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Abstract
The Steiner k-Wiener index SWi(G) of a connected graph G
is defined as SWi(G) = > d(S), where the d(S) is equal to
SCV(@)
[S|=k

the subtree minimum size among subtrees of G that connect S. A
unicyclic graph is a connected graph with the same number of edges
and vertices. In this paper, we study the lower and upper bounds
of Steiner k-Wiener index of unicyclic graphs. In addition, we also
obtain the second largest Steiner k-Wiener index among all trees.

1 Introduction

All graphs in this paper are assumed to be simple, finite and undi-
rected. We refer to [1] for graph theoretical notation and terminology not
explained here. For a connected graph G of order at least two, and a
set S C V(G) with S nonempty, a Steiner tree connecting S or an S-
Steiner tree (or simply, an S-tree) is a subgraph T of G that is a tree with
S C V(T). Let G be a connected graph of order at least 2, and S be a

nonempty set of vertices of G. Then the Steiner distance d(S) is equal to
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the subtree minimum size among subtrees of G that connect S. Obviously,
if |S| =k, d(S) > k — 1. The determination of a Steiner tree in a graph
is a discrete simulation of the well-known geometric Steiner problem, and
Steiner trees are also used in multiprocessor computer networks. For more
details on Steiner distance, we refer to [2-5,13].

Topological index is a kind of mathematical invariants derived from
structure diagram of compounds, which is often used to describe the phys-
ical, chemical and pharmacological characteristics of organic compounds.
The Steiner k-Wiener index and Wiener index are two important topolog-
ical indices. They are useful tools for studying the structural relationship
of organic compounds in chemical research. The Steiner k-Wiener index
SWi(G) of a connected graph G, proposed a generalization by Li et al [8],
is defined by

SWr(G) = Y d(S).

SCV(@)
[S|=k

The above definition implies SW;(G) = 0, and SW,(G) = n — 1 for a
connected graph G with n vertices. For k = 2, the Steiner 2-Wiener index
SW5(G) coincides with the ordinary Wiener index.

In 2016, Li et al. [8] obtained the lower and upper bounds on Steiner
k-Wiener index for connected graph G and tree 7', that is,

n n+1
<k> (k—1) < SWi(GQ) < (k—-1) <k+1>

for 2 < k <n —1, the equality on the right if and only if G is a path.

n—1 n+1
<k—1> (n—1) < SWi(T) < (k—1) <k+1>

for 2 < k < n — 1, the star S, and the path P, attain the lower and
upper bounds, respectively. And in [11], Li et al. determined the Steiner
k-Wiener indices of cycle and wheel. For more studies on Steiner k-Wiener
index, we refer to reader [6] and [8-10,12,14,15,17].

Let UC(n) be the family of unicyclic graphs (i.e., connected graphs

containing exactly one cycle) with n vertices. Let G be a unicyclic graph
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(of order n) with its unique cycle C; of length ¢, then G — E(C}) is a
forest. Ty, Ts,- - ,T. (0 < ¢ < t) are all nontrivial trees of G — E(C}),
then |V(T;)| =t; > 2, n=t—c+ Y ;_, t;, and the common vertex of C;

and T; is the cut vertex of G, ¢ = 1,2,--- ,c. Such a unicyclic graph is
denoted by Cy(T%,, Tt,, -+ ,Tt,). If ¢ =0, then G = C,,. In particular, for
unicyclic graph Cy(St,, St,, -+ ,St.), S, is a star with ¢; vertices, and the

common vertex of Cy and Sy, is the centre of Sy,. And for unicyclic graph
Ci(Pyy, Piyy -+, Pr), P, is a path with ¢; vertices, and the common vertex
of C; and P, is a pendent vertex of P;,. Whent =3, ¢ =1, C3(S,—2) and
C3(P,,—2) are shown in Figure 1.

(1) (2)

v vy ’Uz. o Vg—1 Vd
(3)

Figure 1. (1) C3(Sn—2); (2) C3(Pn—2); (3) T, """ (mo, - ,mq).

The caterpillar tree, denoted by T;°" " (mqg,--- ,mq), is the tree
obtained from P; = wvgvy---vg by attaching m; > 0 new vertices to v;
for 0 < i < d (see Figure 1). For a set S C V(Cy(St,, Sty ,S5%.)), the

Steiner tree connecting S of C¢(St,, St,, -+ ,St,) are caterpillar trees.
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Lemma 1.1. ( [16]) Let G be a unicyclic graph of order n, then

SW5(C3(Sp—2)) < SWa(G) < SWa(C5(P,—2)),

with the equality on the left (or on the right) if and only if G =2 C3(Sp—2)
(07” G = Cg(Pn,Q)).

Lemma 1.2. ( [7]) Let G be a unicyclic graph of order n, and t; > 1,
then
SWo—1(Cr) < SWp_1(G) < SW,—1(C5(Py,, Py, Piy)),

with the equality on the left (or on the right) if and only if G = C,, (or
G= 03(Pt17PthPt3))'

In above Lemmas, the lower and upper bounds of the Steiner k-Wiener
index of unicyclic graphs UC(n) are determined for k =2 and k =n — 1.
We consider the lower and upper bounds of the Steiner k-Wiener index of
UC(n) for 3 < k < n — 2 in this paper. By a simple calculation, we can
obtain the Steiner k-Wiener index of UC(n) for n <5, as shown in Table
1.

UC(TZ) SWQ SWg SW4
Cs 6

Cy 8 8

C5(Ss) 8 9

Cs 15 25 15
C4(S2) 16 24 16
C3(Ss) 15 24 16
C3(S3, 55) 16 26 17
Cs(Ps) 17 27 17

Table 1. The Steiner k-Wiener index of UC(n) for n < 5.

In this paper, we introduce some transformations for connected graphs
(of order n) that do change their Steiner k-Wiener index for 3 < k < n—2.
Using these transformations, we study the lower bound of Steiner k-Wiener
index of unicyclic graphs, and obtain the corresponding extremal graph as
well. By studying the second largest Steiner k-Wiener index among all
trees, we obtain the upper bound of Steiner k-Wiener index of unicyclic

graphs. Keep in mind that we assume n > 6 for UC(n).
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2 The lower bound of Steiner k-Wiener in-

dex of unicyclic graphs

Let G, H be two nontrivial connected graphs with u € V(G), and
v € V(H). Let GuH be the graph obtained from G and H by identifying

u with v.

Lemma 2.1. Let G be a nontrivial connected graph with uw € V(G), T, be
a nontrivial tree (of order m) with v € V(T,,,). Let GuS,, obtained from
GuT,, by deleting the edges of T,, and connect the vertices of T, \{u(v)}
to u(v). For k be an integer with 2 < k <n —1, then

SWi(GuT,) > SWi(GuSim),

with the equality if and only if GuT,, = GuS,,.

Proof. For any set S C V(GuT,,) = V(GuS,,) with |S| = k. We consider
the following.

If S C V(@Q), then dgur,, (S) = daus,, (5).

If S C V(T,), when k > m, S is not exist. S contribute the same
to SWi(Ty,) (or SW(Sy,)) and SWi(GuT,,) (or SWi(GuS,,)). Since
SWi(T),) > SW(S,,) with the equality if and only if T,,, & S,,, then S
contribute to SWi(GuT,,) not less than SWi(GuS,,).

If SNV(G\{u(v)}) # 0 and SNV (T,,\{u(v)}) # 0. Whether u(v)
is contained in S or not, u(v) must be contained in the Steiner trees con-
necting S for GuT,, and GuS,,. We divide the Steiner tree Tgur,, (S)
into two subtrees T and T, , where V(Tr, ) C V(T,,), V(Tg) C V(G),
V(Tr,) NV(Te) = {u()}, |V(Teur,.(9)| = [V(Te)| + |V(Tr,)| - 1
and dgur,, (S) = deur,, V(T1,)) + deur,,(V(T¢)). Similarly, we di-
vide the Steiner tree Tgys,, (S) into two subtrees Tg and Tg, . Since
deur,,(V(Tr,.)) 2 deus,,(V(Ts,,)), deur,,(V(Tc)) = dgus,, (V(Ig)), then
deur,, (S) = dgus,, (5).

From what has been discussed above, we can draw our conclusion. l

By repeating the operation in Lemma 2.1, we can have the following

corollary.
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Corollary 2.1. Let G = Cy(T,, Ty, , Tt,) # Cp in UC(n), and k an
integer with 2 < k <n—1, then

SWi(G) = SWi (Ce(Sty Stay -+, 5t,)) s

with equality if and only if G =2 C¢(St,, Sty -+, St,)-

Lemma 2.2. Let Cy(St,, Sy, ,St.) # Cn in UC(n), and k an integer
with 2 < k <n—1, then

SWi(Ce(Sty 5 Styy -3 St.)) = SWi (C3(Sn—2)),

with equality if and only if C¢(St,, Styy -+ 5 St,) = C3(Sn—2).

Proof. Let G = C¢(St,, - ,S.), and let us denote vertex sets of G and
C3(Sn—2) as V(G) = V(C5(Sp—2)) = {ug, u1,- - ,un—1}, where ug is a cut
vertex of G and ug is a unique vertex of degree n — 1 in C3(S,—_2). For
any set S C V(G) with |S| = k, Steiner tree T¢(S) is a caterpillar tree.
Let T:(S) =T,°" " (my, - - - ,ma), where vy, v1,- -+ ,vq € V(Cy).

If up € S, then dey(s, ,)(S) =k —1 < da(S).

If up € S, then de, (s, ,)(S) =k and dg(S) > k — 1.

When dg(S) = k — 1 = dey(s,_,)(S) — 1, then V(T(S)) = S. Let
N (ug) be the set of neighbors of ug in G. Define the vertex w € V(T¢(5))
such that the distance between ug and w is the shortest in G, then w €
V(Cy), and w = vy or w = wvy. Since ug is a cut vertex of G, then
there is a vertex wy € N(ug) such that dg(wp) = 1 and wg ¢ S. Let
8" = (S\{w}) U{wo}), then dg(S') > k+1 = dey(s,_,)(S’) + 1. In other
words, if there is an S that dg(S) = dc,(s,_,)(S) — 1, then there must be
S’ such that dg(S") > dey(s,,_,)(S") + 1.

Then, we have that SWi(G) > SWi(C5(Sp—2)). [ |

Observation 2.1. Let o and k be two positive integers. If k = 1 or
k>a—1, then (Z) <a+1l;if2<k<a—2, then (2) >a+ 1.

Lemma 2.3. Let k be an integer with 3 < k <n — 2, then
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Proof. For any set S C V(C,,) with |S| = k. If d¢, (S) = k — 1, there are
n such subsets, contributing to SW by n x (k—1). And if d¢, (S) > k,

the number of such S would be : —n.

For any set S C V(C3(S,-2)) with S| = k > 3. If doy(s, ,)(S) =

-1 -1
k—1, there are (Z 1) such subsets, contributing to SWj, by (n ) X

k—1
-1
(k—1). And if dc,(s,_,)(S) = k, the number of such S would be "

It follows that

SWi(Cr) — SWi(C5(Sn—2))
= Z de, (S) — Z dCS(Sn72)(S)

SCV(Cy) SCV(C5(Sn—2))
IS|=k Is|=k

e () o) G e ()
=2) )

-1
By Observation 2.1, we have that (Z 1) —n>0for3<k<n-2.
[ |

Combining Corollary 2.1 and Lemma 2.2-3, we get our main result

immediately.

Theorem 2.4. For G € UC(n) (n > 6), let k be an integer with 3 < k <
n — 2, then

with the equality holds if and only if G = C3(S,—2).
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3 The upper bound of Steiner k-Wiener in-

dex of unicyclic graphs

Let G be a unicyclic graph (of order n) with its unique cycle C; of
length ¢t (3 < t < n), T1,Ts,---,T; are all spanning trees of G. For
an integer k with 2 < k < n —1, any set S C V(G) with |S| = k, by
Proposition 3.2 of [8], we have that SWi(G) < SWi(T;), i = 1,2, ,¢.
Then, SWi(G) < min {SW(T1), SWi(T3), -+ ,SWi(T})}. If G is not a
cycle, then G has at least one spanning tree that is not a path. When
G e UC(n)\{C,}, then SW(G) < SWi(P,). It is necessary to determine
the second largest Steiner k-Wiener index for trees.

Let 7; denote the set of trees (of order n) with [ leaves. Let P,,,
P,,, P, be three paths, pairwise disjoint paths. Define three paths P,, =
T1Ta+ Tpyy Py = Y1Y2 -+ Yn, and P, = 2129+« 2,5, where |V(Py,,)| =
n; > 2. Let P, ,x,, P,, be the graph obtained from P,, and P,, by
identifying x,, with y,,, and T5(n1,nq,n3) be the graph obtained from
P,,xp, Pn, and P, by identifying x,,, with z,,. Then, T3(n1,n2,n3) € T3,
and every graph in 73 can be obtained in this way.

In this section, we first prove that SWy(T5(2,2,n — 2)) reaches the
second largest Steiner k-Wiener index among all trees. Then, we get the
upper bound of the Steiner k-Wiener index for unicyclic graphs by com-
puting SWy(T5(2,2,n —2) for 3 <k <n —2.

Let Gy is a connected graph with v € V(Gp), and G be the graph
(of order n) obtained from Gy and P,,xy, P,, by identifying v with x,,.

Then we construct a new graphs G=G— Yno—1Yny + Yn,—121 from G.

Lemma 3.1. Let G and G be the two graphs (of order n) above, and k an
integer with 2 < k <n —1, then

Proof. Let T = P,, 2y, Py,, for any set S C V(G) = V(G) with |S| = k.
If S € V(Gy), then dg(S) = dx(S).
If S C V(T), S contribute the same to SWj,(G) and SW(G) (when
k>mn;+ng—1, S is not exist).
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If SNV (Go\{zn, }) # 0 and SNV (T\{zn, }) # 0, then de(S) < da(S).

Moreover, since k < n—1, there exists an §' C V(G) = V(G) with || = k
that contain y; but not z1, then dg(S’) < dz(5").

So, we have that SW(G) < SWi(G). ]

By repeating the operation in Lemma 3.1, we can see that the tree

with the second largest Steiner k-Wiener index must be in 7.

Lemma 3.2. Let p,q and k be three positive integers such that p < q — 1.

rream (. ()P ()
o ()-)-2)-(2)

CROREN)
ARG RN

() -(5)
)

V

-1
If 2 < k < g then 4

%)
o (1) (7)o

Let T be a tree of order n and e = xy € E(T). Denote by

> 0.

No(e) ={z € V(T) : d(z,z) < d(z,9)};

Ny(e) ={z e V(T) : d(z,x) > d(z,9)}.

And denote the cardinality |N,(e)| = ng(e), |Ny(e)| = ny(e), respectively.
(

By the definitions, we have n = ng(e) + ny(e). Denote by Ar(e) =
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max{ng(e),ny(e)} and pr(e) = min{ny(e),n,(e)}. There is a formula

for the Steiner k-Wiener index of a tree.

Lemma 3.3. ( [12]) Let T be a tree of order n, and k an integer with
2<k<n-—1. Then

mar-ea() 5 [(4)-(2)

Let T = T3(n1,n2,n3) € T3, define three paths P,, = z129- - zp,,
P, = y1y2 - Yn, and P, = 2122 2p,, pairwise disjoint paths, where
|V( D =mn; > 2 (i=1,2,3), and ng = maz{ny,na,n3}. If one of n; and
ng is greater than 2, without loss of generality, suppose n; > 2 such that
T=T- T1%o + z121 from T.
Lemma 3.4. Let T and T be the two graphs (of order n) above, then
SWi(T) < SWi(T) for 2 < k < ny + ny and SWi(T) = SWi(T) for
ny+ng <k<n-—1.

Proof. Let e;, f; € E(T) such that ¢; = z;z,41 and f; = zjz,41, § =
1,2,-+-,n1, 5 =1,2,--- ,n3g. For an arbitrary edge e € E(T), a feasible
map from T to T is a bijection ¢ : E(T)— E(f) such that:
(1) Arle) = Ap(9(€)), ¢ € E(P,,),
(2) Ar(er) = Az(p(eirr)), e € E(Pn,)(1
( ))‘T(fj)—)‘ ( (f] ), fJEE( )(
(4) Ar(f1) = Az(e(en)).

By Lemma 3.3, we have that

<i<m —2),
<J

713—1)

SWi(T) — SWi(T)

[ )5 [0 ()
ecE(T)
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=100 = [00) ()
Kxﬂe;l_l))+<w<e]:1_1>>] - KAf«o(ins_l)))+<uf<w<£n3_1>>>]
e Cr -

Since ny,ne < ng, thenny —1 <ng+n3—2. Let ng=n1+ 5, >0,

(3.1)

by Lemma 3.2, we have that

)=o) 1) - )

() ()]
() ()]

%

\%

Thus, we have

SWk(T)>O Zf 2§k§ﬂ1+’ﬂ271;

SWi(T) —
T)— SWip(T) =0 if k> ni+no.

SWy(T)

By repeating the operation in Lemma 3.4, SW;,(T5(2,2,n—2)) gets the
maximum Steiner k-Wiener index for all trees in T3. So, SWy(T5(2,2,n —
2)) is the second largest Steiner k-Wiener index among all trees. Then, we

can have the following Theorem.

Theorem 3.5. Let T # P, be a tree of order n, and k an integer with
2<k<n-—1, then

SWk(T) < SWk(T3(2a2an - 2)) < SWk(P’rL)7
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where SWi(T3(2,2,n - 2)) = (k- 1) (Zii) - <Z:i> + (k:i 1) '

Proof. Let T = T5(2,2,n — 2), define three paths P, = 129, P> = Y192

and P,_o = 2129 -+ - 2,2, pairwise disjoint paths. By the formula (3.1) in

Lemma 3.4, we have that P, = T=T- r1x9 + 21271, and

T ()
LI
(00

Then, SWi(T5(2,2,n — 2)) = SWi(P,) — (Z : i) T (k i 1>'

If G e UCm)\{Cp}, T; (1 = 1,---,t) is a spanning tree of G, then
SWi(G) < min {SWy(Ty), SWi(T2), - ,SWi(Ty)} < SWi(T5(2,2,n —
2)). For any set S C V(C3(P—2)) = V(T5(2,2,n—2)) with |S| =k > 3, it
is easy to see that do, (p,_,)(S) = dry(2,2,n—2)(S). Then SW.(C3(Pn—2)) =
SWi(T5(2,2,n — 2)).

Now let’s compare the Steiner k-Wiener indices of C), to C5(P,—2).

Lemma 3.6. Let k be an integer with 3 < k <n — 2, then
SWk(Cn) < SWk(Cg(Pn_g)).

Proof. Let C,, = ajas---ana; and V(C5(Pn—2)) = {b1,ba, -+ ,b,}, the
vertex by is the pendent vertex of C3(P,,—2), and denote the path P,
biby -+ -bp—2. For a; € V(C,), a feasible map from C,, to C3(P,—2
is a bijection ¢ : V(C,) — V(C5(P,—2)) such that ¢(a;) = b;, i
1,2--- ,n. For any set S C V(C3(P,—2)) with |S| = k, it is easy to see
that de,(p,_,)(S) > do, (S). Moreover, since k < n — 2, there must be

~—
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S" CV(C3(P,—2)) with |S"| = k such that dcy(p, _,)(S) > de, (S"). Then,
we have that SWj(C5(Sp—2)) > SWi(Ch). [ ]

From what has been discussed above, we obtain the upper bound of

Steiner k-Wiener index of unicyclic graphs.

Theorem 3.7. For G € UC(n) (n > 6), let k be an integer with 3 < k <
n — 2, then

SWi(G) < SWi,(C3(Py—2)) = (k — 1) (Z I 1) - (: : i) '

Acknowledgment: This work is supported by the Natural Science Foun-
dation of Xinjiang Province (No. 2021D01C069) and the National Natural
Science Foundation of China (grant number 12161085).

References

[1] J. A. Bondy, U. S. R. Murty, Graph Theory, Springer, New York,
2008.

[2] J. Caceres, A. Mérquez, M. L. Puertas, Steiner distance and convexity
in graphs, Fur. J. Comb. 29 (2008) 726—736.

3] G. Chartrand, O. R. Oellermann, S. Tian, H. B. Zou, Steiner distance
in graphs, C'asopis Pest. Mat. 114 (1989) 399-410.

[4] P. Dankelmann, O. R. Oellermann, H. C. Swart, The average Steiner
distance of a graph, J. Graph Theory 22 (1996) 15-22.

[5] P. Dankelmann, O. R. Oellermann, H. C. Swart, On the average
Steiner distance of graphs with prescribed properties, Discr. Appl.
Math. 79 (1997) 91-103.

[6] I. Gutman, B. Furtula, X. Li, Multicenter Wiener indices and their
applications, J. Serb. Chem. Soc. 80 (2015) 1009-1017.

[7] J. Lai, M. Liu, The Steiner (n-1)-Wiener index of unicyclic graphs, J.
Lanzhou Jiaotong Univ. 40 (2021) 141-143.

[8] X. Li, Y. Mao, I. Gutman, The Steiner Wiener index of a graph,
Discuss. Math. Graph Theory 36 (2016) 455-465.



218

[9]

[10]

[13]

[14]

[15]

[16]

[17]

X. Li, Y. Mao, I. Gutman, Inverse problem on the Steiner Wiener
index, Discuss. Math. Graph Theory 38 (2018) 83-95.

Z. Li, B. Wu, The Steiner Wiener index of trees with given bipartition,
MATCH Commun. Math. Comput. Chem. 86 (2021) 363-373.

X. Li, Z. Zhang, Results on two kinds of Steiner distance-based indices
for some classes of graphs, MATCH Commun. Math. Comput. Chem.
84 (2020) 567-578.

L. Lu, Q. Huang, J. Hou, X. Chen, A sharp lower bound on the Steiner
Wiener index for trees with given diameter, Discr. Math. 341 (2018)
723-731.

Y. Mao, B. Furtula, Steiner distance in chemical graph theory,
MATCH Commun. Math. Comput. Chem. 86 (2021) 211-287.

Y. Mao, Z. Wang, I. Gutman, Steiner Wiener index of graph products,
Trans. Comb. 5 (2016) 39-50.

Y. Mao, Z. Wang, Y. Xiao, C. Ye, Steiner Wiener index and connec-
tivity of graphs, Util. Math. 102 (2017) 51-57.

Z. Tang, H. Deng, The (n,n)-graphs with the first three extremal
Wiener index, J. Math. Chem. 43 (2008) 60-74.

J. Zhang, G. Zhang, H. Wang, X, Zhang, Extremal trees with respect
to the Steiner Wiener index, Discr. Math. Algor. Appl. 11 (2019)
#1950067.



	Introduction
	The lower bound of Steiner k-Wiener index of unicyclic graphs
	The upper bound of Steiner k-Wiener index of unicyclic graphs

