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Abstract

The Steiner k-Wiener index SWk(G) of a connected graph G
is defined as SWk(G) =

∑
S⊆V (G)
|S|=k

d(S), where the d(S) is equal to

the subtree minimum size among subtrees of G that connect S. A
unicyclic graph is a connected graph with the same number of edges
and vertices. In this paper, we study the lower and upper bounds
of Steiner k-Wiener index of unicyclic graphs. In addition, we also
obtain the second largest Steiner k-Wiener index among all trees.

1 Introduction

All graphs in this paper are assumed to be simple, finite and undi-

rected. We refer to [1] for graph theoretical notation and terminology not

explained here. For a connected graph G of order at least two, and a

set S ⊆ V (G) with S nonempty, a Steiner tree connecting S or an S-

Steiner tree (or simply, an S-tree) is a subgraph T of G that is a tree with

S ⊆ V (T ). Let G be a connected graph of order at least 2, and S be a

nonempty set of vertices of G. Then the Steiner distance d(S) is equal to
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the subtree minimum size among subtrees of G that connect S. Obviously,

if |S| = k, d(S) ≥ k − 1. The determination of a Steiner tree in a graph

is a discrete simulation of the well-known geometric Steiner problem, and

Steiner trees are also used in multiprocessor computer networks. For more

details on Steiner distance, we refer to [2–5,13].

Topological index is a kind of mathematical invariants derived from

structure diagram of compounds, which is often used to describe the phys-

ical, chemical and pharmacological characteristics of organic compounds.

The Steiner k-Wiener index and Wiener index are two important topolog-

ical indices. They are useful tools for studying the structural relationship

of organic compounds in chemical research. The Steiner k-Wiener index

SWk(G) of a connected graph G, proposed a generalization by Li et al [8],

is defined by

SWk(G) =
∑

S⊆V (G)
|S|=k

d(S).

The above definition implies SW1(G) = 0, and SWn(G) = n − 1 for a

connected graph G with n vertices. For k = 2, the Steiner 2-Wiener index

SW2(G) coincides with the ordinary Wiener index.

In 2016, Li et al. [8] obtained the lower and upper bounds on Steiner

k-Wiener index for connected graph G and tree T , that is,(
n

k

)
(k − 1) ≤ SWk(G) ≤ (k − 1)

(
n+ 1

k + 1

)

for 2 ≤ k ≤ n− 1, the equality on the right if and only if G is a path.(
n− 1

k − 1

)
(n− 1) ≤ SWk(T ) ≤ (k − 1)

(
n+ 1

k + 1

)

for 2 ≤ k ≤ n − 1, the star Sn and the path Pn attain the lower and

upper bounds, respectively. And in [11], Li et al. determined the Steiner

k-Wiener indices of cycle and wheel. For more studies on Steiner k-Wiener

index, we refer to reader [6] and [8–10,12,14,15,17].

Let UC(n) be the family of unicyclic graphs (i.e., connected graphs

containing exactly one cycle) with n vertices. Let G be a unicyclic graph
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(of order n) with its unique cycle Ct of length t, then G − E(Ct) is a

forest. T1, T2, · · · , Tc (0 ≤ c ≤ t) are all nontrivial trees of G − E(Ct),

then |V (Ti)| = ti ≥ 2, n = t − c +
∑c

i=1 ti, and the common vertex of Ct

and Ti is the cut vertex of G, i = 1, 2, · · · , c. Such a unicyclic graph is

denoted by Ct(Tt1 , Tt2 , · · · , Ttc). If c = 0, then G = Cn. In particular, for

unicyclic graph Ct(St1 , St2 , · · · , Stc), Sti is a star with ti vertices, and the

common vertex of Ct and Sti is the centre of Sti . And for unicyclic graph

Ct(Pt1 , Pt2 , · · · , Ptc), Pti is a path with ti vertices, and the common vertex

of Ct and Pti is a pendent vertex of Pti . When t = 3, c = 1, C3(Sn−2) and

C3(Pn−2) are shown in Figure 1.

(1) (2)

v0 v1 v2 vd−1
vd

(3)

Figure 1. (1) C3(Sn−2); (2) C3(Pn−2); (3) T
v0,··· ,vd
d (m0, · · · ,md).

The caterpillar tree, denoted by T v0,··· ,vd
d (m0, · · · ,md), is the tree

obtained from Pd = v0v1 · · · vd by attaching mi ≥ 0 new vertices to vi

for 0 ≤ i ≤ d (see Figure 1). For a set S ⊆ V (Ct(St1 , St2 , · · · , Stc)), the

Steiner tree connecting S of Ct(St1 , St2 , · · · , Stc) are caterpillar trees.
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Lemma 1.1. ( [16]) Let G be a unicyclic graph of order n, then

SW2(C3(Sn−2)) ≤ SW2(G) ≤ SW2(C3(Pn−2)),

with the equality on the left (or on the right) if and only if G ∼= C3(Sn−2)

(or G ∼= C3(Pn−2)).

Lemma 1.2. ( [7]) Let G be a unicyclic graph of order n, and ti ≥ 1,

then

SWn−1(Cn) ≤ SWn−1(G) ≤ SWn−1(C3(Pt1 , Pt2 , Pt3)),

with the equality on the left (or on the right) if and only if G ∼= Cn (or

G ∼= C3(Pt1 , Pt2 , Pt3)).

In above Lemmas, the lower and upper bounds of the Steiner k-Wiener

index of unicyclic graphs UC(n) are determined for k = 2 and k = n− 1.

We consider the lower and upper bounds of the Steiner k-Wiener index of

UC(n) for 3 ≤ k ≤ n − 2 in this paper. By a simple calculation, we can

obtain the Steiner k-Wiener index of UC(n) for n ≤ 5, as shown in Table

1.

UC(n) SW2 SW3 SW4

C3 6
C4 8 8
C3(S2) 8 9
C5 15 25 15
C4(S2) 16 24 16
C3(S3) 15 24 16
C3(S2, S2) 16 26 17
C3(P3) 17 27 17

Table 1. The Steiner k-Wiener index of UC(n) for n ≤ 5.

In this paper, we introduce some transformations for connected graphs

(of order n) that do change their Steiner k-Wiener index for 3 ≤ k ≤ n−2.

Using these transformations, we study the lower bound of Steiner k-Wiener

index of unicyclic graphs, and obtain the corresponding extremal graph as

well. By studying the second largest Steiner k-Wiener index among all

trees, we obtain the upper bound of Steiner k-Wiener index of unicyclic

graphs. Keep in mind that we assume n ≥ 6 for UC(n).
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2 The lower bound of Steiner k-Wiener in-

dex of unicyclic graphs

Let G,H be two nontrivial connected graphs with u ∈ V (G), and

v ∈ V (H). Let GuH be the graph obtained from G and H by identifying

u with v.

Lemma 2.1. Let G be a nontrivial connected graph with u ∈ V (G), Tm be

a nontrivial tree (of order m) with v ∈ V (Tm). Let GuSm obtained from

GuTm by deleting the edges of Tm and connect the vertices of Tm\{u(v)}
to u(v). For k be an integer with 2 ≤ k ≤ n− 1, then

SWk(GuTm) ≥ SWk(GuSm),

with the equality if and only if GuTm ∼= GuSm.

Proof. For any set S ⊆ V (GuTm) = V (GuSm) with |S| = k. We consider

the following.

If S ⊆ V (G), then dGuTm(S) = dGuSm(S).

If S ⊆ V (Tm), when k > m, S is not exist. S contribute the same

to SWk(Tm) (or SWk(Sm)) and SWk(GuTm) (or SWk(GuSm)). Since

SWk(Tm) ≥ SWk(Sm) with the equality if and only if Tm ∼= Sm, then S

contribute to SWk(GuTm) not less than SWk(GuSm).

If S ∩ V (G\{u(v)}) ̸= ∅ and S ∩ V (Tm\{u(v)}) ̸= ∅. Whether u(v)

is contained in S or not, u(v) must be contained in the Steiner trees con-

necting S for GuTm and GuSm. We divide the Steiner tree TGuTm(S)

into two subtrees TG and TTm , where V (TTm) ⊆ V (Tm), V (TG) ⊆ V (G),

V (TTm) ∩ V (TG) = {u(v)}, |V (TGuTm(S))| = |V (TG)| + |V (TTm)| − 1

and dGuTm(S) = dGuTm(V (TTm)) + dGuTm(V (TG)). Similarly, we di-

vide the Steiner tree TGuSm(S) into two subtrees TG and TSm . Since

dGuTm(V (TTm)) ≥ dGuSm(V (TSm)), dGuTm(V (TG)) = dGuSm(V (TG)), then

dGuTm(S) ≥ dGuSm(S).

From what has been discussed above, we can draw our conclusion. ■

By repeating the operation in Lemma 2.1, we can have the following

corollary.
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Corollary 2.1. Let G = Ct(Tt1 , Tt2 , · · · , Ttc) ̸= Cn in UC(n), and k an

integer with 2 ≤ k ≤ n− 1, then

SWk(G) ≥ SWk (Ct(St1 , St2 , · · · , Stc)) ,

with equality if and only if G ∼= Ct(St1 , St2 , · · · , Stc).

Lemma 2.2. Let Ct(St1 , St2 , · · · , Stc) ̸= Cn in UC(n), and k an integer

with 2 ≤ k ≤ n− 1, then

SWk(Ct(St1 , St2 , · · · , Stc)) ≥ SWk (C3(Sn−2)) ,

with equality if and only if Ct(St1 , St2 , · · · , Stc)
∼= C3(Sn−2).

Proof. Let G = Ct(St1 , · · · , Stc), and let us denote vertex sets of G and

C3(Sn−2) as V (G) = V (C3(Sn−2)) = {u0, u1, · · · , un−1}, where u0 is a cut

vertex of G and u0 is a unique vertex of degree n − 1 in C3(Sn−2). For

any set S ⊆ V (G) with |S| = k, Steiner tree TG(S) is a caterpillar tree.

Let TG(S) = T v0,··· ,vd
d (m0, · · · ,md), where v0, v1, · · · , vd ∈ V (Ct).

If u0 ∈ S, then dC3(Sn−2)(S) = k − 1 ≤ dG(S).

If u0 ̸∈ S, then dC3(Sn−2)(S) = k and dG(S) ≥ k − 1.

When dG(S) = k − 1 = dC3(Sn−2)(S) − 1, then V (TG(S)) = S. Let

N(u0) be the set of neighbors of u0 in G. Define the vertex w ∈ V (TG(S))

such that the distance between u0 and w is the shortest in G, then w ∈
V (Ct), and w = v0 or w = vd. Since u0 is a cut vertex of G, then

there is a vertex w0 ∈ N(u0) such that dG(w0) = 1 and w0 ̸∈ S. Let

S′ = (S\ {w}) ∪ {w0}), then dG(S′) ≥ k + 1 = dC3(Sn−2)(S
′) + 1. In other

words, if there is an S that dG(S) = dC3(Sn−2)(S)− 1, then there must be

S′ such that dG(S
′) ≥ dC3(Sn−2)(S

′) + 1.

Then, we have that SWk(G) ≥ SWk(C3(Sn−2)). ■

Observation 2.1. Let α and k be two positive integers. If k = 1 or

k ≥ α− 1, then

(
α

k

)
< α+ 1; if 2 ≤ k ≤ α− 2, then

(
α

k

)
> α+ 1.

Lemma 2.3. Let k be an integer with 3 ≤ k ≤ n− 2, then

SWk(Cn) > SWk(C3(Sn−2)).
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Proof. For any set S ⊆ V (Cn) with |S| = k. If dCn(S) = k− 1, there are

n such subsets, contributing to SWk by n × (k − 1). And if dCn(S) ≥ k,

the number of such S would be

(
n

k

)
− n.

For any set S ⊆ V (C3(Sn−2)) with |S| = k ≥ 3. If dC3(Sn−2)(S) =

k−1, there are

(
n− 1

k − 1

)
such subsets, contributing to SWk by

(
n− 1

k − 1

)
×

(k−1). And if dC3(Sn−2)(S) = k, the number of such S would be

(
n− 1

k

)
.

It follows that

SWk(Cn)− SWk(C3(Sn−2))

=
∑

S⊆V (Cn)
|S|=k

dCn
(S)−

∑
S⊆V (C3(Sn−2))

|S|=k

dC3(Sn−2)(S)

≥

[
n(k − 1) +

((
n

k

)
− n

)
k

]
−

[(
n− 1

k − 1

)
(k − 1) +

(
n− 1

k

)
k

]

=

[
n−

(
n− 1

k − 1

)]
(k − 1) +

[(
n− 1

k − 1

)
− n

]
k

=

(
n− 1

k − 1

)
− n.

By Observation 2.1, we have that

(
n− 1

k − 1

)
−n > 0 for 3 ≤ k ≤ n−2.

■

Combining Corollary 2.1 and Lemma 2.2-3, we get our main result

immediately.

Theorem 2.4. For G ∈ UC(n) (n ≥ 6), let k be an integer with 3 ≤ k ≤
n− 2, then

SWk(G) ≥ SWk(C3(Sn−2)) =

(
n− 1

k − 1

)
(n− 1),

with the equality holds if and only if G ∼= C3(Sn−2).
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3 The upper bound of Steiner k-Wiener in-

dex of unicyclic graphs

Let G be a unicyclic graph (of order n) with its unique cycle Ct of

length t (3 ≤ t ≤ n), T1, T2, · · · , Tt are all spanning trees of G. For

an integer k with 2 ≤ k ≤ n − 1, any set S ⊆ V (G) with |S| = k, by

Proposition 3.2 of [8], we have that SWk(G) ≤ SWk(Ti), i = 1, 2, · · · , t.
Then, SWk(G) ≤ min {SWk(T1), SWk(T2), · · · , SWk(Tt)} . If G is not a

cycle, then G has at least one spanning tree that is not a path. When

G ∈ UC(n)\{Cn}, then SWk(G) < SWk(Pn). It is necessary to determine

the second largest Steiner k-Wiener index for trees.

Let Tl denote the set of trees (of order n) with l leaves. Let Pn1
,

Pn2
, Pn3

be three paths, pairwise disjoint paths. Define three paths Pn1
=

x1x2 · · ·xn1
, Pn2

= y1y2 · · · yn2
and Pn3

= z1z2 · · · zn3
, where |V (Pni

)| =
ni ≥ 2. Let Pn1

xn1
Pn2

be the graph obtained from Pn1
and Pn2

by

identifying xn1
with yn2

, and T3(n1, n2, n3) be the graph obtained from

Pn1
xn1

Pn2
and Pn3

by identifying xn1
with zn3

. Then, T3(n1, n2, n3) ∈ T3,
and every graph in T3 can be obtained in this way.

In this section, we first prove that SWk(T3(2, 2, n − 2)) reaches the

second largest Steiner k-Wiener index among all trees. Then, we get the

upper bound of the Steiner k-Wiener index for unicyclic graphs by com-

puting SWk(T3(2, 2, n− 2) for 3 ≤ k ≤ n− 2.

Let G0 is a connected graph with v ∈ V (G0), and G be the graph

(of order n) obtained from G0 and Pn1xn1Pn2 by identifying v with xn1 .

Then we construct a new graphs G̃ = G− yn2−1yn2 + yn2−1x1 from G.

Lemma 3.1. Let G and G̃ be the two graphs (of order n) above, and k an

integer with 2 ≤ k ≤ n− 1, then

SWk(G) < SWk(G̃).

Proof. Let T = Pn1
xn1

Pn2
, for any set S ⊆ V (G) = V (G̃) with |S| = k.

If S ⊆ V (G0), then dG(S) = dG̃(S).

If S ⊆ V (T ), S contribute the same to SWk(G) and SWk(G̃) (when

k > n1 + n2 − 1, S is not exist).
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If S∩V (G0\{xn1}) ̸= ∅ and S∩V (T\{xn1}) ̸= ∅, then dG(S) ≤ dG̃(S).

Moreover, since k ≤ n−1, there exists an S′ ⊆ V (G) = V (G̃) with |S′| = k

that contain y1 but not x1, then dG(S
′) < dG̃(S

′).

So, we have that SWk(G) < SWk(G̃). ■

By repeating the operation in Lemma 3.1, we can see that the tree

with the second largest Steiner k-Wiener index must be in T3.

Lemma 3.2. Let p, q and k be three positive integers such that p < q− 1.

If 2 ≤ k ≤ q, then

(
p

k

)
+

(
q

k

)
>

(
p+ 1

k

)
+

(
q − 1

k

)
.

If k ≥ q + 1, then

(
p

k

)
+

(
q

k

)
=

(
p+ 1

k

)
+

(
q − 1

k

)
.

Proof. It follows that[(
p

k

)
+

(
q

k

)]
−

[(
p+ 1

k

)
+

(
q − 1

k

)]

=

[(
q

k

)
−

(
q − 1

k

)]
−

[(
p+ 1

k

)
−

(
p

k

)]

=

(
q − 1

k − 1

)
−

(
p

k − 1

)
.

If 2 ≤ k ≤ q then

(
q − 1

k − 1

)
−

(
p

k − 1

)
> 0.

If k ≥ q + 1 then

(
q − 1

k − 1

)
−

(
p

k − 1

)
= 0.

■

Let T be a tree of order n and e = xy ∈ E(T ). Denote by

Nx(e) = {z ∈ V (T ) : d(z, x) < d(z, y)};

Ny(e) = {z ∈ V (T ) : d(z, x) > d(z, y)}.

And denote the cardinality |Nx(e)| = nx(e), |Ny(e)| = ny(e), respectively.

By the definitions, we have n = nx(e) + ny(e). Denote by λT (e) =
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max{nx(e), ny(e)} and µT (e) = min{nx(e), ny(e)}. There is a formula

for the Steiner k-Wiener index of a tree.

Lemma 3.3. ( [12]) Let T be a tree of order n, and k an integer with

2 ≤ k ≤ n− 1. Then

SWk(T ) = (n− 1)

(
n

k

)
−

∑
e∈E(T )

[(
nx(e)

k

)
+

(
ny(e)

k

)]
.

Let T = T3(n1, n2, n3) ∈ T3, define three paths Pn1
= x1x2 · · ·xn1

,

Pn2
= y1y2 · · · yn2

and Pn3
= z1z2 · · · zn3

, pairwise disjoint paths, where

|V (Pi)| = ni ≥ 2 (i = 1, 2, 3), and n3 = max{n1, n2, n3}. If one of n1 and

n2 is greater than 2, without loss of generality, suppose n1 > 2 such that

T̂ = T − x1x2 + z1x1 from T .

Lemma 3.4. Let T and T̂ be the two graphs (of order n) above, then

SWk(T ) < SWk(T̂ ) for 2 ≤ k < n1 + n2 and SWk(T ) = SWk(T̂ ) for

n1 + n2 ≤ k ≤ n− 1.

Proof. Let ei, fj ∈ E(T ) such that ei = xixi+1 and fj = zjzj+1, i =

1, 2, · · · , n1, j = 1, 2, · · · , n3. For an arbitrary edge e ∈ E(T ), a feasible

map from T to T̂ is a bijection φ : E(T ) → E(T̂ ) such that:

(1) λT (e) = λT̂ (φ(e)), e ∈ E(Pn2
),

(2) λT (ei) = λT̂ (φ(ei+1)), ei ∈ E(Pn1
)(1 ≤ i ≤ n1 − 2),

(3) λT (fj) = λT̂ (φ(fj−1)), fj ∈ E(Pn3
)(2 ≤ j ≤ n3 − 1),

(4) λT (f1) = λT̂ (φ(e1)).

By Lemma 3.3, we have that

SWk(T̂ )− SWk(T )

=

(n− 1)

(
n

k

)
−

∑
e∈E(T̂ )

[(
λT̂ (e)

k

)
+

(
µT̂ (e)

k

)]
−

(n− 1)

(
n

k

)
−

∑
e∈E(T )

[(
λT (e)

k

)
+

(
µT (e)

k

)]
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=
∑

e∈E(T )

[(
λT (e)

k

)
+

(
µT (e)

k

)]
−

∑
e∈E(T̂ )

[(
λT̂ (e)

k

)
+

(
µT̂ (e)

k

)]

=

[(
λT (en1−1)

k

)
+

(
µT (en1−1)

k

)]
−

[(
λT̂ (φ(fn3−1))

k

)
+

(
µT̂ (φ(fn3−1))

k

)]

=

[(
n1 − 1

k

)
+

(
n2 + n3 − 1

k

)]
−

[(
n3

k

)
+

(
n1 + n2 − 2

k

)]
. (3.1)

Since n1, n2 ≤ n3, then n1 − 1 < n2 +n3 − 2. Let n3 = n1 + β, β ≥ 0,

by Lemma 3.2, we have that[(
n1 − 1

k

)
+

(
n2 + n3 − 1

k

)]
≥

[(
n1

k

)
+

(
n2 + n3 − 2

k

)]
≥ · · ·

≥

[(
n1 + β

k

)
+

(
n2 + n3 − 2− β

k

)]

=

[(
n3

k

)
+

(
n1 + n2 − 2

k

)]
.

Thus, we have{
SWk(T̂ )− SWk(T ) > 0 if 2 ≤ k ≤ n1 + n2 − 1;

SWk(T̂ )− SWk(T ) = 0 if k ≥ n1 + n2.

■

By repeating the operation in Lemma 3.4, SWk(T3(2, 2, n−2)) gets the

maximum Steiner k-Wiener index for all trees in T3. So, SWk(T3(2, 2, n−
2)) is the second largest Steiner k-Wiener index among all trees. Then, we

can have the following Theorem.

Theorem 3.5. Let T ̸= Pn be a tree of order n, and k an integer with

2 ≤ k ≤ n− 1, then

SWk(T ) ≤ SWk(T3(2, 2, n− 2)) < SWk(Pn),
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where SWk(T3(2, 2, n− 2)) = (k − 1)

(
n+ 1

k + 1

)
−

(
n− 2

k − 1

)
+

(
1

k − 1

)
.

Proof. Let T = T3(2, 2, n − 2), define three paths P2 = x1x2, P2 = y1y2

and Pn−2 = z1z2 · · · zn−2, pairwise disjoint paths. By the formula (3.1) in

Lemma 3.4, we have that Pn = T̂ = T − x1x2 + z1x1, and

SWk(Pn)− SWk(T ) = SWk(T̂ )− SWk(T )

=

[(
n1 − 1

k

)
+

(
n2 + n3 − 1

k

)]
−

[(
n3

k

)
+

(
n1 + n2 − 2

k

)]

=

[(
1

k

)
+

(
n− 1

k

)]
−

[(
2

k

)
+

(
n− 2

k

)]

=

(
n− 2

k − 1

)
−

(
1

k − 1

)
.

Then, SWk(T3(2, 2, n− 2)) = SWk(Pn)−

(
n− 2

k − 1

)
+

(
1

k − 1

)
.

■

If G ∈ UC(n)\{Cn}, Ti (i = 1, · · · , t) is a spanning tree of G, then

SWk(G) ≤ min {SWk(T1), SWk(T2), · · · , SWk(Tt)} ≤ SWk(T3(2, 2, n −
2)). For any set S ⊆ V (C3(Pn−2)) = V (T3(2, 2, n−2)) with |S| = k ≥ 3, it

is easy to see that dC3(Pn−2)(S) = dT3(2,2,n−2)(S). Then SWk(C3(Pn−2)) =

SWk(T3(2, 2, n− 2)).

Now let’s compare the Steiner k-Wiener indices of Cn to C3(Pn−2).

Lemma 3.6. Let k be an integer with 3 ≤ k ≤ n− 2, then

SWk(Cn) < SWk(C3(Pn−2)).

Proof. Let Cn = a1a2 · · · ana1 and V (C3(Pn−2)) = {b1, b2, · · · , bn}, the
vertex b1 is the pendent vertex of C3(Pn−2), and denote the path Pn−2 =

b1b2 · · · bn−2. For ai ∈ V (Cn), a feasible map from Cn to C3(Pn−2)

is a bijection ψ : V (Cn) −→ V (C3(Pn−2)) such that ψ(ai) = bi, i =

1, 2 · · · , n. For any set S ⊆ V (C3(Pn−2)) with |S| = k, it is easy to see

that dC3(Pn−2)(S) ≥ dCn(S). Moreover, since k ≤ n − 2, there must be
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S′ ⊆ V (C3(Pn−2)) with |S′| = k such that dC3(Pn−2)(S
′) > dCn(S

′). Then,

we have that SWk(C3(Sn−2)) > SWk(Cn). ■

From what has been discussed above, we obtain the upper bound of

Steiner k-Wiener index of unicyclic graphs.

Theorem 3.7. For G ∈ UC(n) (n ≥ 6), let k be an integer with 3 ≤ k ≤
n− 2, then

SWk(G) ≤ SWk(C3(Pn−2)) = (k − 1)

(
n+ 1

k + 1

)
−

(
n− 2

k − 1

)
.
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[2] J. Cáceres, A. Márquez, M. L. Puertas, Steiner distance and convexity
in graphs, Eur. J. Comb. 29 (2008) 726–736.

[3] G. Chartrand, O. R. Oellermann, S. Tian, H. B. Zou, Steiner distance
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