On the Extremal Steiner Wiener Index of Unicyclic Graphs

Yinqin Fan, Biao Zhao*

College of Mathematics and Systems Science, Xinjiang University, Urumqi, Xinjiang 830017, P. R. China

fan_yqin@163.com, zhb_xj@163.com

(Received December 29, 2021)

Abstract

The Steiner k-Wiener index $SW_k(G)$ of a connected graph G is defined as $SW_k(G) = \sum_{\substack{S \subseteq V(G) \\ |S| = k}} d(S)$, where the d(S) is equal to

the subtree minimum size among subtrees of G that connect S. A unicyclic graph is a connected graph with the same number of edges and vertices. In this paper, we study the lower and upper bounds of Steiner k-Wiener index of unicyclic graphs. In addition, we also obtain the second largest Steiner k-Wiener index among all trees.

1 Introduction

All graphs in this paper are assumed to be simple, finite and undirected. We refer to [1] for graph theoretical notation and terminology not explained here. For a connected graph G of order at least two, and a set $S \subseteq V(G)$ with S nonempty, a *Steiner tree connecting* S or an S-*Steiner tree* (or simply, an S-tree) is a subgraph T of G that is a tree with $S \subseteq V(T)$. Let G be a connected graph of order at least 2, and S be a nonempty set of vertices of G. Then the *Steiner distance* d(S) is equal to

^{*}Corresponding author.

the subtree minimum size among subtrees of G that connect S. Obviously, if |S| = k, $d(S) \ge k - 1$. The determination of a Steiner tree in a graph is a discrete simulation of the well-known geometric Steiner problem, and Steiner trees are also used in multiprocessor computer networks. For more details on Steiner distance, we refer to [2–5, 13].

Topological index is a kind of mathematical invariants derived from structure diagram of compounds, which is often used to describe the physical, chemical and pharmacological characteristics of organic compounds. The Steiner k-Wiener index and Wiener index are two important topological indices. They are useful tools for studying the structural relationship of organic compounds in chemical research. The Steiner k-Wiener index $SW_k(G)$ of a connected graph G, proposed a generalization by Li et al [8], is defined by

$$SW_k(G) = \sum_{\substack{S \subseteq V(G) \\ |S|=k}} d(S).$$

The above definition implies $SW_1(G) = 0$, and $SW_n(G) = n - 1$ for a connected graph G with n vertices. For k = 2, the Steiner 2-Wiener index $SW_2(G)$ coincides with the ordinary Wiener index.

In 2016, Li et al. [8] obtained the lower and upper bounds on Steiner k-Wiener index for connected graph G and tree T, that is,

$$\binom{n}{k}(k-1) \le SW_k(G) \le (k-1)\binom{n+1}{k+1}$$

for $2 \le k \le n-1$, the equality on the right if and only if G is a path.

$$\binom{n-1}{k-1}(n-1) \le SW_k(T) \le (k-1)\binom{n+1}{k+1}$$

for $2 \leq k \leq n-1$, the star S_n and the path P_n attain the lower and upper bounds, respectively. And in [11], Li et al. determined the Steiner k-Wiener indices of cycle and wheel. For more studies on Steiner k-Wiener index, we refer to reader [6] and [8–10, 12, 14, 15, 17].

Let UC(n) be the family of *unicyclic graphs* (i.e., connected graphs containing exactly one cycle) with n vertices. Let G be a unicyclic graph

(of order n) with its unique cycle C_t of length t, then $G - E(C_t)$ is a forest. T_1, T_2, \dots, T_c $(0 \le c \le t)$ are all nontrivial trees of $G - E(C_t)$, then $|V(T_i)| = t_i \ge 2$, $n = t - c + \sum_{i=1}^c t_i$, and the common vertex of C_t and T_i is the cut vertex of G, $i = 1, 2, \dots, c$. Such a unicyclic graph is denoted by $C_t(T_{t_1}, T_{t_2}, \dots, T_{t_c})$. If c = 0, then $G = C_n$. In particular, for unicyclic graph $C_t(S_{t_1}, S_{t_2}, \dots, S_{t_c})$, S_{t_i} is a star with t_i vertices, and the common vertex of C_t and S_{t_i} is the centre of S_{t_i} . And for unicyclic graph $C_t(P_{t_1}, P_{t_2}, \dots, P_{t_c})$, P_{t_i} is a path with t_i vertices, and the common vertex of C_t and P_{t_i} is a pendent vertex of P_{t_i} . When t = 3, c = 1, $C_3(S_{n-2})$ and $C_3(P_{n-2})$ are shown in Figure 1.

Figure 1. (1) $C_3(S_{n-2})$; (2) $C_3(P_{n-2})$; (3) $T_d^{v_0, \cdots, v_d}(m_0, \cdots, m_d)$.

The caterpillar tree, denoted by $T_d^{v_0, \dots, v_d}(m_0, \dots, m_d)$, is the tree obtained from $P_d = v_0 v_1 \cdots v_d$ by attaching $m_i \ge 0$ new vertices to v_i for $0 \le i \le d$ (see Figure 1). For a set $S \subseteq V(C_t(S_{t_1}, S_{t_2}, \dots, S_{t_c}))$, the Steiner tree connecting S of $C_t(S_{t_1}, S_{t_2}, \dots, S_{t_c})$ are caterpillar trees. Lemma 1.1. ([16]) Let G be a unicyclic graph of order n, then

$$SW_2(C_3(S_{n-2})) \le SW_2(G) \le SW_2(C_3(P_{n-2})),$$

with the equality on the left (or on the right) if and only if $G \cong C_3(S_{n-2})$ (or $G \cong C_3(P_{n-2})$).

Lemma 1.2. ([7]) Let G be a unicyclic graph of order n, and $t_i \ge 1$, then

$$SW_{n-1}(C_n) \le SW_{n-1}(G) \le SW_{n-1}(C_3(P_{t_1}, P_{t_2}, P_{t_3})),$$

with the equality on the left (or on the right) if and only if $G \cong C_n$ (or $G \cong C_3(P_{t_1}, P_{t_2}, P_{t_3})$).

In above Lemmas, the lower and upper bounds of the Steiner k-Wiener index of unicyclic graphs UC(n) are determined for k = 2 and k = n - 1. We consider the lower and upper bounds of the Steiner k-Wiener index of UC(n) for $3 \le k \le n - 2$ in this paper. By a simple calculation, we can obtain the Steiner k-Wiener index of UC(n) for $n \le 5$, as shown in Table 1.

UC(n)	SW_2	SW_3	SW_4
C_3	6		
C_4	8	8	
$C_3(S_2)$	8	9	
C_5	15	25	15
$C_4(S_2)$	16	24	16
$C_{3}(S_{3})$	15	24	16
$C_3(S_2, S_2)$	16	26	17
$C_3(P_3)$	17	27	17

Table 1. The Steiner k-Wiener index of UC(n) for $n \leq 5$.

In this paper, we introduce some transformations for connected graphs (of order n) that do change their Steiner k-Wiener index for $3 \le k \le n-2$. Using these transformations, we study the lower bound of Steiner k-Wiener index of unicyclic graphs, and obtain the corresponding extremal graph as well. By studying the second largest Steiner k-Wiener index among all trees, we obtain the upper bound of Steiner k-Wiener index of unicyclic graphs. Keep in mind that we assume $n \ge 6$ for UC(n).

2 The lower bound of Steiner *k*-Wiener index of unicyclic graphs

Let G, H be two nontrivial connected graphs with $u \in V(G)$, and $v \in V(H)$. Let GuH be the graph obtained from G and H by identifying u with v.

Lemma 2.1. Let G be a nontrivial connected graph with $u \in V(G)$, T_m be a nontrivial tree (of order m) with $v \in V(T_m)$. Let GuS_m obtained from GuT_m by deleting the edges of T_m and connect the vertices of $T_m \setminus \{u(v)\}$ to u(v). For k be an integer with $2 \le k \le n-1$, then

$$SW_k(GuT_m) \ge SW_k(GuS_m),$$

with the equality if and only if $GuT_m \cong GuS_m$.

Proof. For any set $S \subseteq V(GuT_m) = V(GuS_m)$ with |S| = k. We consider the following.

If $S \subseteq V(G)$, then $d_{GuT_m}(S) = d_{GuS_m}(S)$.

If $S \subseteq V(T_m)$, when k > m, S is not exist. S contribute the same to $SW_k(T_m)$ (or $SW_k(S_m)$) and $SW_k(GuT_m)$ (or $SW_k(GuS_m)$). Since $SW_k(T_m) \ge SW_k(S_m)$ with the equality if and only if $T_m \cong S_m$, then Scontribute to $SW_k(GuT_m)$ not less than $SW_k(GuS_m)$.

If $S \cap V(G \setminus \{u(v)\}) \neq \emptyset$ and $S \cap V(T_m \setminus \{u(v)\}) \neq \emptyset$. Whether u(v)is contained in S or not, u(v) must be contained in the Steiner trees connecting S for GuT_m and GuS_m . We divide the Steiner tree $T_{GuT_m}(S)$ into two subtrees T_G and T_{T_m} , where $V(T_{T_m}) \subseteq V(T_m)$, $V(T_G) \subseteq V(G)$, $V(T_{T_m}) \cap V(T_G) = \{u(v)\}, |V(T_{GuT_m}(S))| = |V(T_G)| + |V(T_{T_m})| - 1$ and $d_{GuT_m}(S) = d_{GuT_m}(V(T_{T_m})) + d_{GuT_m}(V(T_G))$. Similarly, we divide the Steiner tree $T_{GuS_m}(S)$ into two subtrees T_G and T_{S_m} . Since $d_{GuT_m}(V(T_{T_m})) \ge d_{GuS_m}(V(T_{S_m})), d_{GuT_m}(V(T_G)) = d_{GuS_m}(V(T_G))$, then $d_{GuT_m}(S) \ge d_{GuS_m}(S)$.

From what has been discussed above, we can draw our conclusion. \blacksquare

By repeating the operation in Lemma 2.1, we can have the following corollary.

Corollary 2.1. Let $G = C_t(T_{t_1}, T_{t_2}, \dots, T_{t_c}) \neq C_n$ in UC(n), and k an integer with $2 \leq k \leq n-1$, then

$$SW_k(G) \ge SW_k(C_t(S_{t_1}, S_{t_2}, \cdots, S_{t_c})),$$

with equality if and only if $G \cong C_t(S_{t_1}, S_{t_2}, \cdots, S_{t_c})$.

Lemma 2.2. Let $C_t(S_{t_1}, S_{t_2}, \dots, S_{t_c}) \neq C_n$ in UC(n), and k an integer with $2 \leq k \leq n-1$, then

$$SW_k(C_t(S_{t_1}, S_{t_2}, \cdots, S_{t_c})) \ge SW_k(C_3(S_{n-2})),$$

with equality if and only if $C_t(S_{t_1}, S_{t_2}, \cdots, S_{t_c}) \cong C_3(S_{n-2})$.

Proof. Let $G = C_t(S_{t_1}, \dots, S_{t_c})$, and let us denote vertex sets of G and $C_3(S_{n-2})$ as $V(G) = V(C_3(S_{n-2})) = \{u_0, u_1, \dots, u_{n-1}\}$, where u_0 is a cut vertex of G and u_0 is a unique vertex of degree n-1 in $C_3(S_{n-2})$. For any set $S \subseteq V(G)$ with |S| = k, Steiner tree $T_G(S)$ is a caterpillar tree. Let $T_G(S) = T_d^{v_0, \dots, v_d}(m_0, \dots, m_d)$, where $v_0, v_1, \dots, v_d \in V(C_t)$.

If $u_0 \in S$, then $d_{C_3(S_{n-2})}(S) = k - 1 \le d_G(S)$.

If $u_0 \notin S$, then $d_{C_3(S_{n-2})}(S) = k$ and $d_G(S) \ge k - 1$.

When $d_G(S) = k - 1 = d_{C_3(S_{n-2})}(S) - 1$, then $V(T_G(S)) = S$. Let $N(u_0)$ be the set of neighbors of u_0 in G. Define the vertex $w \in V(T_G(S))$ such that the distance between u_0 and w is the shortest in G, then $w \in V(C_t)$, and $w = v_0$ or $w = v_d$. Since u_0 is a cut vertex of G, then there is a vertex $w_0 \in N(u_0)$ such that $d_G(w_0) = 1$ and $w_0 \notin S$. Let $S' = (S \setminus \{w\}) \cup \{w_0\}$, then $d_G(S') \ge k + 1 = d_{C_3(S_{n-2})}(S') + 1$. In other words, if there is an S that $d_G(S) = d_{C_3(S_{n-2})}(S) - 1$, then there must be S' such that $d_G(S') \ge d_{C_3(S_{n-2})}(S') + 1$.

Then, we have that $SW_k(G) \ge SW_k(C_3(S_{n-2}))$.

Observation 2.1. Let α and k be two positive integers. If k = 1 or $k \ge \alpha - 1$, then $\begin{pmatrix} \alpha \\ k \end{pmatrix} < \alpha + 1$; if $2 \le k \le \alpha - 2$, then $\begin{pmatrix} \alpha \\ k \end{pmatrix} > \alpha + 1$.

Lemma 2.3. Let k be an integer with $3 \le k \le n-2$, then

$$SW_k(C_n) > SW_k(C_3(S_{n-2})).$$

Proof. For any set $S \subseteq V(C_n)$ with |S| = k. If $d_{C_n}(S) = k - 1$, there are n such subsets, contributing to SW_k by $n \times (k-1)$. And if $d_{C_n}(S) \ge k$,

n such subsets, contributing the number of such *S* would be $\binom{n}{k} - n$. For any set $S \subseteq V(C_3(S_{n-2}))$ with $|S| = k \ge 3$. If $d_{C_3(S_{n-2})}(S) = k-1$, there are $\binom{n-1}{k-1}$ such subsets, contributing to SW_k by $\binom{n-1}{k-1} \times \binom{n-1}{k-1}$ (k-1). And if $d_{C_3(S_{n-2})}(S) = k$, the number of such S would be $\binom{n-1}{k}$. It follows that

$$SW_{k}(C_{n}) - SW_{k}(C_{3}(S_{n-2}))$$

$$= \sum_{\substack{S \subseteq V(C_{n}) \\ |S| = k}} d_{C_{n}}(S) - \sum_{\substack{S \subseteq V(C_{3}(S_{n-2})) \\ |S| = k}} d_{C_{3}(S_{n-2})}(S)$$

$$\geq \left[n(k-1) + \left(\binom{n}{k} - n \right) k \right] - \left[\binom{n-1}{k-1} (k-1) + \binom{n-1}{k} k \right]$$

$$= \left[n - \binom{n-1}{k-1} \right] (k-1) + \left[\binom{n-1}{k-1} - n \right] k$$

$$= \binom{n-1}{k-1} - n.$$

By Observation 2.1, we have that $\binom{n-1}{k-1} - n > 0$ for $3 \le k \le n-2$.

Combining Corollary 2.1 and Lemma 2.2-3, we get our main result immediately.

Theorem 2.4. For $G \in UC(n)$ $(n \ge 6)$, let k be an integer with $3 \le k \le$ n-2, then

$$SW_k(G) \ge SW_k(C_3(S_{n-2})) = \binom{n-1}{k-1}(n-1),$$

with the equality holds if and only if $G \cong C_3(S_{n-2})$.

3 The upper bound of Steiner k-Wiener index of unicyclic graphs

Let G be a unicyclic graph (of order n) with its unique cycle C_t of length t $(3 \le t \le n)$, T_1, T_2, \dots, T_t are all spanning trees of G. For an integer k with $2 \le k \le n-1$, any set $S \subseteq V(G)$ with |S| = k, by Proposition 3.2 of [8], we have that $SW_k(G) \le SW_k(T_i)$, $i = 1, 2, \dots, t$. Then, $SW_k(G) \le \min \{SW_k(T_1), SW_k(T_2), \dots, SW_k(T_t)\}$. If G is not a cycle, then G has at least one spanning tree that is not a path. When $G \in UC(n) \setminus \{C_n\}$, then $SW_k(G) < SW_k(P_n)$. It is necessary to determine the second largest Steiner k-Wiener index for trees.

Let \mathcal{T}_l denote the set of trees (of order n) with l leaves. Let P_{n_1} , P_{n_2} , P_{n_3} be three paths, pairwise disjoint paths. Define three paths $P_{n_1} = x_1x_2\cdots x_{n_1}$, $P_{n_2} = y_1y_2\cdots y_{n_2}$ and $P_{n_3} = z_1z_2\cdots z_{n_3}$, where $|V(P_{n_i})| = n_i \geq 2$. Let $P_{n_1}x_{n_1}P_{n_2}$ be the graph obtained from P_{n_1} and P_{n_2} by identifying x_{n_1} with y_{n_2} , and $T_3(n_1, n_2, n_3)$ be the graph obtained from $P_{n_1}x_{n_1}P_{n_2}$ and P_{n_3} by identifying x_{n_1} with z_{n_3} . Then, $T_3(n_1, n_2, n_3) \in \mathcal{T}_3$, and every graph in \mathcal{T}_3 can be obtained in this way.

In this section, we first prove that $SW_k(T_3(2, 2, n-2))$ reaches the second largest Steiner k-Wiener index among all trees. Then, we get the upper bound of the Steiner k-Wiener index for unicyclic graphs by computing $SW_k(T_3(2, 2, n-2))$ for $3 \le k \le n-2$.

Let G_0 is a connected graph with $v \in V(G_0)$, and G be the graph (of order n) obtained from G_0 and $P_{n_1}x_{n_1}P_{n_2}$ by identifying v with x_{n_1} . Then we construct a new graphs $\tilde{G} = G - y_{n_2-1}y_{n_2} + y_{n_2-1}x_1$ from G.

Lemma 3.1. Let G and \widetilde{G} be the two graphs (of order n) above, and k an integer with $2 \le k \le n-1$, then

$$SW_k(G) < SW_k(\widetilde{G}).$$

Proof. Let $T = P_{n_1} x_{n_1} P_{n_2}$, for any set $S \subseteq V(G) = V(\widetilde{G})$ with |S| = k. If $S \subseteq V(G_0)$, then $d_G(S) = d_{\widetilde{G}}(S)$.

If $S \subseteq V(T)$, S contribute the same to $SW_k(G)$ and $SW_k(\widetilde{G})$ (when $k > n_1 + n_2 - 1$, S is not exist).

If $S \cap V(G_0 \setminus \{x_{n_1}\}) \neq \emptyset$ and $S \cap V(T \setminus \{x_{n_1}\}) \neq \emptyset$, then $d_G(S) \leq d_{\tilde{G}}(S)$. Moreover, since $k \leq n-1$, there exists an $S' \subseteq V(G) = V(\tilde{G})$ with |S'| = k that contain y_1 but not x_1 , then $d_G(S') < d_{\tilde{G}}(S')$.

So, we have that $SW_k(G) < SW_k(\widetilde{G})$.

By repeating the operation in Lemma 3.1, we can see that the tree with the second largest Steiner k-Wiener index must be in \mathcal{T}_3 .

Lemma 3.2. Let
$$p, q$$
 and k be three positive integers such that $p < q - 1$.
If $2 \le k \le q$, then $\binom{p}{k} + \binom{q}{k} > \binom{p+1}{k} + \binom{q-1}{k}$.
If $k \ge q+1$, then $\binom{p}{k} + \binom{q}{k} = \binom{p+1}{k} + \binom{q-1}{k}$.

Proof. It follows that

$$\begin{bmatrix} \begin{pmatrix} p \\ k \end{pmatrix} + \begin{pmatrix} q \\ k \end{pmatrix} \end{bmatrix} - \begin{bmatrix} \begin{pmatrix} p+1 \\ k \end{pmatrix} + \begin{pmatrix} q-1 \\ k \end{pmatrix} \end{bmatrix}$$
$$= \begin{bmatrix} \begin{pmatrix} q \\ k \end{pmatrix} - \begin{pmatrix} q-1 \\ k \end{pmatrix} \end{bmatrix} - \begin{bmatrix} \begin{pmatrix} p+1 \\ k \end{pmatrix} - \begin{pmatrix} p \\ k \end{pmatrix} \end{bmatrix}$$
$$= \begin{pmatrix} q-1 \\ k-1 \end{pmatrix} - \begin{pmatrix} p \\ k-1 \end{pmatrix}.$$

If
$$2 \le k \le q$$
 then $\binom{q-1}{k-1} - \binom{p}{k-1} > 0$.
If $k \ge q+1$ then $\binom{q-1}{k-1} - \binom{p}{k-1} = 0$.

Let T be a tree of order n and $e = xy \in E(T)$. Denote by

$$N_x(e) = \{ z \in V(T) : d(z, x) < d(z, y) \};$$
$$N_y(e) = \{ z \in V(T) : d(z, x) > d(z, y) \}.$$

And denote the cardinality $|N_x(e)| = n_x(e)$, $|N_y(e)| = n_y(e)$, respectively. By the definitions, we have $n = n_x(e) + n_y(e)$. Denote by $\lambda_T(e) =$

 $max\{n_x(e), n_y(e)\}\$ and $\mu_T(e) = min\{n_x(e), n_y(e)\}$. There is a formula for the Steiner k-Wiener index of a tree.

Lemma 3.3. ([12]) Let T be a tree of order n, and k an integer with $2 \le k \le n-1$. Then

$$SW_k(T) = (n-1) \binom{n}{k} - \sum_{e \in E(T)} \left[\binom{n_x(e)}{k} + \binom{n_y(e)}{k} \right].$$

Let $T = T_3(n_1, n_2, n_3) \in \mathcal{T}_3$, define three paths $P_{n_1} = x_1 x_2 \cdots x_{n_1}$, $P_{n_2} = y_1 y_2 \cdots y_{n_2}$ and $P_{n_3} = z_1 z_2 \cdots z_{n_3}$, pairwise disjoint paths, where $|V(P_i)| = n_i \ge 2$ (i = 1, 2, 3), and $n_3 = max\{n_1, n_2, n_3\}$. If one of n_1 and n_2 is greater than 2, without loss of generality, suppose $n_1 > 2$ such that $\widehat{T} = T - x_1 x_2 + z_1 x_1$ from T.

Lemma 3.4. Let T and \hat{T} be the two graphs (of order n) above, then $SW_k(T) < SW_k(\hat{T})$ for $2 \le k < n_1 + n_2$ and $SW_k(T) = SW_k(\hat{T})$ for $n_1 + n_2 \le k \le n - 1$.

Proof. Let $e_i, f_j \in E(T)$ such that $e_i = x_i x_{i+1}$ and $f_j = z_j z_{j+1}$, $i = 1, 2, \dots, n_1, j = 1, 2, \dots, n_3$. For an arbitrary edge $e \in E(T)$, a feasible map from T to \widehat{T} is a bijection $\varphi : E(T) \to E(\widehat{T})$ such that:

- (1) $\lambda_T(e) = \lambda_{\widehat{T}}(\varphi(e)), e \in E(P_{n_2}),$ (2) $\lambda_T(e_i) = \lambda_{\widehat{T}}(\varphi(e_{i+1})), e_i \in E(P_{n_1}) (1 \le i \le n_1 - 2),$ (3) $\lambda_T(f_j) = \lambda_{\widehat{T}}(\varphi(f_{j-1})), f_j \in E(P_{n_3}) (2 \le j \le n_3 - 1),$
- (4) $\lambda_T(f_1) = \lambda_{\widehat{T}}(\varphi(e_1)).$

By Lemma 3.3, we have that

$$SW_{k}(\widehat{T}) - SW_{k}(T)$$

$$= \left[(n-1) \binom{n}{k} - \sum_{e \in E(\widehat{T})} \left[\binom{\lambda_{\widehat{T}}(e)}{k} + \binom{\mu_{\widehat{T}}(e)}{k} \right] \right]$$

$$- \left[(n-1) \binom{n}{k} - \sum_{e \in E(T)} \left[\binom{\lambda_{T}(e)}{k} + \binom{\mu_{T}(e)}{k} \right] \right]$$

$$=\sum_{e\in E(T)} \left[\binom{\lambda_T(e)}{k} + \binom{\mu_T(e)}{k} \right] - \sum_{e\in E(\widehat{T})} \left[\binom{\lambda_{\widehat{T}}(e)}{k} + \binom{\mu_{\widehat{T}}(e)}{k} \right]$$
$$= \left[\binom{\lambda_T(e_{n_1-1})}{k} + \binom{\mu_T(e_{n_1-1})}{k} \right] - \left[\binom{\lambda_{\widehat{T}}(\varphi(f_{n_3-1}))}{k} + \binom{\mu_{\widehat{T}}(\varphi(f_{n_3-1}))}{k} \right]$$
$$= \left[\binom{n_1 - 1}{k} + \binom{n_2 + n_3 - 1}{k} \right] - \left[\binom{n_3}{k} + \binom{n_1 + n_2 - 2}{k} \right]. \quad (3.1)$$

Since $n_1, n_2 \leq n_3$, then $n_1 - 1 < n_2 + n_3 - 2$. Let $n_3 = n_1 + \beta$, $\beta \geq 0$, by Lemma 3.2, we have that

$$\left[\binom{n_1 - 1}{k} + \binom{n_2 + n_3 - 1}{k} \right] \ge \left[\binom{n_1}{k} + \binom{n_2 + n_3 - 2}{k} \right]$$
$$\ge \cdots$$
$$\ge \left[\binom{n_1 + \beta}{k} + \binom{n_2 + n_3 - 2 - \beta}{k} \right]$$
$$= \left[\binom{n_3}{k} + \binom{n_1 + n_2 - 2}{k} \right].$$

Thus, we have

$$\begin{cases} SW_k(\hat{T}) - SW_k(T) > 0 & if \quad 2 \le k \le n_1 + n_2 - 1; \\ SW_k(\hat{T}) - SW_k(T) = 0 & if \quad k \ge n_1 + n_2. \end{cases}$$

By repeating the operation in Lemma 3.4, $SW_k(T_3(2, 2, n-2))$ gets the maximum Steiner k-Wiener index for all trees in \mathcal{T}_3 . So, $SW_k(T_3(2, 2, n-2))$ is the second largest Steiner k-Wiener index among all trees. Then, we can have the following Theorem.

Theorem 3.5. Let $T \neq P_n$ be a tree of order n, and k an integer with $2 \leq k \leq n-1$, then

$$SW_k(T) \le SW_k(T_3(2, 2, n-2)) < SW_k(P_n),$$

where
$$SW_k(T_3(2,2,n-2)) = (k-1)\binom{n+1}{k+1} - \binom{n-2}{k-1} + \binom{1}{k-1}$$
.

Proof. Let $T = T_3(2, 2, n-2)$, define three paths $P_2 = x_1x_2$, $P_2 = y_1y_2$ and $P_{n-2} = z_1z_2\cdots z_{n-2}$, pairwise disjoint paths. By the formula (3.1) in Lemma 3.4, we have that $P_n = \hat{T} = T - x_1x_2 + z_1x_1$, and

$$SW_k(P_n) - SW_k(T) = SW_k(\hat{T}) - SW_k(T)$$

$$= \left[\binom{n_1 - 1}{k} + \binom{n_2 + n_3 - 1}{k} \right] - \left[\binom{n_3}{k} + \binom{n_1 + n_2 - 2}{k} \right]$$

$$= \left[\binom{1}{k} + \binom{n - 1}{k} \right] - \left[\binom{2}{k} + \binom{n - 2}{k} \right]$$

$$= \binom{n - 2}{k - 1} - \binom{1}{k - 1}.$$

Then, $SW_k(T_3(2,2,n-2)) = SW_k(P_n) - \binom{n-2}{k-1} + \binom{1}{k-1}.$

If $G \in UC(n) \setminus \{C_n\}$, T_i $(i = 1, \dots, t)$ is a spanning tree of G, then $SW_k(G) \leq \min \{SW_k(T_1), SW_k(T_2), \dots, SW_k(T_t)\} \leq SW_k(T_3(2, 2, n - 2))$. For any set $S \subseteq V(C_3(P_{n-2})) = V(T_3(2, 2, n - 2))$ with $|S| = k \geq 3$, it is easy to see that $d_{C_3(P_{n-2})}(S) = d_{T_3(2,2,n-2)}(S)$. Then $SW_k(C_3(P_{n-2})) = SW_k(T_3(2, 2, n - 2))$.

Now let's compare the Steiner k-Wiener indices of C_n to $C_3(P_{n-2})$.

Lemma 3.6. Let k be an integer with $3 \le k \le n-2$, then

$$SW_k(C_n) < SW_k(C_3(P_{n-2})).$$

Proof. Let $C_n = a_1 a_2 \cdots a_n a_1$ and $V(C_3(P_{n-2})) = \{b_1, b_2, \cdots, b_n\}$, the vertex b_1 is the pendent vertex of $C_3(P_{n-2})$, and denote the path $P_{n-2} = b_1 b_2 \cdots b_{n-2}$. For $a_i \in V(C_n)$, a feasible map from C_n to $C_3(P_{n-2})$ is a bijection $\psi : V(C_n) \longrightarrow V(C_3(P_{n-2}))$ such that $\psi(a_i) = b_i$, $i = 1, 2 \cdots, n$. For any set $S \subseteq V(C_3(P_{n-2}))$ with |S| = k, it is easy to see that $d_{C_3(P_{n-2})}(S) \ge d_{C_n}(S)$. Moreover, since $k \le n-2$, there must be

 $S' \subseteq V(C_3(P_{n-2}))$ with |S'| = k such that $d_{C_3(P_{n-2})}(S') > d_{C_n}(S')$. Then, we have that $SW_k(C_3(S_{n-2})) > SW_k(C_n)$.

From what has been discussed above, we obtain the upper bound of Steiner k-Wiener index of unicyclic graphs.

Theorem 3.7. For $G \in UC(n)$ $(n \ge 6)$, let k be an integer with $3 \le k \le n-2$, then

$$SW_k(G) \le SW_k(C_3(P_{n-2})) = (k-1)\binom{n+1}{k+1} - \binom{n-2}{k-1}.$$

Acknowledgment: This work is supported by the Natural Science Foundation of Xinjiang Province (No. 2021D01C069) and the National Natural Science Foundation of China (grant number 12161085).

References

- J. A. Bondy, U. S. R. Murty, *Graph Theory*, Springer, New York, 2008.
- [2] J. Cáceres, A. Márquez, M. L. Puertas, Steiner distance and convexity in graphs, *Eur. J. Comb.* 29 (2008) 726–736.
- [3] G. Chartrand, O. R. Oellermann, S. Tian, H. B. Zou, Steiner distance in graphs, *Časopis Pest. Mat.* 114 (1989) 399–410.
- [4] P. Dankelmann, O. R. Oellermann, H. C. Swart, The average Steiner distance of a graph, J. Graph Theory 22 (1996) 15–22.
- [5] P. Dankelmann, O. R. Oellermann, H. C. Swart, On the average Steiner distance of graphs with prescribed properties, *Discr. Appl. Math.* **79** (1997) 91–103.
- [6] I. Gutman, B. Furtula, X. Li, Multicenter Wiener indices and their applications, J. Serb. Chem. Soc. 80 (2015) 1009–1017.
- [7] J. Lai, M. Liu, The Steiner (n-1)-Wiener index of unicyclic graphs, J. Lanzhou Jiaotong Univ. 40 (2021) 141–143.
- [8] X. Li, Y. Mao, I. Gutman, The Steiner Wiener index of a graph, Discuss. Math. Graph Theory 36 (2016) 455–465.

- [9] X. Li, Y. Mao, I. Gutman, Inverse problem on the Steiner Wiener index, Discuss. Math. Graph Theory 38 (2018) 83–95.
- [10] Z. Li, B. Wu, The Steiner Wiener index of trees with given bipartition, MATCH Commun. Math. Comput. Chem. 86 (2021) 363–373.
- [11] X. Li, Z. Zhang, Results on two kinds of Steiner distance-based indices for some classes of graphs, MATCH Commun. Math. Comput. Chem. 84 (2020) 567–578.
- [12] L. Lu, Q. Huang, J. Hou, X. Chen, A sharp lower bound on the Steiner Wiener index for trees with given diameter, *Discr. Math.* **341** (2018) 723–731.
- [13] Y. Mao, B. Furtula, Steiner distance in chemical graph theory, MATCH Commun. Math. Comput. Chem. 86 (2021) 211–287.
- [14] Y. Mao, Z. Wang, I. Gutman, Steiner Wiener index of graph products, *Trans. Comb.* 5 (2016) 39–50.
- [15] Y. Mao, Z. Wang, Y. Xiao, C. Ye, Steiner Wiener index and connectivity of graphs, Util. Math. 102 (2017) 51–57.
- [16] Z. Tang, H. Deng, The (n, n)-graphs with the first three extremal Wiener index, J. Math. Chem. 43 (2008) 60–74.
- [17] J. Zhang, G. Zhang, H. Wang, X. Zhang, Extremal trees with respect to the Steiner Wiener index, *Discr. Math. Algor. Appl.* **11** (2019) #1950067.