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Abstract

The aim of this paper is to obtain new inequalities for a large
family of generalizations of the Wiener Index and to characterize
the set of extremal graphs with respect to them. Our main results
provide upper and lower bounds for these topological indices on
unicyclic graphs.

1 Introduction

A topological descriptor is a single number that it is computed on the

molecular graph of a compound and represents some chemical structure

in terms of this graph. These descriptors are common and relevant in

the field of mathematical chemistry and especially in the QSPR/QSAR

investigations.

When a topological descriptor correlates with a molecular property of

certain chemical compounds, then it is called a topological index. Thus,
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topological indices capture some essential physicochemical property into a

single number and this can be used to analyze those properties. This can be

very interesting for practitioners. For example, although only about 1000

benzenoid hydrocarbons are known, the number of theoretically possible

benzenoid hydrocarbons is huge. If we consider, for instance, the number

of possible benzenoid hydrocarbons with 35 benzene rings, it is 5.85 ×
1021 [28]. Therefore, a good model capable of predicting physico-chemical

properties of currently unknown species is extremely useful.

The main reason for the use of topological indices is to obtain predic-

tions of some property of certain molecules (see, e.g., [9,13,15,26]). When-

ever a topological descriptor shows a better correlation for some property

on some group of chemical compounds a new topological index appears.

This way hundreds of topological indices have been defined and studied,

starting with the seminal work by Wiener, [31], who found a correlation

between his index and paraffin boiling points.

The Wiener index of G is defined as

W (G) =
∑

{u,v}⊆V (G)

d(u, v),

where {u, v} runs over every pair of vertices in G.

Following this work, several versions of this index have been appearing

since then, each one better adapted for its purpose. Let us mention, for

example, the hyper-Wiener index, see [21,25] or the Harari index [17,24].

A natural problem in the study of topological indices is, given some

fixed parameters, to find the graphs that minimize (or maximize) their

value on a certain set of graphs satisfying the restrictions given by the

parameters (see e.g. [1, 2, 4–8,14]).

Herein, instead of doing this individually on each modified version of

the Wiener index we consider a natural generalization of it which encom-

passes those mentioned above and try to work as generally as possible. In

previous works we used the same strategy with trees, see [22]. Now, we

are considering unicyclic graphs. A unicyclic graph is a graph containing

exactly one cycle [18, p.41]. It is well known that if G is a unicyclic graph

with n vertices, then G has n edges.
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The aim of this paper is to obtain new inequalities for a large family of

topological indices restricted to unicyclic graphs, fixing or not the number

of pendant vertices, and to characterize the extremal unicyclic graphs with

respect to them. This problem, for other type of indices, was also addressed

in [23].

Throughout this work, G = (V (G), E(G)) denotes a (non-oriented)

finite connected simple (without multiple edges and loops) non-trivial

(E(G) ̸= ∅) graph. Note that the connectivity of G is not an important

restriction, since every molecular graph is connected.

2 Wiener index and its generalizations

Motivated by the Wiener index, Randić introduced in [25] an extension of

the Wiener index for trees, and this has come to be known as the hyper-

Wiener index. In [21], this extension was generalized to graphs as

WW (G) =
1

2

∑
{u,v}⊆V (G)

d(u, v) +
1

2

∑
{u,v}⊆V (G)

d(u, v)2.

WW (G) has been useful in correlations (see, e.g., [12] and the references

therein). For information about the hyper-Wiener index in mathematics

see, e.g., [3], [12], [19].

Following [16] and [30], it is interesting to generalize the Wiener index

in the following way

Wλ(G) =
∑

{u,v}⊆V (G)

d(u, v)λ,

with λ ∈ R. Obviously, if λ = 1, then Wλ coincides with the ordinary

Wiener index W . Note that W−2 is the Harary index; W−1 is the recipro-

cal Wiener index; the quantity W 2 is closely related to the hyper-Wiener

index, since WW = (W 1 +W 2)/2. Another topological index, proposed

in [27] is expressed in terms of W 1, W 2 and W 3 as (2W 1+3W 2+W 3)/6.

See [20] for more connections of the same kind.

Three different variants of the q-Wiener index (q > 0, q ̸= 1) were
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defined in [32] as

W1(G, q) =
∑

{u,v}⊆V (G)

[d(u, v)]q,

W2(G, q) =
∑

{u,v}⊆V (G)

[d(u, v)]q q
L−d(u,v),

W3(G, q) =
∑

{u,v}⊆V (G)

[d(u, v)]q q
d(u,v),

where L is the diameter of G, and

[k]q =
1− qk

1− q
= 1 + q + q2 + · · ·+ qk−1.

Since limq→1[k]q = k, we have

lim
q→1

W1(G, q) = lim
q→1

W2(G, q) = lim
q→1

W3(G, q) = W (G).

Given any function h : Z+ → R, let the h-Wiener index of G be defined

as

Wh(G) =
∑

{u,v}⊆V (G)

h
(
d(u, v)

)
,

A similar general index was introduced in [29] just for trees. This general

approach allows to study in a unified way the previous indices.

If Pn is the path graph with n vertices, then

Wh(Pn) =
∑

1≤i<j≤n

h(j − i) =

n−1∑
k=1

(n− k)h(k).

If Cn is the cycle graph with n vertices, then

• if n is odd,

Wh(Cn) =

n−1
2∑

j=1

nh(j),
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• if n is even,

Wh(Cn) =

n
2 −1∑
j=1

nh(j) +
n

2
h
(n
2

)
.

Given n ≥ 4, let Jn be the graph obtained by identifying a vertex from

a cycle C3 and the vertex with degree n − 3 of a star graph with n − 2

vertices, Sn−2. Then,

Wh(Jn) = nh(1) +
1

2
n(n− 3)h(2).

Given 3 ≤ r ≤ n and a function h : Z+ → R, let us define the function

Fh(r, n) as follows:

• if r is odd,

Fh(r, n) :=

r−1
2∑

j=1

rh(j)+

n−r∑
j=1

(n−r+1−j)h(j)+2

n−r∑
k=1

r−1
2∑

j=1

h(k+j), (1)

• if r is even,

Fh(r, n) :=

r
2−1∑
j=1

rh(j) +
r

2
h
(r
2

)
+

n−r∑
j=1

(n− r + 1− j)h(j)

+ 2

n−r∑
k=1

r
2−1∑
j=1

h(k + j) +

n−r∑
k=1

h
(r
2
+ k

)
.

(2)

Let Gr,n be the graph obtained by identifying a vertex from a cycle Cr

and a vertex with degree 1 of a path graph Pn−r+1. Note that Gn,n = Cn.

As usual, if a < b, we use the convention

a∑
j=b

A(j) = 0.

Proposition 1. Given 3 ≤ r ≤ n and a function h : Z+ → R, then

Wh(Gr,n) = Fh(r, n).
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Figure 1. The graph Gr,n is obtained by identifying a vertex from a
cycle Cr and a vertex with degree 1 of a path graph Pn−r+1.

Proof. Consider the graph Gr,n, let w0 be the identified vertex which be-

longs to the cycle and the path and let w1, w2, . . . , wn−r be the vertices in

the path Pn−r+1 with d(w0, wk) = k. See Figure 1.

Then,

Wh(Gr,n) = Wh(Cr) +Wh(Pn−r+1) +
∑

w0 ̸=v∈Cr, w0 ̸=wi∈Pn−r+1

h(d(v, wi)).

Suppose r is odd. Then, notice that for every 1 ≤ k ≤ n− r,

∑
w0 ̸=v∈Cr

h(d(v, wk)) = 2

r−1
2∑

j=1

h(j + k).

Thus,

Wh(Gr,n) =

r−1
2∑

j=1

rh(j) +

n−r∑
j=1

(n− r + 1− j)h(j) + 2

n−r∑
k=1

r−1
2∑

j=1

h(k + j).

In particular, the following expression of Fh(3, n) will be useful below

in Lemma 1.

Fh(3, n) = 3h(1)+

n−3∑
j=1

(n− 2− j)h(j)+ 2

n−3∑
k=1

h(k+1) = nh(1)+

n−2∑
j=2

(n− j)h(j).
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Suppose r is even. Then, notice that for every 1 ≤ k ≤ n− r,

∑
w0 ̸=v∈Cr

h(d(v, wk)) = 2

r
2−1∑
j=1

h(j + k) + h
(r
2
+ k

)
.

Thus,

Wh(Gr,n) =

r
2−1∑
j=1

rh(j) +
r

2
h
(r
2

)
+

n−r∑
j=1

(n− r + 1− j)h(j)

+ 2

n−r∑
k=1

r
2−1∑
j=1

h(k + j) +

n−r∑
k=1

h
(r
2
+ k

)
.

Remark. Since any graph with n vertices has 1
2n(n − 1) pairs of vertices,

we have that

• If r is odd,

1

2
n(n−1) = n+

n−2∑
j=2

(n− j) =

r−1
2∑

j=1

r+

n−r∑
j=1

(n− r+1− j)+2

n−r∑
k=1

r−1
2∑

j=1

1.

• If r is even,

1

2
n(n− 1) = n+

n−2∑
j=2

(n− j)

=

r
2−1∑
j=1

r +
r

2
+

n−r∑
j=1

(n− r + 1− j) + 2

n−r∑
k=1

r
2−1∑
j=1

1 +

n−r∑
k=1

1.

Lemma 1. Given 4 ≤ r ≤ n with r even and a strictly increasing function

h : Z+ → R, then Fh(3, n) > Fh(r, n). If h is a strictly decreasing function,

then Fh(3, n) < Fh(r, n).

Proof. First of all, note that the second statement is a consequence of the

first one, if we consider the function −h. Hence, we can assume that h is
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a strictly increasing function. We have

Fh(3, n) > Fh(r, n)

⇔
n−r∑
j=2

(n− j)h(j) +

n−2∑
j=n−r+1

(n− j)h(j)

>

r
2−1∑
j=2

rh(j) +
r

2
h
(r
2

)
+

n− r
2∑

j= r
2+1

h(j) +

n−r∑
j=2

(n− r + 1− j)h(j)

+ 2

n−r∑
k=1

r
2−1∑
j=1

h(k + j).

Case 1. Suppose n− r < r
2 − 1. Then,

Fh(3, n) > Fh(r, n)

⇔
n−2∑

j=n−r+1

(n− j)h(j)

>

n−r∑
j=2

h(j) +

r
2
−1∑

j=n−r+1

rh(j) +
r

2
h
( r

2

)
+

n− r
2∑

j= r
2
+1

h(j) + 2

n−r∑
k=1

r
2
−1∑

j=1

h(k + j)

⇔ (n− r)h
( r

2

)
+

n− r
2∑

j= r
2
+1

(n− j − 1)h(j) +

n−2∑
j=n− r

2
+1

(n− j)h(j)

>

n−r∑
j=2

h(j) +

r
2
−1∑

j=n−r+1

(r − n+ j)h(j) + 2

n−r∑
k=1

r
2
−1∑

j=1

h(k + j).

Since n− r < r
2 − 1,

2

n−r∑
k=1

r
2
−1∑

j=1

h(k + j) = 2h(2) + 4h(3) + · · ·+ 2(n− r)h(n− r + 1) + · · ·

+ 2(n− r)h
( r

2

)
+ 2(n− r − 1)h

( r

2
+ 1

)
+ · · ·+ 2h

(
n− r

2
− 1

)
.

Let

M = (n− r − 1) +
1

2

(3r
2

− n− 1
)(3r

2
− n

)
+ (n− r)(2r − n− 1).
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Then, since h is strictly increasing, it follows that

n−r∑
j=2

h(j)+

r
2−1∑

j=n−r+1

(r − n+ j)h(j) + 2
n−r∑
k=1

r
2−1∑
j=1

h(k + j)

< Mh
(r
2

)
+ 2(n− r − 1)h

(r
2
+ 1

)
+ · · ·+ 2h

(
n− r

2
− 1

)
= Mh

(r
2

)
+

n− r
2−1∑

j= r
2+1

2
(
n− r

2
− j

)
h(j).

Therefore, since in

(n− r)h
(r
2

)
+

n− r
2∑

j= r
2+1

(n− j − 1)h(j) +

n−2∑
j=n− r

2+1

(n− j)h(j)

the function h is evaluated always in numbers greater or equal than r
2 and

Remark 2 gives

(n− r) +

n− r
2∑

j= r
2+1

(n− j − 1) +

n−2∑
j=n− r

2+1

(n− j)

=

n−r∑
j=2

1 +

r
2−1∑

j=n−r+1

(r − n+ j) + 2

n−r∑
k=1

r
2−1∑
j=1

1,

it suffices to check that

n− r
2−1∑

j= r
2+1

2
(
n− r

2
− j

)
h(j) <

n− r
2−1∑

j= r
2+1

(n− j − 1)h(j).

Hence, it suffices to show for every r
2 + 1 ≤ j ≤ n− r

2 − 1 that

2n− r − 2j < n− j − 1,

and this is equivalent to n− r < j − 1, which follows from

j − 1 ≥ r

2
>

r

2
− 1 > n− r.
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This finishes the proof of Case 1.

Case 2. Suppose r
2 − 1 = n− r. Then,

Fh(3, n) > Fh(r, n)

⇔
r
2−1∑
j=2

(3r
2

− 1− j
)
h(j) +

3r
2 −3∑
j= r

2

(3r
2

− 1− j
)
h(j)

>

r
2−1∑
j=2

(3r
2

− j
)
h(j) +

r

2
h
(r
2

)
+

r−1∑
j= r

2+1

h(j) + 2

r
2−1∑
k=1

r
2−1∑
j=1

h(k + j)

⇔
3r
2 −3∑
j= r

2

(3r
2

− 1− j
)
h(j)

>

r
2−1∑
j=2

h(j) +
r

2
h
(r
2

)
+

r−1∑
j= r

2+1

h(j) + 2

r
2−1∑
k=1

r
2−1∑
j=1

h(k + j).

Notice that

2

r
2−1∑
k=1

r
2−1∑
j=1

h(k + j) = 2h(2) + 4h(3) + · · ·+ 2
(r
2
− 1

)
h
(r
2

)
+ 2

(r
2
− 2

)
h
(r
2
+ 1

)
+ · · ·+ 2h(r − 2)

=

r
2∑

j=2

2(j − 1)h(j) +

r−2∑
j= r

2+1

2(r − 1− j)h(j).

Since h is strictly increasing, it follows that

r
2−1∑
j=2

h(j) +
r

2
h
(r
2

)
+

r−1∑
j= r

2+1

h(j) + 2

r
2−1∑
k=1

r
2−1∑
j=1

h(k + j)

<
(r
2
− 1

)(r
2
+ 2

)
h
(r
2

)
+

r−1∑
j= r

2+1

h(j) +

r−2∑
j= r

2+1

2(r − 1− j)h(j).

Thus, it suffices to check that for every r
2 +1 ≤ j we have 2r−1−2j <

3r
2 − 1− j, which is direct.
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Case 3. Suppose r
2 − 1 < n− r. Then,

Fh(3, n) > Fh(r, n)

⇔
n−r∑
j=2

(r − 1)h(j) +

n−2∑
j=n−r+1

(n− j)h(j)

>

r
2−1∑
j=2

rh(j) +
r

2
h
(r
2

)
+

n− r
2∑

j= r
2+1

h(j) + 2

n−r∑
k=1

r
2−1∑
j=1

h(k + j)

⇔
(r
2
− 1

)
h
(r
2

)
+

n−r∑
j= r

2+1

(r − 2)h(j) +

n−2∑
j=n−r+1

(n− j)h(j)

>

r
2−1∑
j=2

h(j) +

n− r
2∑

j=n−r+1

h(j) + 2

n−r∑
k=1

r
2−1∑
j=1

h(k + j).

Since r
2 − 1 < n− r,

2

n−r∑
k=1

r
2
−1∑

j=1

h(k + j) = 2h(2) + 4h(3) + · · ·+ 2
( r

2
− 1

)
h
( r

2

)
+ · · ·

+ 2
( r

2
− 1

)
h(n− r + 1) + 2

( r

2
− 2

)
h(n− r + 2) + · · ·+ 2h

(
n− r

2
− 1

)
=

r
2∑

j=2

2(j − 1)h(j) +

n−r∑
j= r

2
+1

(r − 2)h(j) +

n− r
2
−1∑

j=n−r+1

(2n− r − 2j)h(j).

Since h is strictly increasing, it follows that

r
2−1∑
j=2

h(j) +

n− r
2∑

j=n−r+1

h(j) + 2

n−r∑
k=1

r
2−1∑
j=1

h(k + j)

<
(r2
4

− 2
)
h
(r
2

)
+

n− r
2∑

j=n−r+1

h(j) +

n−r∑
j= r

2+1

(r − 2)h(j)

+

n− r
2−1∑

j=n−r+1

(2n− r − 2j)h(j).
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Therefore, since in

(r
2
− 1

)
h
(r
2

)
+

n−r∑
j= r

2+1

(r − 2)h(j) +

n−2∑
j=n−r+1

(n− j)h(j)

the function h is evaluated always in numbers greater or equal than r
2 , it

suffices to check that for every n−r+1 ≤ j we have 2n−r−2j+1 ≤ n−j,

which is immediate.

Lemma 2. Given 5 ≤ r ≤ n with r odd and a strictly increasing function

h : Z+ → R, then Fh(3, n) > Fh(r, n). If h is a strictly decreasing function,

then Fh(3, n) < Fh(r, n).

Proof. The second statement is a consequence of the first one, if we con-

sider the function −h. Therefore, we can assume that h is a strictly in-

creasing function.

Let us recall that

Fh(3, n) = nh(1) +

n−2∑
j=2

(n− j)h(j).

Case 1. Suppose n− r < r−1
2 . Then,

Fh(r, n) =

n−r∑
j=1

(n+ 1− j)h(j) +

r−1
2∑

j=n−r+1

rh(j) + 2

n−r∑
k=1

r−1
2∑

j=1

h(k + j).

Therefore,

Fh(3, n) > Fh(r, n)

⇔
n−2∑

j=n−r+1

(n− j)h(j) >

n−r∑
j=2

h(j) +

r−1
2∑

j=n−r+1

rh(j) + 2

n−r∑
k=1

r−1
2∑

j=1

h(k + j)

⇔
n−2∑

j= r+1
2

(n− j)h(j) >

n−r∑
j=2

h(j) +

r−1
2∑

j=n−r+1

(j − n+ r)h(j) + 2

n−r∑
k=1

r−1
2∑

j=1

h(k + j).
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Since n− r < r−1
2 ,

2

n−r∑
k=1

r−1
2∑

j=1

h(k + j) = 2h(2) + · · ·+ 2(n− r)h(n− r + 1) + · · ·

+ 2(n− r)h
(r + 1

2

)
+ · · ·+ 2h

(
n− r

2
− 1

2

)
.

Let

N =n− r − 1 +
1

2

(3r − 2n− 1)

2

(3r − 2n+ 1)

2

+ (n− r)(n− r + 1) + (3r − 2n− 1)(n− r).

Therefore, since h is strictly increasing,

n−r∑
j=2

h(j) +

r−1
2∑

j=n−r+1

(j − n+ r)h(j) + 2

n−r∑
k=1

r−1
2∑

j=1

h(k + j)

< Nh
(r + 1

2

)
+

n− r
2−

1
2∑

j= r+3
2

2
(
n− r

2
+

1

2
− j

)
h(j).

Thus, it suffices to check that for every r+3
2 ≤ j ≤ n− r

2 − 1
2 we have

2n− r + 1− 2j < n− j,

and this is equivalent to n− r < j − 1, which is immediate since

j − 1 ≥ r + 1

2
> n− r.
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Case 2. Suppose r−1
2 ≤ n− r. Then,

Fh(r, n) =

r−1
2∑

j=1

rh(j) +

r−1
2∑

j=1

(n− r + 1− j)h(j) +

n−r∑
j= r+1

2

(n− r + 1− j)h(j)

+ 2

n−r∑
k=1

r−1
2∑

j=1

h(k + j)

=

r−1
2∑

j=1

(n+ 1− j)h(j) +

n−r∑
j= r+1

2

(n− r + 1− j)h(j) + 2

n−r∑
k=1

r−1
2∑

j=1

h(k + j).

Therefore,

Fh(3, n) > Fh(r, n)

⇔
n−2∑

j= r+1
2

(n− j)h(j) >

r−1
2∑

j=2

h(j) +

n−r∑
j= r+1

2

(n− r + 1− j)h(j) + 2

n−r∑
k=1

r−1
2∑

j=1

h(k + j)

⇔
n−r∑

j= r+1
2

(r − 1)h(j) +

n−2∑
j=n−r+1

(n− j)h(j) >

r−1
2∑

j=2

h(j) + 2

n−r∑
k=1

r−1
2∑

j=1

h(k + j).

Since r−1
2 ≤ n− r,

2
n−r∑
k=1

r−1
2∑

j=1

h(k + j) = 2h(2) + · · ·+ 2
(r − 1

2

)
h
(r + 1

2

)
+ · · ·

+ 2
(r − 1

2

)
h(n− r + 1) + · · ·+ 2h

(
n− r

2
− 1

2

)
.

Let N ′ = r2+2r−7
4 . Therefore, since h is strictly increasing,

r−1
2∑

j=2

h(j) + 2

n−r∑
k=1

r−1
2∑

j=1

h(k + j) < N ′h
(r + 1

2

)
+

n−r∑
j= r+3

2

(r − 2)h(j)

+

n− r
2−

1
2∑

j=n−r+1

(2n− r + 1− 2j)h(j).

Thus, it suffices to check that for every r+3
2 ≤ j ≤ n−r we have r−2 ≤ r−1,
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and for every n− r + 1 ≤ j ≤ n− r
2 − 1

2 we have

2n− r + 1− 2j ≤ n− j ⇔ n− r + 1 ≤ j,

which is trivial.

Remark. Notice that given 3 < r ≤ n and a strictly increasing function

h : Z+ → R, although Fh(3, n) > Fh(r, n), Fh(r, n) is not necessarily

decreasing on r. For example, suppose h is the identity map. Then

Fh(12, 13) = 13h(1) + 14(h(2) + h(3) + h(4) + h(5)) + 8h(6) + h(7)

and

Fh(11, 13) = 13h(1) + 14h(2) + 15(h(3) + h(4) + h(5)) + 4h(6) + 2h(7).

Thus,

Fh(12, 13)− Fh(11, 13) = 4h(6)− h(3)− h(4)− h(5)− h(7)

= 24− 3− 4− 5− 7 = 5 > 0

and Fh(12, 13) > Fh(11, 13).

Let us recall the following definitions from [10]. A vertex of degree at

least three in a graph G will be called a major vertex of G. Any end-vertex

(a vertex of degree one) u of G is said to be a terminal vertex of a major

vertex v of G if dG(u, v) < dG(u,w) for every other major vertex w of G.

The terminal degree of a major vertex v is the number of terminal vertices

of v. A major vertex v of G is called exterior major vertex if it has non-

zero terminal degree. Let M(G) be the set of exterior major vertices of G

having terminal degree greater than one.

The following result is elementary.

Lemma 3. If T is a tree, then M(T ) = ∅ if and only if T is a path graph.

Given a unicyclic graphG and a vertex v let us denoteGv the connected

component of G \ v intersecting the cycle. Then, the complement Tv :=

G \Gv is a tree (possibly being the the single vertex v).
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Theorem 2. Let G be a unicyclic graph with n ≥ 6 vertices.

(1) If h is a strictly increasing function, then

nh(1) +
1

2
n(n− 3)h(2) ≤ Wh(G) ≤ Fh(3, n),

the lower bound is attained if and only if G = Jn and the upper bound

is attained if and only if G = G3,n.

(2) If h is a strictly decreasing function, then

Fh(3, n) ≤ Wh(G) ≤ nh(1) +
1

2
n(n− 3)h(2),

the lower bound is attained if and only if G = G3,n and the upper

bound is attained if and only if G = Jn.

Proof. The second statement is a consequence of the first one, if we con-

sider the function −h. Hence, we can assume that h is a strictly increasing

function.

Since G is a unicyclic graph with n vertices, there are n edges and n

pairs of adjacent vertices. Thus, there are
(
n
2

)
− n = 1

2n(n − 3) pairs of

vertices at distance at least 2. The lower bound is attained if and only

if T has diameter 2. Notice that this means that the cycle has at most

5 vertices and since n ≥ 6 and any vertex which is not in the cycle is

at distance at most 2 from any vertex in it, the cycle is necessarily C3.

Therefore, the lower bound is attained if and only if G = Jn.

Assume that G is a unicyclic graph with n vertices such that Wh(G)

is maximal and let C be the cycle.

Seeking for a contradiction, consider any vertex v ∈ G such that v is

not in the unique cycle and deg(v) ≥ 3 or v is in the cycle and deg(v) ≥ 4.

Then, there is an exterior major vertex w in Tv (where possibly v = w).

Hence, consider two terminal vertices of w, u1, u2 with d(w, u1) = k. Let

us define new vertices {v1, . . . , vk} and let

G′ :=
(
G \ [w, u1]

)
∪ u2v1 ∪ v1v2 ∪ · · · ∪ vk−1vk.

Thus, it is immediate to see that, since h is strictly increasing, Wh(G
′) >
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Wh(G) leading to contradiction. Therefore, deg(v) ≤ 2 for every vertex

v /∈ C, and deg(v) ≤ 3 for every vertex v ∈ C.

Suppose there exist v1, v2 ∈ C with deg(vi) = 3 for i = 1, 2. Then, Tvi

is a path [vi, ui] of length d([vi, ui]) = li. LetDi :=
∑

v∈G\{Tv1
∪Tv2

} d(vi, v)

for i = 1, 2. If Di < Dj and li > lj , consider the vertex w ∈ [vi, ui] such

that d(vi, w) = lj , let s = li−lj and let us define new vertices {w1, . . . , ws}.
Then, let

G′ :=
(
G \ [w, ui]

)
∪ ujw1 ∪ w1w2 ∪ · · · ∪ ws−1ws.

SinceDi < Dj and h is strictly increasing, it follows thatWh(G
′) > Wh(G)

leading to contradiction. Thus, we may assume, relabeling if necessary,

that D1 ≤ D2 and l1 ≤ l2. Hence, let us define new vertices {a1, . . . , al1}
and let

G′ :=
(
G \ [v1, u1]

)
∪ u2a1 ∪ a1a2 ∪ · · · ∪ al1−1al1 .

SinceD1 ≤ D2, l1 ≤ l2 and h is strictly increasing, it follows thatWh(G
′) >

Wh(G) leading to contradiction.

Therefore, G is a unicyclic graph with at most one vertex with degree

3 and G = Gr,n where r is the length of the cycle. By lemmas 1 and 2,

G = G3,n.

Corollary. If G is a unicyclic graph with n ≥ 6 vertices, then

n(n− 2) ≤ W (G) ≤ 1 +

n−2∑
k=1

(n− k) k =
n3 − 7n+ 12

6
,

the lower bound is attained if and only if G = Jn and the upper bound is

attained if and only if G = G3,n.



196

Acknowledgment : The first author was partially supported by a grant
from Ministerio de Ciencia, Innovación y Universidades (PGC2018-098321-
B-I00), Spain; the second author was partially supported by a grant from
Agencia Estatal de Investigación (PID2019-106433GB-I00/AEI/10.13039
/501100011033), Spain, and by the Madrid Government (Comunidad de
Madrid-Spain) under the Multiannual Agreement with UC3M in the line
of Excellence of University Professors (EPUC3M23), and in the context
of the V PRICIT (Regional Programme of Research and Technological
Innovation).

References

[1] B. Bollobás, P. Erdös, Graphs of extremal weights, Ars Comb. 50
(1998) 225–233.

[2] B. Bollobás, P. Erdös, A. Sarkar, Extremal graphs for weights, Discr.
Math. 200 (1999) 5–19.

[3] G. G. Cash, Relationship between the Hosoya polynomial and the
hyper-Wiener index, Appl. Math. Lett. 15 (2002) 893–895.

[4] R. Cruz, H. Giraldo, J. Rada, Extremal values of vertex–degree topo-
logical indices over hexagonal systems, MATCH Commun. Math.
Comput. Chem. 70 (2013) 501–512.

[5] K. C. Das, Maximizing the sum of the squares of the degrees of a
graph, Discr. Math. 285 (2004) 57–66.
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[10] A. Estrada-Moreno, J. A. Rodŕıguez-Velázquez, I. G. Yero, The k-
metric dimension of a graph, Appl. Math. Inform. Sci. 9 (2015) 2829–
2840.



197

[11] I. Gutman, Distance in thorny graph. Publ. Inst. Math. (Beograd) 63
(1998) 31–36.

[12] I. Gutman, Relation between hyper-Wiener and Wiener index, Chem.
Phys. Lett. 364 (2002) 352–356.

[13] I. Gutman, B. Furtula, Vertex–degree–based molecular structure de-
scriptors of benzenoid systems and phenylenes, J. Serb. Chem. Soc.
77 (2012) 1031–1036.

[14] I. Gutman, B. Furtula, M. Ivanović, Notes on trees with minimal
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