. Thus dG(S) = 2r + 2p. Then dG2(S) ≤ r + p =

⌈dG(S)
2

⌉. In this case, suppose that dG2(S) ≤ r+p−1, then dG(S) ≤ 2dG2(S) ≤ 2r+2p−2 <

2r + 2p = dG(S), a contradiction. Therefore, dG2(S) = r + p = ⌈dG(S)
2

⌉.

Case 1.2 Both dG(u,w) and dG(w, v) are odd.

Let dG(u,w) = 2r + 1, dG(w, v) = 2p + 1. So, dG(S) = 2r + 2p + 2. Then dG2(S) ≤
r + p+ 2 = ⌈dG(S)

2
⌉+ 1. In this case, suppose that dG2(S) ≤ r + p+ 1, then dG2(w′, v) ≤

r+ p+1− t− k. By Lemma 2.1, dG(S) ≤ 2t+2k+2(r+ p+1− t− k) = 2r+2p+2. If

dG(S) = 2r+2p+2, then dG(u,w
′) = 2t, dG(w

′, w) = 2k, dG(w
′, v) = 2(r+ p+1− t− k).

According to Case 1, all Steiner tree T connecting S is a path in G. Therefore, w′ = w,

then dG(u,w) = 2t, contradict the fact that dG(u,w) = 2r+1. Then dG(S) < 2r+2p+2 =

dG(S), a contradiction. Therefore, dG2(S) = r + p+ 2 = ⌈dG(S)
2

⌉+ 1.

Case 1.3 dG(u,w) and dG(w, v) have the distinct parity.
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Without loss of generality, let dG(u,w) = 2r + 1, dG(w, v) = 2p. Thus dG(S) =

2r+2p+1. Then dG2(S) ≤ r+p+1 = ⌈dG(S)
2

⌉. In this case, suppose that dG2(S) ≤ r+p,

then dG(S) ≤ 2dG2(S) ≤ 2r + 2p < 2r + 2p + 1 = dG(S), a contradiction. Therefore,

dG2(S) = r + p+ 1 = ⌈dG(S)
2

⌉.

Case 2. There exists a Steiner tree T with |E(T )| = dG(S) connecting S is not a path

in G.

We distinguish four subcases in terms of the parity of dG(u, z), dG(z, v), dG(z, w).

Case 2.1. All of dG(u, z), dG(z, v), dG(z, w) are even.

Let dG(u, z) = 2r, dG(z, v) = 2q, dG(z, w) = 2p. Thus dG(S) = 2r + 2q + 2p. Then

dG2(S) ≤ r + q + p = ⌈dG(S)
2

⌉. In this case, suppose that dG2(S) ≤ r + q + p − 1, then

dG(S) ≤ 2dG2(S) ≤ 2r+ 2q + 2p− 2 < 2r+ 2q + 2p = dG(S), a contradiction. Therefore,

dG2(S) = r + q + p = ⌈dG(S)
2

⌉.

Case 2.2. One of dG(u, z), dG(z, v), dG(z, w) is odd, others are even.

Without loss of generality, let dG(u, z) = 2r + 1, dG(z, v) = 2q, dG(z, w) = 2p. So,

dG(S) = 2r + 2q + 2p+ 1. Then dG2(S) ≤ r + q + p+ 1 = ⌈dG(S)
2

⌉. In this case, suppose

that dG2(S) ≤ r+ q+p, then dG(S) ≤ 2dG2(S) ≤ 2r+2q+2p < 2r+2q+2p+1 = dG(S),

a contradiction. Therefore, dG2(S) = r + q + p+ 1 = ⌈dG(S)
2

⌉.

Case 2.3. One of dG(u, z), dG(z, v), dG(z, w) is even, others are odd.

Without loss of generality, let dG(u, z) = 2r, dG(z, v) = 2q + 1, dG(z, w) = 2p + 1.

Thus dG(S) = 2r + 2q + 2p+ 2. Then dG2(S) ≤ r + q + p+ 2 = ⌈dG(S)
2

⌉+ 1. In this case,

suppose that dG2(S) ≤ r+q+p+1, then dG2(w′, v) ≤ r+q+p+1− t−k. By Lemma 2.1,

dG(S) ≤ 2t+2k+2(r+q+p+1−t−k) = 2r+2q+2p+2. If dG(S) = 2r+2q+2p+2, then

dG(u,w
′) = 2t, dG(w

′, w) = 2k, dG(w
′, v) = 2(r + q + p+ 1− t− k). In this case, w′ ̸= z.

The Steiner tree T ′ with |E(T ′)| = dG(S) connecting S in G is mentioned in Case 2.1. If

dG(S) < 2r+2q+2p+2, a contradiction. Therefore, dG2(S) = r+ q+p+2 = ⌈dG(S)
2

⌉+1.

Case 2.4. All of dG(u, z), dG(z, v), dG(z, w) are odd.

Let dG(u, z) = 2r+1, dG(z, v) = 2q+1, dG(z, w) = 2p+1. Thus dG(S) = 2r+2q+2p+

3. Then dG2(S) ≤ r+q+p+2 = ⌈dG(S)
2

⌉. In this case, suppose that dG2(S) ≤ r+q+p+1,

then dG(S) ≤ 2dG2(S) ≤ 2r + 2q + 2p + 2 < 2r + 2q + 2p + 3 = dG(S), a contradiction.

Therefore, dG2(S) = r + q + p+ 2 = ⌈dG(S)
2

⌉.
So the result follows.
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By the above lemma, we conclude that dP 2
n
(S) = ⌈dPn (S)

2
⌉ or ⌈dPn (S)

2
⌉ + 1. Since

sdiam3(Pn) = n − 1, we have sdiam3(P
2
n) = ⌈n−1

2
⌉ or ⌈n−1

2
⌉ + 1. By Lemma 2.2, if

n − 1 is odd, then sdiam3(P
2
n) = ⌈n−1

2
⌉. Otherwise, sdiam3(P

2
n) = ⌈n−1

2
⌉ + 1. So

sdiam3(P
2
n) = ⌈n

2
⌉.

Lemma 2.3. For a connected graph G of order n,

2 ≤ sdiam3(G
2) ≤

⌈n
2

⌉
.

Proof. The lower bound is obvious. For the upper bound, let T be a spanning tree of

G, then sdiam3(G) ≤ sdiam3(T ) ≤ n − 1. Clearly, T 2 is the subgraph of G2, thus

sdiam3(G
2) ≤ sdiam3(T

2). There exists S ⊆ V (T 2), such that sdiam3(T
2) = dT 2(S) =

⌈dT (S)
2

⌉ or ⌈dT (S)
2

⌉ + 1. If dT (S) < n− 1, then sdiam3(T
2) ≤ ⌈n

2
⌉. From the definition of

Steiner diameter and Lemma 2.2, if dT (S) = n− 1 and n− 1 is odd, then sdiam3(T
2) =

⌈n−1
2
⌉ = ⌈n

2
⌉. Otherwise, sdiam3(T

2) = ⌈n−1
2
⌉+ 1 = ⌈n

2
⌉.

Lemma 2.4. ([16]) Let G be a connected graph with the connected complement. Then

(1) if diam(G) > 3, then diam(G) = 2,

(2) if diam(G) = 3, then G has a spanning subgraph which is a double star.

Theorem 2.5. Let G be a connected graph of n ≥ 5 with complement G. Then

4 ≤ sdiam3(G
2) + sdiam3(G

2
) ≤





⌈n
2

⌉
+ 2 if n ≥ 9

6 otherwise.

Proof. The lower bound is obvious. Next, we prove that the right half of inequality

holds. By Lemma 2.4, if diam(G) > 3, then diam(G) = 2, therefore G
2 ∼= Kn and

sdiam3(G
2
) = 2. By Lemma 2.3, we have sdiam3(G

2) ≤ ⌈n
2
⌉. Hence,

sdiam3(G
2) + sdiam3(G

2
) ≤

⌈n
2

⌉
+ 2.

If diam(G) = 3, then diam(G) ≤ 3, diam(G2) = 2, diam(G
2
) ≤ 2, we can obtain that

sdiam3(G
2) ≤ 3 and sdiam3(G

2
) ≤ 3, therefore,

sdiam3(G
2) + sdiam3(G

2
) ≤ 6.

If diam(G) = 2, then sdiam3(G
2) = 2, sdiam3(G

2
) ≤ ⌈n

2
⌉.
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Summing up the above, we conclude that

4 ≤ sdiam3(G
2) + sdiam3(G

2
) ≤





⌈n
2

⌉
+ 2, if n ≥ 9,

6, otherwise.

3 Steiner Wiener index

It is natural to ask, for two graph G and G1, whether it is true if SW3(G) ≤ SW3(G1),

SW3(G
2) ≤ SW3(G

2
1) in general. The answer is negative. For example, Let G and G1 be

two graphs of order 7 in Fig.2. Note that SW3(G) = 89 < SW3(G1) = 91 in Fig.2, but

SW3(G
2) = 71 > SW3(G

2
1) = 70. For the examples of orders greater than 7. Let G′ be a

graph obtained from G by addingm new vertices such that every vertex is only adjacent to

1, 2, and 3. Let G′
1 be a graph obtained from G1 by adding m new vertices such that every

vertex is only adjacent to 1 and 2. By some calculation, we have SW3(G
′) < SW3(G

′
1),

but SW3(G
′2) = 2

(
m+7
3

)
+ 1 > SW3(G

′2
1 ) = 2

(
m+7
3

)
.

(a) G (b) G1

Figure 2. Graphs G and G1 with SW3(G) < SW3(G1) and SW3(G
2) > SW3(G

2
1).

Theorem 3.1. For any tree T of order n, SW3(S
2
n) ≤ SW3(T

2) ≤ SW3(P
2
n).

Proof. Since diam(Sn) = 2, S2
n

∼= Kn. Thus SW3(S
2
n) = 2

(
n
3

)
, and the left half of

inequality holds and is best possible.

Let T be a tree of order n. We prove that SW3(T
2) ≤ SW3(P

2
n) by induction on

the order n. It is obvious that the theorem holds when n ≤ 4. Now let n ≥ 5. Clearly,

dT (u) = 1 and T − u is a tree of order n− 1.
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By the induction hypothesis,

SW3((T − u)2) ≤ SW3((P
2
n−1). (1)

Let A = {S : S ⊆ V (T 2), u ∈ S, |S| = 3} and A′ = {S ′ : S ′ ⊆ V (P 2
n), v ∈ S ′, |S ′| = 3}.

We have

SW3(P
2
n) =

∑

S′∈A′

dP 2
n
(S ′) + SW3(P

2
n−1), (2)

SW3(T
2) =

∑

S∈A
dT 2(S) + SW3((T − u)2) ≤

∑

S∈A
dT 2(S) + SW3(P

2
n−1). (3)

So, by the above inequalities (1-3), to complete the proof of SW3(T
2) ≤ SW3(P

2
n), it

remains to show that
∑

S∈A
dT 2(S) ≤

∑

S′∈A′

dP 2
n
(S ′). (4)

This leads us to compare the value of dT 2(S) and dP 2
n
(S ′) in term by term. We label

the vertices of Pn as v, v1, v2, . . . , vn−1, where vv1 ∈ E(Pn) and vivi+1 ∈ E(Pn) for each

i ∈ {1, . . . , n−2}. Take a longest path of P = uu1u2 · · ·ud of T . Let Ti be the component

of T − ui−1ui − uiui+1 containing ui for each i ∈ {1, . . . , d − 1}, where u0 = u. We label

the vertices of V (T ) \ V (P ) as ud+1, ud+2, . . . , un−1 in terms of the following rule:

(1) subscripts of labels of vertices in V (Ti) \ {ui} is less than subscripts of labels of

vertices in V (Tj) \ {uj} if i < j;

(2) subscripts of labels of a vertex at distance smaller from ui is less than subscripts

of labels of the other one for any two vertices in V (Ti) for each i ∈ {1, . . . , d− 1}.

We remark that if uk ∈ V (T )\V (P ), then uk ∈ V (Tl) for an integer l ∈ {1, . . . , d−1}.
It is easy to see that dT (ul, uk) ≤ dPn(vd, vk). For 1 ≤ i < j ≤ n− 1, let Si,j = {u, ui, uj}
and S ′

i,j = {v, vi, vj}.

Claim 1. dT (Si,j) ≤ dPn(S
′
i,j), with equality if and only if either 1 ≤ i < j ≤ d, or

i = d < j ≤ n− 1 and dT (ul, uj) = j − d = dpn(vd, vj), where uj ∈ Tl.

Proof of Claim 1: We consider the following three cases.

Case 1. 1 ≤ i < j ≤ d

It is trivial to see that dT (Si,j) = dPn(S
′
i,j).

Case 2. 1 ≤ i ≤ d < j ≤ n− 1

Let uj ∈ Tl. If 1 ≤ l < i ≤ d, then dT (Si,j) = dT (u, ui) + dT (ul, uj). Clearly,

dPn(S
′
i,j) = j = d + dpn(vd, vj), dpn(vd, vj) ≥ dT (ul, uj). Then dT (Si,j) ≤ dPn(S

′
i,j). If
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dT (Si,j) = dPn(S
′
i,j), then dT (u, ui) = d, dT (ul, uj) = dpn(vd, vj) = j − d. Otherwise,

dT (Si,j) < dPn(S
′
i,j).

If 1 ≤ i ≤ l < d, then dT (Si,j) = dT (u, ul) + dT (ul, uj) < d+ dpn(vd, vj) = dPn(S
′
i,j).

Case 3. d < i < j ≤ n− 1

Subcase 3.1 1 ≤ m < l ≤ d− 1.

Let ui ∈ Tm, uj ∈ Tl. Then dT (Si,j) = dT (u, ul) + dT (um, ui) + dT (ul, uj). Obviously,

dPn(S
′
i,j) = j = d + dpn(vd, vj), dpn(vd, vj) ≥ dT (um, ui) + dT (ul, uj). Thus dT (Si,j) <

dPn(S
′
i,j).

Subcase 3.2 1 ≤ m = l ≤ d− 1

Set ui ∈ Tl, uj ∈ Tl, let P1 be a shortest path of between ul and uj. If ui ∈ V (P1),

then dT (Si,j) = d(u, ul) + d(ul, uj) < d+ dPn(vd, vj) = dPn(S
′
i,j).

If ui ∈ V (Tl)\V (P1), let the closest vertex from ui to P1 be uq, then dT (Si,j) =

dT (u, ul) + dT (ul, uj) + dT (uq, ui). Obviously, dPn(vd, vj) ≥ dT (ul, uj) + dT (uq, ui). Hence,

dT (Si,j) < dPn(S
′
i,j).

Summing up the above, we get the conclusion, as we desired.

Claim 2. If dT (Si,j) < dPn(S
′
i,j), then dT 2(Si,j) ≤ dP 2

n
(S ′

i,j).

Proof: If dT (Si,j) is odd, then dT 2(Si,j) = ⌈dT (Si,j)

2
⌉ ≤ ⌈dPn (S

′
i,j)

2
⌉ ≤ dP 2

n
(S ′

i,j).

If dT (Si,j) is even, then dT 2(Si,j) ≤ ⌈dT (Si,j)

2
⌉+ 1 ≤ ⌈dPn (S

′
i,j)

2
⌉ ≤ dP 2

n
(S ′

i,j).

Claim 3. If dT (Si,j) = dPn(S
′
i,j), then dT 2(Si,j) ≤ dP 2

n
(S ′

i,j) + 1, with equality, if and only

if i = d and dT (ul, uj) = j − d = dpn(vd, vj), l is odd, j is even, d is even, where uj ∈ Tl.

Proof of Claim 3: By Claim 1, we consider the following two cases.

Case 1. 1 ≤ i < j ≤ d

It is trivial to see that dT 2(Si,j) = dP 2
n
(S ′

i,j).

Case 2. i = d < j ≤ n− 1 and dT (ul, uj) = j − d = dpn(vd, vj), where uj ∈ Tl.

If dT 2(Sd,j) = ⌈dT (Sd,j)

2
⌉, then dT 2(Sd,j) ≤ dP 2

n
(S ′

d,j). Since dT (Sd,j) = dPn(S
′
d,j),

dP 2
n
(S ′

d,j) = ⌈dPn (S
′
d,j)

2
⌉ or ⌈dPn (S

′
d,j)

2
⌉+ 1.

If dT 2(Sd,j) = ⌈dT (Sd,j)

2
⌉ + 1, we divide the following three subcases by Case 2.3 in

Lemma 2.2, i.e., one of dT (u, ul), dT (ul, ud), dT (ul, uj) is even, others are odd.

Subcase 2.1 dT (u, ul) is even

Then dT (ul, ud) is odd, dT (ul, uj) = j − d = dpn(vd, vj) is odd. Moreover, dPn(S
′
d,j) =
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dPn(v, vd)+dPn(vd, vj) = dT (u, ud)+dT (ul, uj), thus dPn(v, vd) is odd and dPn(vd, vj) is odd.

By Case 1.2 in Lemma 2.2, dP 2
n
(S ′

d,j) = ⌈dPn (S
′
d,j)

2
⌉+ 1. In this case, dT 2(Sd,j) = dP 2

n
(S ′

d,j).

Subcase 2.2 dT (ul, ud) is even

It is similar to Subcase 2.1, we can obtain dT 2(Sd,j) = dP 2
n
(S ′

d,j).

Subcase 2.3 dT (ul, uj) is even

Then dpn(vd, vj) = j − d = dT (ul, uj) is even, d = dT (u, ul) + dT (ul, ud) is even,

dT (Sd,j) = d+j−d is even. Thus j is even. Moreover, dPn(S
′
d,j) = dPn(v, vd)+dPn(vd, vj) =

d+ dT (ul, uj), thus dPn(v, vd) is even and dPn(vd, vj) is even. By Case 1.1 in Lemma 2.2,

dP 2
n
(S ′

d,j) = ⌈dPn (S
′
d,j)

2
⌉. In this case, dT 2(Sd,j) = dP 2

n
(S ′

d,j) + 1.

Summing up the above, we get the conclusion, as we desired.

In view of Claim 3, let A1 = {(d, j) : dT 2(Sd,j) = dP 2
n
(S ′

d,j) + 1, Sd,j ∈ A}, and

B1 = {(d − 1, j) : (d, j) ∈ A1}. Since dT (ul, uj) is even, we can obtain l ̸= d − 1.

Clearly, dT (Sd−1,j) = dT (u, ul) + dT (ul, ud−1) + dT (ul, uj) = d − 1 + j − d = j − 1 and

dPn(S
′
d−1,j) = dPn(v, vd−1) + dPn(vd−1, vj) = j. By Case 2.2 and Case 1.2 in Lemma 2.2,

dT 2(Sd−1,j) = ⌈dT (Sd−1,j)

2
⌉ = ⌈ j−1

2
⌉, dP 2

n
(S ′

d−1,j) = ⌈dPn (S
′
d−1,j)

2
⌉ + 1 = ⌈ j

2
⌉ + 1. Since j is

even, we have dT 2(Sd−1,j) + 1 = dP 2
n
(S ′

d−1,j). Therefore, we have

SW3(T
2) =

∑

S∈A
dT 2(S) + SW3((T − u)2) ≤

∑

S∈A
dT 2(S) + SW3(P

2
n−1)

=
∑

(i,j)∈A1∪B1

dT 2(Si,j) +


∑

S∈A
dT 2(S)−

∑

(i,j)∈A1∪B1

dT 2(Si,j)


+ SW3(P

2
n−1)

≤
∑

(i,j)∈A1∪B1

dP 2
n
(S ′

i,j) +


∑

S′∈A′

dP 2
n
(S ′)−

∑

(i,j)∈A1∪B1

dP 2
n
(S ′

i,j)


+ SW3(P

2
n−1)

= SW3(P
2
n) .

Corollary 3.2. For a connected graph G of order n, SW3(G
2) ≤ SW3(P

2
n).

Proof. Let T be a spanning tree of G, then T 2 is the subgraph of G2 with vertex set

V (T 2) = V (G2). For any S, dG2(S) ≤ dT 2(S). Thus SW3(G
2) ≤ SW3(T

2). Moreover, by

Theorem 3.1, SW3(T
2) ≤ SW3(P

2
n), the result follows.

Note that P4 is the unique graph of order 4 whose complement is connected. Since

P4
∼= P4, we have SW3(P

2
4 ) + SW3(P4

2
) = 2SW3(P

2
4 ) = 16. Next, we calculate the value
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of SW3(P
2
n) + SW3(Pn

2
) for n ≥ 5. Let Pn = v1v2 · · · vn, sdiam3(P

2
n) = ⌈n

2
⌉. For any

S ⊆ V (Pn) with |S| = 3, dp2n(S) = m, then 2 ≤ m ≤ ⌈n
2
⌉. Hence, if n is even,

SW3(P
2
n) =

n
2
−1∑

m=2

m[(m− 1)(n− 2(m− 1)) + 2(m− 1)(n− (2m− 1))

+ (m− 1)(n− 2m)] +
n

2
(n− 2 + n− 2)

=

n
2
−1∑

m=2

m(m− 1)(4n− 8m+ 4) +
n

2
(2n− 4)

=
2(n

2
− 1)[2n− 3(n

2
− 1)]n

2
(n
2
− 2)

3
+

n

2
(2n− 4)

=
n2

6

(
n2

4
− 1

)

if n is odd,

SW3(P
2
n) =

n+1
2

−1∑

m=2

m[(m− 1)(n− 2(m− 1)) + 2(m− 1)(n− (2m− 1))

+ (m− 1)(n− 2m)] +
n+ 1

2

n− 1

2

=

n+1
2

−1∑

m=2

m(m− 1)(4n− 8m+ 4) +
n+ 1

2

n− 1

2

=
2(n+1

2
− 1)[2n− 3(n+1

2
− 1)]n+1

2
(n+1

2
− 2)

3
+

n+ 1

2

n− 1

2

=
n4 − 4n2 + 3

24

On the other hand, for n ≥ 5, diam(Pn) = 2 by Lemma 2.4, Pn
2 ∼= Kn and we have

SW3(Pn
2
) = 2

(
n
3

)
. Then

SW3(Pn
2) + SW3(Pn

2
) =





n2

6

(
n2

4
− 1

)
+ 2

(
n

3

)
, if n is even,

n4 − 4n2 + 3

24
+ 2

(
n

3

)
, if n is odd.

Corollary 3.3. Let G be a graph of n ≥ 5. If diam(G) = 2 or diam(G) = 2, then

SW3(G
2) + SW3(G

2
) ≤ SW3(P

2
n) + SW3(Pn

2
).
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Lemma 3.4. Let G be a connected graph of order n ≥ 5 with connected complement G.

For any S ⊆ V (G) with |S| = 3, dG(S) = 2 if and only if dG(S) > 2.

Proof. For any S = {u, v, w} ⊆ V (G). If dG(S) = 2, then at least two elements in

{uv, vw, uw} belong to E(G), at most one element in {uv, vw, uw} belong to E(G). Thus

dG(S) > 2.

Conversely, if dG(S) > 2 and uv, uw, vw /∈ E(G), then the tree T induced by the

edges in {uv, uw} is an S-Steiner tree in G, hence dG(S) = 2. If dG(S) > 2 and there

is an element in {uv, vw, uw} belong to E(G), without loss of generality, let uv ∈ E(G),

uw, vw /∈ E(G), then uw, vw ∈ E(G), the tree T induced by the edges in {uw, vw} is an

S-Steiner tree in G, namely, dG(S) = 2, as we want.

Theorem 3.5. Let G be a connected graph of order n ≥ 5 with connected complement G.

Then 4
(
n
3

)
≤ SW3(G

2) + SW3(G
2
) ≤ SW3(P

2
n) + SW3(Pn

2
).

Proof. The lower bound is obvious. For the upper bound, from Lemma 2.4(1) and Corol-

lary 3.3, it remains to consider the case when diam(G) = diam(G) = 3. Note that

diam(G2) = diam(G
2
) = 2. By Lemma 2.4(2), G has a spanning subgraph which is a

double star. Then 2 ≤ dG(S) ≤ 4 for any S ⊆ V (G) with |S| = 3. For i = 2, 3 and 4, let

si be the number of all 3-element subsets of V (G) with Steiner distance i in G and si be

that for G. By Lemma 3.4, s2 + s2 =
(
n
3

)
, s2 = s3 + s4 and s2 = s3 + s4. By Lemma 2.2,

if dG(S) = 4, then dG2(S) ≤ 3. If dG(S) ≤ 3, then dG2(S) = 2. Thus

SW3(G
2) + SW3(G

2
) ≤ 2s2 + 2s3 + 3s4 + 2s2 + 2s3 + 3s4 = 4

(
n

3

)
+ s4 + s4.

By Lemma 2.4(2), let Sp1,q1 be a spanning subgraph of G and Sp2,q2 be that of G, where

pj + qj = n for j = 1, 2. Hence s4 ≤ (p1 − 1)
(
q1−1
2

)
+

(
p1−1
2

)
(q1 − 1) and s4 ≤ (p2 −

1)
(
q2−1
2

)
+

(
p2−1
2

)
(q2 − 1). Since pi · qi ≤ ⌊n2

4
⌋ for i = 1 and 2, s4 ≤ ⌊n2

4
⌋−n+1

2
(n − 4) and

s4 ≤ ⌊n2

4
⌋−n+1

2
(n− 4). So

SW3(G
2) + SW3(G

2
) ≤ 4

(
n

3

)
+

(⌊
n2

4

⌋
− n+ 1

)
(n− 4).

One can easily check that

4

(
n

3

)
+

(⌊
n2

4

⌋
− n+ 1

)
(n− 4) ≤





n2

6

(
n2

4
− 1

)
+ 2

(
n

3

)
, if n is even,

n4 − 4n2 + 3

24
+ 2

(
n

3

)
, if n is odd.
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This completes the proof.

Note that the bounds are sharp in Theorem 2.5 and Theorem 3.5. Obviously, the

upper bound can be obtained on the graph Pn. To see that the lower bound is best

possible, we construct a sequence of graphs. Let Gn be a graph of order n, which is

obtained from C5 by replacing a vertex of C5 by a complete graph of order n − 4. It is

easy to see that diam(Gn) = diam(Gn) = 2, so diam(G2
n) = diam(G

2

n) = 1, sdiam3(G
2
n)+

sdiam3(G
2

n) = 4 and SW3(G
2
n) + SW3(G

2

n) = 4
(
n
3

)
.
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