Steiner Wiener Index of the Square of Graphs^{*}

Daqian Chai, Xinhui An[†], Baoyindureng Wu

College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, China

(Received May 14, 2021)

Abstract

The square of a graph G, denoted by G^2 , is a graph with the same vertex set as G, in which two vertices are adjacent if and only if their distance is at most 2 in G. For $S \subseteq V(G)$, the Steiner distance d(S) of S is the minimum size of a connected subgraph of G whose vertex set contains S. The kth Steiner Wiener index $SW_k(G)$ of G is defined as the sum of Steiner distances of all k-element subsets of V(G). In this paper, we show that for any tree T of order n,

 $SW_3(S_n^2) \le SW_3(T^2) \le SW_3(P_n^2),$

where S_n and P_n are the star and path of the order n, respectively. Let G be a connected graph of order $n \ge 5$ with connected complement \overline{G} . We establish the Nordahaus-Gaddum type result for a connected graph G with connected complement \overline{G} :

$$4\binom{n}{3} \le SW_3(G^2) + SW_3(\overline{G}^2) \le SW_3(P_n^2) + SW_3(\overline{P_n^2}),$$

and

$$4 \le sdiam_3(G^2) + sdiam_3(\overline{G}^2) \le \begin{cases} \lceil \frac{n}{2} \rceil + 2 & \text{if } n \ge 9\\ 6 & \text{otherwise,} \end{cases}$$

where $sdiam_3(G)$ is Steiner 3-diameter of G.

1 Introduction

In this paper, we are concerned with finite undirected connected simple graphs. We refer to [2] for graph theoretical notation and terminology not specified here. The vertex

^{*}The research is supported by NSFC (No. 11801487, 12061073)

[†]Corresponding author. E-mail: xjaxh@163.com

and edge sets of G are denoted by V(G) and E(G), respectively. We say |V(G)| the order of G. The degree and the neighborhood of a vertex $u \in V(G)$ are denoted by $d_G(u)$ and $N_G(u)$, respectively. The length of a path between two vertices is the number of edges on that path. The distance between two vertices u and v, denoted by $d_G(u, v)$, as being the length of the shortest path between them. The square of a graph G, denoted by G^2 , is a graph with the same vertex set such that two vertices are adjacent in G^2 if and only if their distance is at most 2 in G.

As usual, we use P_n, S_n, K_n to denote the path, the star, the complete graph of order n, respectively. A tree is called a double star $S_{p,q}$ if it is obtained from S_p and S_q by connecting the center of S_p with that of S_q via an edge. The *diameter* of a graph G, denoted by diam(G), is the largest distance between two vertices in G.

The Wiener index is a well-known distance-based topological index introduced as a structural descriptor for acyclic organic molecules [15]. It is defined as the sum of distance between all unordered pairs of vertices of a simple graph G, i.e.,

$$W(G) = \sum_{u,v \in V(G)} d_G(u,v).$$

For the related results and further references, we refer to a survey [6].

The Steiner distance of a graph, introduced by Chartarand, Oellermann, Tian and Zou [4] in 1989, is a natural generalization of the distance of two vertices in a graph. For a graph G = (V, E) and a set $S \subseteq V$, an S-Steiner tree or a Steiner tree connecting S (or simply, an S-tree) is a connected subgraph H = (V', E') of G with $S \subseteq V'$. Let G be a connected graph of order at least 2 and let S be a nonempty set of vertices of G. Then the Steiner distance d(S) among the vertices of S (or simply the distance of S) is the minimum size of a connected subgraph H of G such that $S \subseteq V(H)$. It is clear that H must be a tree, and if |S| = k, then $d(S) \ge k - 1$. In particular, if $S = \{u, v\}$, then $d_G(S) = d_G(u, v)$.

Let n and k be integers such that $2 \le k \le n$. The Steiner k-eccentricity $\varepsilon_k(v)$ of a vertex v of G is defined by $\varepsilon_k(v) = \max\{d_G(S)| S \subseteq V(G), |S| = k, and v \in S\}$. The Steiner k-radius of G is $srad_k(G) = \min\{\varepsilon_k(v)| v \in V(G)\}$, while the Steiner k-diameter of G is $sdiam_k(G) = \max\{\varepsilon_k(v)| v \in V(G)\}$. Note that for every connected graph G, $srad_2(G) = rad(G)$ and $sdiam_2(G) = diam(G)$. For more results on Steiner distance, one may see [1, 3, 4, 5, 7, 14].

With respect to the concept of Steiner distance, Li, Mao, and Gutman [8] generalized the concept of Wiener index by Steiner Wiener index. For an integer k with $2 \le k \le n-1$, the *Steiner k-Wiener index* $SW_k(G)$ of G is the sum of Steiner k-distances of all subsets S of V(G) with |S| = k, that is,

$$SW_k(G) = \sum_{\substack{S \subseteq V(G) \\ |S|=k}} d(S).$$

Clearly, $SW_2(G) = W(G)$, $SW_1(G) = 0$ and $SW_n(G) = n - 1$ for a connected graph G of order n. For more details on Steiner Wiener index, we recommend [8, 11, 12].

The complement \overline{G} of a graph G is the graph whose vertex set is V(G) and whose edges are the pairs of nonadjacent vertices of G. In 1956, Nordhaus and Gaddum [13] proved that for a graph G of order n, $2\sqrt{n} \leq \chi(G) + \chi(\overline{G}) \leq n + 1$, where $\chi(G)$ denotes the chromatic number of G. Since then many research devoted to the sum on various parameters of a graph and its complement in graph theory, which are known as Nordhaus-Gaddum-type results. Mao [9, 10] obtained the Nordhaus-Gaddum-type results for the parameters $sdiam_k(G)$ and the Steiner k-Wiener index of graphs.

Motivated by the above results, in this paper, we obtain similar results for $sdiam_3(G^2)$ and the Steiner Wiener index $SW_3(G^2)$ of the square of graphs.

2 The Steiner diameter

Lemma 2.1. If $d_{G^2}(u, v) = r$ for any positive integer r, then $d_G(u, v) = 2r$ or $d_G(u, v) = 2r - 1$.

Proof. If $d_G(u, v) \ge 2r + 1$, then $d_{G^2}(u, v) \ge r + 1$. If $d_G(u, v) \le 2r - 2$, then $d_{G^2}(u, v) \le r - 1$. So the result follows.

Lemma 2.2. Let G be a connected graph of order $n \ (n \ge 3)$ and let $S \subseteq V$ be a set of vertices of G with |S| = 3. If $d_G(S) = 2$, then $d_{G^2}(S) = 2$; if $d_G(S) \ge 3$, then

$$d_{G^2}(S) = \begin{cases} \left\lceil \frac{d_G(S)}{2} \right\rceil, & \text{if } d_G(S) \text{ is odd}, \\ \\ \left\lceil \frac{d_G(S)}{2} \right\rceil \text{ or } \left\lceil \frac{d_G(S)}{2} \right\rceil + 1, & \text{if } d_G(S) \text{ is even}. \end{cases}$$

Proof. Let $S = \{u, v, w\}$. If T is a Steiner tree connecting S in G with $|E(T)| = d_G(S)$, then T must be a path or have the form $T_{a,b,c}$ as illustrated in Figure 1(a), where $T_{a,b,c}$ is a tree with a vertex z of degree 3 such that $T_{a,b,c} - z = P_a \cup P_b \cup P_c$, where $a \ge 1$, $b \ge 1$, $c \ge 1$ and $a + b + c \le n - 1$.

Figure 1. Graphs for Lemma 2.2.

If $d_G(S) = 2$, clearly $d_{G^2}(S) = 2$. Next we assume that $d_G(S) \ge 3$. The structure of Steiner tree connecting S in graph G^2 is shown in figure 1(b), denote by $T_{a',b',c'}$ and $|E(T_{a',b',c'})| = d_{G^2}(S)$. Then $d_{G^2}(S) = d_{G^2}(u,w') + d_{G^2}(w',w) + d_{G^2}(w',v)$. Without loss of generality, let $d_{G^2}(u,w') = t$, $d_{G^2}(w',w) = k$, then $d_{G^2}(w',v) = d_{G^2}(S) - t - k$, where $k \ge 0$. If k = 0, then w = w'. Clearly, $d_G(S) \le d_G(u,w') + d_G(w',w) + d_G(w',v)$. By Lemma 2.1, $d_G(S) \le 2t + 2k + 2(d_{G^2}(S) - t - k) = 2d_{G^2}(S)$.

Case 1. All Steiner tree T with $|E(T)| = d_G(S)$ connecting S is a path in G.

Suppose that the path T is $u \cdots w \cdots v$. We divide three subcases in terms of the parity of $d_G(u, w)$ and $d_G(w, v)$.

Case 1.1 Both $d_G(u, w)$ and $d_G(w, v)$ are even.

Let $d_G(u, w) = 2r$, $d_G(w, v) = 2p$. Thus $d_G(S) = 2r + 2p$. Then $d_{G^2}(S) \le r + p = \lceil \frac{d_G(S)}{2} \rceil$. In this case, suppose that $d_{G^2}(S) \le r + p - 1$, then $d_G(S) \le 2d_{G^2}(S) \le 2r + 2p - 2 < 2r + 2p = d_G(S)$, a contradiction. Therefore, $d_{G^2}(S) = r + p = \lceil \frac{d_G(S)}{2} \rceil$.

Case 1.2 Both $d_G(u, w)$ and $d_G(w, v)$ are odd.

Let $d_G(u, w) = 2r + 1$, $d_G(w, v) = 2p + 1$. So, $d_G(S) = 2r + 2p + 2$. Then $d_{G^2}(S) \le r + p + 2 = \lceil \frac{d_G(S)}{2} \rceil + 1$. In this case, suppose that $d_{G^2}(S) \le r + p + 1$, then $d_{G^2}(w', v) \le r + p + 1 - t - k$. By Lemma 2.1, $d_G(S) \le 2t + 2k + 2(r + p + 1 - t - k) = 2r + 2p + 2$. If $d_G(S) = 2r + 2p + 2$, then $d_G(u, w') = 2t$, $d_G(w', w) = 2k$, $d_G(w', v) = 2(r + p + 1 - t - k)$. According to Case 1, all Steiner tree *T* connecting *S* is a path in *G*. Therefore, w' = w, then $d_G(u, w) = 2t$, contradict the fact that $d_G(u, w) = 2r + 1$. Then $d_G(S) < 2r + 2p + 2 = d_G(S)$, a contradiction. Therefore, $d_{G^2}(S) = r + p + 2 = \lceil \frac{d_G(S)}{2} \rceil + 1$.

Case 1.3 $d_G(u, w)$ and $d_G(w, v)$ have the distinct parity.

Without loss of generality, let $d_G(u, w) = 2r + 1$, $d_G(w, v) = 2p$. Thus $d_G(S) = 2r + 2p + 1$. Then $d_{G^2}(S) \le r + p + 1 = \lceil \frac{d_G(S)}{2} \rceil$. In this case, suppose that $d_{G^2}(S) \le r + p$, then $d_G(S) \le 2d_{G^2}(S) \le 2r + 2p < 2r + 2p + 1 = d_G(S)$, a contradiction. Therefore, $d_{G^2}(S) = r + p + 1 = \lceil \frac{d_G(S)}{2} \rceil$.

Case 2. There exists a Steiner tree T with $|E(T)| = d_G(S)$ connecting S is not a path in G.

We distinguish four subcases in terms of the parity of $d_G(u, z)$, $d_G(z, v)$, $d_G(z, w)$.

Case 2.1. All of $d_G(u, z)$, $d_G(z, v)$, $d_G(z, w)$ are even.

Let $d_G(u, z) = 2r$, $d_G(z, v) = 2q$, $d_G(z, w) = 2p$. Thus $d_G(S) = 2r + 2q + 2p$. Then $d_{G^2}(S) \le r + q + p = \lceil \frac{d_G(S)}{2} \rceil$. In this case, suppose that $d_{G^2}(S) \le r + q + p - 1$, then $d_G(S) \le 2d_{G^2}(S) \le 2r + 2q + 2p - 2 < 2r + 2q + 2p = d_G(S)$, a contradiction. Therefore, $d_{G^2}(S) = r + q + p = \lceil \frac{d_G(S)}{2} \rceil$.

Case 2.2. One of $d_G(u, z)$, $d_G(z, v)$, $d_G(z, w)$ is odd, others are even.

Without loss of generality, let $d_G(u, z) = 2r + 1$, $d_G(z, v) = 2q$, $d_G(z, w) = 2p$. So, $d_G(S) = 2r + 2q + 2p + 1$. Then $d_{G^2}(S) \le r + q + p + 1 = \lceil \frac{d_G(S)}{2} \rceil$. In this case, suppose that $d_{G^2}(S) \le r + q + p$, then $d_G(S) \le 2d_{G^2}(S) \le 2r + 2q + 2p < 2r + 2q + 2p + 1 = d_G(S)$, a contradiction. Therefore, $d_{G^2}(S) = r + q + p + 1 = \lceil \frac{d_G(S)}{2} \rceil$.

Case 2.3. One of $d_G(u, z)$, $d_G(z, v)$, $d_G(z, w)$ is even, others are odd.

Without loss of generality, let $d_G(u, z) = 2r$, $d_G(z, v) = 2q + 1$, $d_G(z, w) = 2p + 1$. Thus $d_G(S) = 2r + 2q + 2p + 2$. Then $d_{G^2}(S) \le r + q + p + 2 = \lceil \frac{d_G(S)}{2} \rceil + 1$. In this case, suppose that $d_{G^2}(S) \le r + q + p + 1$, then $d_{G^2}(w', v) \le r + q + p + 1 - t - k$. By Lemma 2.1, $d_G(S) \le 2t + 2k + 2(r + q + p + 1 - t - k) = 2r + 2q + 2p + 2$. If $d_G(S) = 2r + 2q + 2p + 2$, then $d_G(u, w') = 2t$, $d_G(w', w) = 2k$, $d_G(w', v) = 2(r + q + p + 1 - t - k)$. In this case, $w' \ne z$. The Steiner tree T' with $|E(T')| = d_G(S)$ connecting S in G is mentioned in Case 2.1. If $d_G(S) < 2r + 2q + 2p + 2$, a contradiction. Therefore, $d_{G^2}(S) = r + q + p + 2 = \lceil \frac{d_G(S)}{2} \rceil + 1$.

Case 2.4. All of $d_G(u, z)$, $d_G(z, v)$, $d_G(z, w)$ are odd.

Let $d_G(u, z) = 2r+1$, $d_G(z, v) = 2q+1$, $d_G(z, w) = 2p+1$. Thus $d_G(S) = 2r+2q+2p+3$. 3. Then $d_{G^2}(S) \le r+q+p+2 = \lceil \frac{d_G(S)}{2} \rceil$. In this case, suppose that $d_{G^2}(S) \le r+q+p+1$, then $d_G(S) \le 2d_{G^2}(S) \le 2r+2q+2p+2 < 2r+2q+2p+3 = d_G(S)$, a contradiction. Therefore, $d_{G^2}(S) = r+q+p+2 = \lceil \frac{d_G(S)}{2} \rceil$.

So the result follows.

By the above lemma, we conclude that $d_{P_n^2}(S) = \lceil \frac{d_{P_n}(S)}{2} \rceil$ or $\lceil \frac{d_{P_n}(S)}{2} \rceil + 1$. Since $sdiam_3(P_n) = n - 1$, we have $sdiam_3(P_n^2) = \lceil \frac{n-1}{2} \rceil$ or $\lceil \frac{n-1}{2} \rceil + 1$. By Lemma 2.2, if n - 1 is odd, then $sdiam_3(P_n^2) = \lceil \frac{n-1}{2} \rceil$. Otherwise, $sdiam_3(P_n^2) = \lceil \frac{n-1}{2} \rceil + 1$. So $sdiam_3(P_n^2) = \lceil \frac{n}{2} \rceil$.

Lemma 2.3. For a connected graph G of order n,

$$2 \le sdiam_3(G^2) \le \left\lceil \frac{n}{2} \right\rceil.$$

Proof. The lower bound is obvious. For the upper bound, let T be a spanning tree of G, then $sdiam_3(G) \leq sdiam_3(T) \leq n-1$. Clearly, T^2 is the subgraph of G^2 , thus $sdiam_3(G^2) \leq sdiam_3(T^2)$. There exists $S \subseteq V(T^2)$, such that $sdiam_3(T^2) = d_{T^2}(S) = \lfloor \frac{d_T(S)}{2} \rfloor$ or $\lfloor \frac{d_T(S)}{2} \rfloor + 1$. If $d_T(S) < n-1$, then $sdiam_3(T^2) \leq \lfloor \frac{n}{2} \rfloor$. From the definition of Steiner diameter and Lemma 2.2, if $d_T(S) = n-1$ and n-1 is odd, then $sdiam_3(T^2) = \lfloor \frac{n-1}{2} \rfloor = \lfloor \frac{n}{2} \rfloor$. Otherwise, $sdiam_3(T^2) = \lfloor \frac{n-1}{2} \rfloor + 1 = \lfloor \frac{n}{2} \rfloor$.

- **Lemma 2.4.** ([16]) Let G be a connected graph with the connected complement. Then (1) if diam(G) > 3, then diam(\overline{G}) = 2,
 - (2) if diam(G) = 3, then \overline{G} has a spanning subgraph which is a double star.

Theorem 2.5. Let G be a connected graph of $n \ge 5$ with complement \overline{G} . Then

$$4 \leq sdiam_3(G^2) + sdiam_3(\overline{G}^2) \leq \begin{cases} \left\lceil \frac{n}{2} \right\rceil + 2 & \text{if } n \geq 9\\ 6 & \text{otherwise.} \end{cases}$$

Proof. The lower bound is obvious. Next, we prove that the right half of inequality holds. By Lemma 2.4, if diam(G) > 3, then $diam(\overline{G}) = 2$, therefore $\overline{G}^2 \cong K_n$ and $sdiam_3(\overline{G}^2) = 2$. By Lemma 2.3, we have $sdiam_3(G^2) \leq \lceil \frac{n}{2} \rceil$. Hence,

$$sdiam_3(G^2) + sdiam_3(\overline{G}^2) \le \left\lceil \frac{n}{2} \right\rceil + 2.$$

If diam(G) = 3, then $diam(\overline{G}) \leq 3$, $diam(G^2) = 2$, $diam(\overline{G}^2) \leq 2$, we can obtain that $sdiam_3(G^2) \leq 3$ and $sdiam_3(\overline{G}^2) \leq 3$, therefore,

$$sdiam_3(G^2) + sdiam_3(\overline{G}^2) \le 6.$$

If diam(G) = 2, then $sdiam_3(G^2) = 2$, $sdiam_3(\overline{G}^2) \le \lceil \frac{n}{2} \rceil$.

Summing up the above, we conclude that

$$4 \le sdiam_3(G^2) + sdiam_3(\overline{G}^2) \le \begin{cases} \left\lceil \frac{n}{2} \right\rceil + 2, & \text{if } n \ge 9, \\ 6, & \text{otherwise.} \end{cases}$$

3 Steiner Wiener index

It is natural to ask, for two graph G and G_1 , whether it is true if $SW_3(G) \leq SW_3(G_1)$, $SW_3(G^2) \leq SW_3(G_1^2)$ in general. The answer is negative. For example, Let G and G_1 be two graphs of order 7 in Fig.2. Note that $SW_3(G) = 89 < SW_3(G_1) = 91$ in Fig.2, but $SW_3(G^2) = 71 > SW_3(G_1^2) = 70$. For the examples of orders greater than 7. Let G' be a graph obtained from G by adding m new vertices such that every vertex is only adjacent to 1, 2, and 3. Let G'_1 be a graph obtained from G_1 by adding m new vertices such that every vertex is only adjacent to 1 and 2. By some calculation, we have $SW_3(G') < SW_3(G'_1)$, but $SW_3(G'^2) = 2\binom{m+7}{3} + 1 > SW_3(G'_1^2) = 2\binom{m+7}{3}$.

Figure 2. Graphs G and G_1 with $SW_3(G) < SW_3(G_1)$ and $SW_3(G^2) > SW_3(G_1^2)$.

Theorem 3.1. For any tree T of order n, $SW_3(S_n^2) \leq SW_3(T^2) \leq SW_3(P_n^2)$.

Proof. Since $diam(S_n) = 2$, $S_n^2 \cong K_n$. Thus $SW_3(S_n^2) = 2\binom{n}{3}$, and the left half of inequality holds and is best possible.

Let T be a tree of order n. We prove that $SW_3(T^2) \leq SW_3(P_n^2)$ by induction on the order n. It is obvious that the theorem holds when $n \leq 4$. Now let $n \geq 5$. Clearly, $d_T(u) = 1$ and T - u is a tree of order n - 1. By the induction hypothesis,

$$SW_3((T-u)^2) \le SW_3((P_{n-1}^2).$$
 (1)

Let $A = \{S : S \subseteq V(T^2), u \in S, |S| = 3\}$ and $A' = \{S' : S' \subseteq V(P_n^2), v \in S', |S'| = 3\}.$ We have

$$SW_3(P_n^2) = \sum_{S' \in A'} d_{P_n^2}(S') + SW_3(P_{n-1}^2),$$
(2)

$$SW_3(T^2) = \sum_{S \in A} d_{T^2}(S) + SW_3((T-u)^2) \le \sum_{S \in A} d_{T^2}(S) + SW_3(P_{n-1}^2).$$
(3)

So, by the above inequalities (1-3), to complete the proof of $SW_3(T^2) \leq SW_3(P_n^2)$, it remains to show that

$$\sum_{S \in A} d_{T^2}(S) \le \sum_{S' \in A'} d_{P_n^2}(S').$$
(4)

This leads us to compare the value of $d_{T^2}(S)$ and $d_{P_n^2}(S')$ in term by term. We label the vertices of P_n as $v, v_1, v_2, \ldots, v_{n-1}$, where $vv_1 \in E(P_n)$ and $v_iv_{i+1} \in E(P_n)$ for each $i \in \{1, \ldots, n-2\}$. Take a longest path of $P = uu_1u_2 \cdots u_d$ of T. Let T_i be the component of $T - u_{i-1}u_i - u_iu_{i+1}$ containing u_i for each $i \in \{1, \ldots, d-1\}$, where $u_0 = u$. We label the vertices of $V(T) \setminus V(P)$ as $u_{d+1}, u_{d+2}, \ldots, u_{n-1}$ in terms of the following rule:

(1) subscripts of labels of vertices in $V(T_i) \setminus \{u_i\}$ is less than subscripts of labels of vertices in $V(T_j) \setminus \{u_j\}$ if i < j;

(2) subscripts of labels of a vertex at distance smaller from u_i is less than subscripts of labels of the other one for any two vertices in $V(T_i)$ for each $i \in \{1, ..., d-1\}$.

We remark that if $u_k \in V(T) \setminus V(P)$, then $u_k \in V(T_l)$ for an integer $l \in \{1, \ldots, d-1\}$. It is easy to see that $d_T(u_l, u_k) \leq d_{P_n}(v_d, v_k)$. For $1 \leq i < j \leq n-1$, let $S_{i,j} = \{u, u_i, u_j\}$ and $S'_{i,j} = \{v, v_i, v_j\}$.

Claim 1. $d_T(S_{i,j}) \leq d_{P_n}(S'_{i,j})$, with equality if and only if either $1 \leq i < j \leq d$, or $i = d < j \leq n-1$ and $d_T(u_l, u_j) = j - d = d_{p_n}(v_d, v_j)$, where $u_j \in T_l$.

Proof of Claim 1: We consider the following three cases.

Case 1. $1 \le i < j \le d$

It is trivial to see that $d_T(S_{i,j}) = d_{P_n}(S'_{i,j})$.

Case 2. $1 \le i \le d < j \le n - 1$

Let $u_j \in T_l$. If $1 \leq l < i \leq d$, then $d_T(S_{i,j}) = d_T(u, u_i) + d_T(u_l, u_j)$. Clearly, $d_{P_n}(S'_{i,j}) = j = d + d_{p_n}(v_d, v_j), \ d_{p_n}(v_d, v_j) \geq d_T(u_l, u_j)$. Then $d_T(S_{i,j}) \leq d_{P_n}(S'_{i,j})$. If $d_T(S_{i,j}) = d_{P_n}(S'_{i,j})$, then $d_T(u, u_i) = d$, $d_T(u_l, u_j) = d_{p_n}(v_d, v_j) = j - d$. Otherwise, $d_T(S_{i,j}) < d_{P_n}(S'_{i,j})$.

If $1 \le i \le l < d$, then $d_T(S_{i,j}) = d_T(u, u_l) + d_T(u_l, u_j) < d + d_{p_n}(v_d, v_j) = d_{P_n}(S'_{i,j})$.

Case 3. $d < i < j \le n - 1$

Subcase 3.1 $1 \le m < l \le d - 1$.

Let $u_i \in T_m$, $u_j \in T_l$. Then $d_T(S_{i,j}) = d_T(u, u_l) + d_T(u_m, u_i) + d_T(u_l, u_j)$. Obviously, $d_{P_n}(S'_{i,j}) = j = d + d_{p_n}(v_d, v_j), \ d_{p_n}(v_d, v_j) \ge d_T(u_m, u_i) + d_T(u_l, u_j)$. Thus $d_T(S_{i,j}) < d_{P_n}(S'_{i,j})$.

Subcase 3.2 $1 \le m = l \le d - 1$

Set $u_i \in T_l$, $u_j \in T_l$, let P_1 be a shortest path of between u_l and u_j . If $u_i \in V(P_1)$, then $d_T(S_{i,j}) = d(u, u_l) + d(u_l, u_j) < d + d_{P_n}(v_d, v_j) = d_{P_n}(S'_{i,j})$.

If $u_i \in V(T_l) \setminus V(P_1)$, let the closest vertex from u_i to P_1 be u_q , then $d_T(S_{i,j}) = d_T(u, u_l) + d_T(u_l, u_j) + d_T(u_q, u_i)$. Obviously, $d_{P_n}(v_d, v_j) \ge d_T(u_l, u_j) + d_T(u_q, u_i)$. Hence, $d_T(S_{i,j}) < d_{P_n}(S'_{i,j})$.

Summing up the above, we get the conclusion, as we desired.

Claim 2. If $d_T(S_{i,j}) < d_{P_n}(S'_{i,j})$, then $d_{T^2}(S_{i,j}) \le d_{P_n^2}(S'_{i,j})$.

Proof: If $d_T(S_{i,j})$ is odd, then $d_{T^2}(S_{i,j}) = \lceil \frac{d_T(S_{i,j})}{2} \rceil \leq \lceil \frac{d_{P_n}(S'_{i,j})}{2} \rceil \leq d_{P_n^2}(S'_{i,j})$. If $d_T(S_{i,j})$ is even, then $d_{T^2}(S_{i,j}) \leq \lceil \frac{d_T(S_{i,j})}{2} \rceil + 1 \leq \lceil \frac{d_{P_n}(S'_{i,j})}{2} \rceil \leq d_{P_n^2}(S'_{i,j})$.

Claim 3. If $d_T(S_{i,j}) = d_{P_n}(S'_{i,j})$, then $d_{T^2}(S_{i,j}) \le d_{P_n^2}(S'_{i,j}) + 1$, with equality, if and only if i = d and $d_T(u_l, u_j) = j - d = d_{P_n}(v_d, v_j)$, l is odd, j is even, d is even, where $u_j \in T_l$.

Proof of Claim 3: By Claim 1, we consider the following two cases.

Case 1. $1 \le i < j \le d$

It is trivial to see that $d_{T^2}(S_{i,j}) = d_{P^2_n}(S'_{i,j})$.

Case 2. $i = d < j \le n - 1$ and $d_T(u_l, u_j) = j - d = d_{p_n}(v_d, v_j)$, where $u_j \in T_l$.

If $d_{T^2}(S_{d,j}) = \lceil \frac{d_T(S_{d,j})}{2} \rceil$, then $d_{T^2}(S_{d,j}) \leq d_{P_n^2}(S'_{d,j})$. Since $d_T(S_{d,j}) = d_{P_n}(S'_{d,j})$, $d_{P_n^2}(S'_{d,j}) = \lceil \frac{d_{P_n}(S'_{d,j})}{2} \rceil$ or $\lceil \frac{d_{P_n}(S'_{d,j})}{2} \rceil + 1$.

If $d_{T^2}(S_{d,j}) = \lceil \frac{d_T(S_{d,j})}{2} \rceil + 1$, we divide the following three subcases by Case 2.3 in Lemma 2.2, i.e., one of $d_T(u, u_l)$, $d_T(u_l, u_d)$, $d_T(u_l, u_j)$ is even, others are odd.

Subcase 2.1 $d_T(u, u_l)$ is even

Then $d_T(u_l, u_d)$ is odd, $d_T(u_l, u_j) = j - d = d_{p_n}(v_d, v_j)$ is odd. Moreover, $d_{P_n}(S'_{d,j}) = d_{P_n}(v_d, v_j)$

 $\begin{aligned} &d_{P_n}(v, v_d) + d_{P_n}(v_d, v_j) = d_T(u, u_d) + d_T(u_l, u_j), \text{ thus } d_{P_n}(v, v_d) \text{ is odd and } d_{P_n}(v_d, v_j) \text{ is odd.} \\ &\text{By Case 1.2 in Lemma 2.2, } d_{P_n^2}(S'_{d,j}) = \left\lceil \frac{d_{P_n}(S'_{d,j})}{2} \right\rceil + 1. \text{ In this case, } d_{T^2}(S_{d,j}) = d_{P_n^2}(S'_{d,j}). \end{aligned}$

Subcase 2.2 $d_T(u_l, u_d)$ is even

It is similar to Subcase 2.1, we can obtain $d_{T^2}(S_{d,j}) = d_{P_n^2}(S'_{d,j})$.

Subcase 2.3 $d_T(u_l, u_j)$ is even

Then $d_{p_n}(v_d, v_j) = j - d = d_T(u_l, u_j)$ is even, $d = d_T(u, u_l) + d_T(u_l, u_d)$ is even, $d_T(S_{d,j}) = d + j - d$ is even. Thus j is even. Moreover, $d_{P_n}(S'_{d,j}) = d_{P_n}(v, v_d) + d_{P_n}(v_d, v_j) = d + d_T(u_l, u_j)$, thus $d_{P_n}(v, v_d)$ is even and $d_{P_n}(v_d, v_j)$ is even. By Case 1.1 in Lemma 2.2, $d_{P_n^2}(S'_{d,j}) = \lceil \frac{d_{P_n}(S'_{d,j})}{2} \rceil$. In this case, $d_{T^2}(S_{d,j}) = d_{P_n^2}(S'_{d,j}) + 1$.

Summing up the above, we get the conclusion, as we desired.

In view of Claim 3, let $A_1 = \{(d, j) : d_{T^2}(S_{d,j}) = d_{P_n^2}(S'_{d,j}) + 1, S_{d,j} \in A\}$, and $B_1 = \{(d-1, j) : (d, j) \in A_1\}$. Since $d_T(u_l, u_j)$ is even, we can obtain $l \neq d-1$. Clearly, $d_T(S_{d-1,j}) = d_T(u, u_l) + d_T(u_l, u_{d-1}) + d_T(u_l, u_j) = d-1 + j - d = j - 1$ and $d_{P_n}(S'_{d-1,j}) = d_{P_n}(v, v_{d-1}) + d_{P_n}(v_{d-1}, v_j) = j$. By Case 2.2 and Case 1.2 in Lemma 2.2, $d_{T^2}(S_{d-1,j}) = \lceil \frac{d_T(S_{d-1,j})}{2} \rceil = \lceil \frac{j-1}{2} \rceil, d_{P_n^2}(S'_{d-1,j}) = \lceil \frac{d_{P_n}(S'_{d-1,j})}{2} \rceil + 1 = \lceil \frac{j}{2} \rceil + 1$. Since j is even, we have $d_{T^2}(S_{d-1,j}) + 1 = d_{P_n^2}(S'_{d-1,j})$. Therefore, we have

$$SW_{3}(T^{2}) = \sum_{S \in A} d_{T^{2}}(S) + SW_{3}((T-u)^{2}) \leq \sum_{S \in A} d_{T^{2}}(S) + SW_{3}(P_{n-1}^{2})$$
$$= \sum_{(i,j)\in A_{1}\cup B_{1}} d_{T^{2}}(S_{i,j}) + \left(\sum_{S \in A} d_{T^{2}}(S) - \sum_{(i,j)\in A_{1}\cup B_{1}} d_{T^{2}}(S_{i,j})\right) + SW_{3}(P_{n-1}^{2})$$
$$\leq \sum_{(i,j)\in A_{1}\cup B_{1}} d_{P_{n}^{2}}(S_{i,j}') + \left(\sum_{S'\in A'} d_{P_{n}^{2}}(S') - \sum_{(i,j)\in A_{1}\cup B_{1}} d_{P_{n}^{2}}(S_{i,j}')\right) + SW_{3}(P_{n-1}^{2})$$
$$= SW_{3}(P_{n}^{2}) .$$

Corollary 3.2. For a connected graph G of order n, $SW_3(G^2) \leq SW_3(P_n^2)$.

Proof. Let T be a spanning tree of G, then T^2 is the subgraph of G^2 with vertex set $V(T^2) = V(G^2)$. For any S, $d_{G^2}(S) \le d_{T^2}(S)$. Thus $SW_3(G^2) \le SW_3(T^2)$. Moreover, by Theorem 3.1, $SW_3(T^2) \le SW_3(P_n^2)$, the result follows.

Note that P_4 is the unique graph of order 4 whose complement is connected. Since $\overline{P_4} \cong P_4$, we have $SW_3(P_4^2) + SW_3(\overline{P_4}^2) = 2SW_3(P_4^2) = 16$. Next, we calculate the value

of $SW_3(P_n^2) + SW_3(\overline{P_n}^2)$ for $n \ge 5$. Let $P_n = v_1v_2\cdots v_n$, $sdiam_3(P_n^2) = \lceil \frac{n}{2} \rceil$. For any $S \subseteq V(P_n)$ with |S| = 3, $d_{p_n^2}(S) = m$, then $2 \le m \le \lceil \frac{n}{2} \rceil$. Hence, if n is even,

$$SW_3(P_n^2) = \sum_{m=2}^{\frac{n}{2}-1} m[(m-1)(n-2(m-1)) + 2(m-1)(n-(2m-1)) + (m-1)(n-2m)] + \frac{n}{2}(n-2+n-2)$$
$$= \sum_{m=2}^{\frac{n}{2}-1} m(m-1)(4n-8m+4) + \frac{n}{2}(2n-4)$$
$$= \frac{2(\frac{n}{2}-1)[2n-3(\frac{n}{2}-1)]\frac{n}{2}(\frac{n}{2}-2)}{3} + \frac{n}{2}(2n-4)$$
$$= \frac{n^2}{6} \left(\frac{n^2}{4} - 1\right)$$

if n is odd,

$$SW_{3}(P_{n}^{2}) = \sum_{m=2}^{\frac{n+1}{2}-1} m[(m-1)(n-2(m-1)) + 2(m-1)(n-(2m-1)) + (m-1)(n-(2m-1)) + (m-1)(n-2m)] + \frac{n+1}{2}\frac{n-1}{2}$$
$$= \sum_{m=2}^{\frac{n+1}{2}-1} m(m-1)(4n-8m+4) + \frac{n+1}{2}\frac{n-1}{2}$$
$$= \frac{2(\frac{n+1}{2}-1)[2n-3(\frac{n+1}{2}-1)]\frac{n+1}{2}(\frac{n+1}{2}-2)}{3} + \frac{n+1}{2}\frac{n-1}{2}$$
$$= \frac{n^{4}-4n^{2}+3}{24}$$

On the other hand, for $n \ge 5$, $diam(\overline{P_n}) = 2$ by Lemma 2.4, $\overline{P_n}^2 \cong K_n$ and we have $SW_3(\overline{P_n}^2) = 2\binom{n}{3}$. Then

$$SW_3(P_n^2) + SW_3(\overline{P_n^2}) = \begin{cases} \frac{n^2}{6} \left(\frac{n^2}{4} - 1\right) + 2\binom{n}{3}, & \text{if } n \text{ is even,} \\ \frac{n^4 - 4n^2 + 3}{24} + 2\binom{n}{3}, & \text{if } n \text{ is odd.} \end{cases}$$

Corollary 3.3. Let G be a graph of $n \ge 5$. If $diam(\overline{G}) = 2$ or diam(G) = 2, then $SW_3(G^2) + SW_3(\overline{G}^2) \le SW_3(P_n^2) + SW_3(\overline{P_n^2})$.

Lemma 3.4. Let G be a connected graph of order $n \ge 5$ with connected complement \overline{G} . For any $S \subseteq V(G)$ with |S| = 3, $d_G(S) = 2$ if and only if $d_{\overline{G}}(S) > 2$.

Proof. For any $S = \{u, v, w\} \subseteq V(G)$. If $d_G(S) = 2$, then at least two elements in $\{uv, vw, uw\}$ belong to E(G), at most one element in $\{uv, vw, uw\}$ belong to $E(\overline{G})$. Thus $d_{\overline{G}}(S) > 2$.

Conversely, if $d_{\overline{G}}(S) > 2$ and uv, uw, $vw \notin E(\overline{G})$, then the tree T induced by the edges in $\{uv, uw\}$ is an S-Steiner tree in G, hence $d_G(S) = 2$. If $d_{\overline{G}}(S) > 2$ and there is an element in $\{uv, vw, uw\}$ belong to $E(\overline{G})$, without loss of generality, let $uv \in E(\overline{G})$, uw, $vw \notin E(\overline{G})$, then uw, $vw \in E(G)$, the tree T induced by the edges in $\{uw, vw\}$ is an S-Steiner tree in G, namely, $d_G(S) = 2$, as we want.

Theorem 3.5. Let G be a connected graph of order $n \ge 5$ with connected complement \overline{G} . Then $4\binom{n}{3} \le SW_3(G^2) + SW_3(\overline{G}^2) \le SW_3(P_n^2) + SW_3(\overline{P_n}^2)$.

Proof. The lower bound is obvious. For the upper bound, from Lemma 2.4(1) and Corollary 3.3, it remains to consider the case when $diam(G) = diam(\overline{G}) = 3$. Note that $diam(G^2) = diam(\overline{G}^2) = 2$. By Lemma 2.4(2), G has a spanning subgraph which is a double star. Then $2 \leq d_G(S) \leq 4$ for any $S \subseteq V(G)$ with |S| = 3. For i = 2, 3 and 4, let s_i be the number of all 3-element subsets of V(G) with Steiner distance i in G and $\overline{s_i}$ be that for \overline{G} . By Lemma 3.4, $s_2 + \overline{s_2} = {n \choose 3}, s_2 = \overline{s_3} + \overline{s_4}$ and $\overline{s_2} = s_3 + s_4$. By Lemma 2.2, if $d_G(S) = 4$, then $d_{G^2}(S) \leq 3$. If $d_G(S) \leq 3$, then $d_{G^2}(S) = 2$. Thus

$$SW_3(G^2) + SW_3(\overline{G}^2) \le 2s_2 + 2s_3 + 3s_4 + 2\overline{s_2} + 2\overline{s_3} + 3\overline{s_4} = 4\binom{n}{3} + s_4 + \overline{s_4}$$

By Lemma 2.4(2), let S_{p_1,q_1} be a spanning subgraph of G and S_{p_2,q_2} be that of \overline{G} , where $p_j + q_j = n$ for j = 1, 2. Hence $s_4 \leq (p_1 - 1)\binom{q_1 - 1}{2} + \binom{p_1 - 1}{2}(q_1 - 1)$ and $\overline{s_4} \leq (p_2 - 1)\binom{q_2 - 1}{2} + \binom{p_2 - 1}{2}(q_2 - 1)$. Since $p_i \cdot q_i \leq \lfloor \frac{n^2}{4} \rfloor$ for i = 1 and 2, $s_4 \leq \frac{\lfloor \frac{n^2}{4} \rfloor - n + 1}{2}(n - 4)$ and $\overline{s_4} \leq \lfloor \frac{\frac{n^2}{4} \rfloor - n + 1}{2}(n - 4)$. So

$$SW_3(G^2) + SW_3(\overline{G}^2) \le 4\binom{n}{3} + \left(\left\lfloor \frac{n^2}{4} \right\rfloor - n + 1\right)(n-4).$$

One can easily check that

$$4\binom{n}{3} + \left(\left\lfloor \frac{n^2}{4} \right\rfloor - n + 1\right)(n-4) \le \begin{cases} \frac{n^2}{6} \left(\frac{n^2}{4} - 1\right) + 2\binom{n}{3}, & \text{if } n \text{ is even,} \\ \frac{n^4 - 4n^2 + 3}{24} + 2\binom{n}{3}, & \text{if } n \text{ is odd.} \end{cases}$$

This completes the proof.

Note that the bounds are sharp in Theorem 2.5 and Theorem 3.5. Obviously, the upper bound can be obtained on the graph P_n . To see that the lower bound is best possible, we construct a sequence of graphs. Let G_n be a graph of order n, which is obtained from C_5 by replacing a vertex of C_5 by a complete graph of order n - 4. It is easy to see that $diam(G_n) = diam(\overline{G_n}) = 2$, so $diam(G_n^2) = diam(\overline{G_n}^2) = 1$, $sdiam_3(G_n^2) + sdiam_3(\overline{G_n}^2) = 4$ and $SW_3(G_n^2) + SW_3(\overline{G_n}^2) = 4\binom{n}{3}$.

References

- P. Ali, P. Dankelmann, S. Mukwembi, Upper bounds on the Steiner diameter of a graph, *Discr. Appl. Math.* 160 (2012) 1845–1850.
- [2] J. A. Bondy, U. S. R. Murty, *Graph Theory*, Springer, New York, 2008.
- [3] J. Cáceresa, A. Márquezb, M. L. Puertasa, Steiner distance and convexity in graphs, *Eur. J. Combin.* 29 (2008) 726–736.
- [4] G. Chartrand, O. R. Oellermann, S. Tian, H. B. Zou, Steiner distance in graphs, *Časopis Pest. Mat.* **114** (1989) 399–410.
- [5] P. Dankelmann, O. R. Oellermann, H. C. Swart, The average Steiner distance of a graph, J. Graph Theory 22 (1996) 15–22.
- [6] A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: theory and applications, Acta Appl. Math. 66 (2001) 211–249.
- [7] W. Goddard, O. R. Oellermann, Distance in graphs, in: M. Dehmer (Ed.), Structural Analysis of Complex Networks, Birkhäuser, Dordrecht, 2011, pp. 49–72.
- [8] X. Li, Y. Mao, I. Gutman, The Steiner Wiener index of a graph, Discuss. Math. Graph Theory 36 (2016) 455–465.
- [9] Y. Mao, The Steiner diameter of a graph, Bull. Iran. Math. Soc. 43 (2017) 439–454.
- [10] Y. Mao, Z. Wang, I. Gutman, H. Li, Nordhaus–Gaddum-type results for the Steiner Wiener index of graphs, *Discr. Appl. Math.* **219** (2017) 167–175.
- [11] Y. Mao, Z. Wang, Y. Xiao, C. Ye, Steiner Wiener index and connectivity of graphs, Util. Math. 102 (2017) 51–57.

- [12] Y. Mao, Z. Wang, I. Gutman, Steiner Wiener index of graph products, Trans. Comb. 5 (2016) 39–50.
- [13] E. A. Nordhaus, J. W. Gaddum, On complementary graphs, Am. Math. Mon. 63 (1956) 175–177.
- [14] O. R. Oellermann, S. Tian, Steiner centers in graphs, J. Graph Theory 14 (1990) 585–597.
- [15] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1947) 17–20.
- [16] L. Zhang, B. Wu, The Nordhaus–Gaddum-type inequalities for some chemical indices, MATCH Commun. Math. Comput. Chem. 54 (2005) 189–194.