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Abstract

The line graph L(G) of a graph G is defined as a graph having vertex set identical
with the set of edges of G and two vertices of L(G) are adjacent if and only if
the corresponding edges are incident in G. Higher iteration Li(G) is obtained by
repeatedly applying the line graph operation i times. Wiener index W (G) of a
graph G is defined as the sum of distances which runs over all pairs of vertices
in G. The problem of establishing the extremal values and extremal graphs for
the ratio W (Li(G))/W (G) was proposed by Dobrynin and Melnikov [Mathematical
Chemistry Monographs, Vol. 12, 2012, pp. 85-121]. In this paper we establish the
maximum value and characterize the extremal graphs for i = 1. In doing so, we
derive unexpectedly an interesting relation that involves the Gutman index and the
first Zagreb index.

1 Introduction

Let G be a graph with n = |V (G)| vertices and m = |E(G)| edges. In this paper we

assume G is simple and connected, unless explicitly stated otherwise. The degree of a

vertex u ∈ V (G) is denoted by d(u). For any two vertices u, v ∈ V (G) the distance

between u and v is denoted by d(u, v). The Wiener index of the graph G is defined by

W (G) =
∑

{u,v}⊆V (G)

d(u, v).

and it is introduced in [16] as a quantity that correlates well with chemical properties

of molecules represented by the graphs. Wiener index attracted lot of interest and has
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become one of the most extensively studied topological indices (see [12,18]). One direction

of research is the relation of Wiener index of a graph and the corresponding line graph.

The line graph L(G) of a graph G is defined as a graph having vertex set identical with

the set of edges of G and two vertices of L(G) are adjacent if and only if the corresponding

edges are incident in G. Higher iterations of the line graph are defined by

Li(G) =

{
G for i = 0,
L(Li−1(G)) for i > 0.

Amongst many interesting papers on Wiener index of line graphs we cite [1,10,11,17]. A

problem of establishing the extremal values and graphs for the ratio W (Li(G))/W (G) for

i ≥ 1 was proposed in [2]. The minimal value of the ratio for i = 1 and the corresponding

minimal graphs are established in [11]. In this paper we will establish the maximal value

for i = 1 and characterize all maximal graphs. The problem remains open for i > 1.

In order to establish the main result of the paper we will derive the upper bound on

W (L(G)) in terms of the Gutman and the first Zagreb index of a graph G, so let us

introduce those two topological indices. The Gutman index Gut(G) and the first Zagreb

index M1(G) of a graph G are defined by

Gut(G) =
∑

{u,v}⊆V (G)

d(u)d(v)d(u, v) and M1(G) =
∑

u∈V (G)

d2(u).

The first Zagreb index was introduced in [7], and has attracted a lot of interest since

[3, 6, 8, 13, 14]. Gutman index was first introduced in [5], for recent papers involving

Gutman index and similar degre-distance based indices see [4, 15].

2 Main results

For two edges e = uv and f = xy from a graph G we define

D(e, f) =
1

4
(d(u, x) + d(u, y) + d(v, x) + d(v, y)).

If a pair of edges e = uv and f = xy share an end-vertex, say v = x, then obviously

D(e, f) =

{
1 if uy ̸∈ E(G),
3
4

if uy ∈ E(G).
(1)

We now wish to express dL(G)(e, f) in terms ofD(e, f). First, notice that for every {e, f} ⊆
E(G) it holds that

dL(G)(e, f) = min{d(u, x), d(u, y), d(v, x), d(v, y)}+ 1 ≤ D(e, f) + 1. (2)
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In the case when a pair of edges e and f from G share an end-vertex, we can obtain even

tighter bound from (1), as in that case we have

dL(G)(e, f) = 1 ≤ D(e, f) + 1− 3

4
. (3)

Now, we first derive the upper bound on W (L(G)) in terms of Gut(G) and M1(G) in the

following lemma.

Theorem 1 For a graph G with n vertices and m edges it holds that

W (L(G)) ≤ 1

4
Gut(G)− 3

8
M1(G) +

1

2
m2

with equality if and only if G = Kn.

Proof. By the definition of Wiener index we have

W (L(G)) =
∑

{e,f}⊆E(G)

dL(G)(e, f).

Using upper bounds on dL(G)(e, f) from (2) and (3) we further obtain

W (L(G)) ≤
∑

{e,f}⊆E(G)

(D(e, f) + 1)− 3

4

∑

u∈V (G)

(
d(u)

2

)

=
∑

{e,f}⊆E(G)

D(e, f) +

(
m

2

)
− 3

4

∑

u∈V (G)

d(u)(d(u)− 1)

2
.

By the definition of D(e, f) we have

∑

{e,f}⊆E(G)

D(e, f) =
1

4

∑

{e,f}⊆E(G)

(d(u, x) + d(u, y) + d(v, x) + d(v, y)). (4)

Notice that for a pair of vertices {u, v} ⊆ V (G) which are not adjacent, the distance

d(u, v) will appear in the sum (4) precisely d(u)d(v) times, i.e. for as many pairs of edges.

On the other hand, if u and v are adjacent, then the distance d(u, v) will appear in the

sum d(u)d(v)− 1 times. So, we conclude

∑

{e,f}⊆E(G)

D(e, f) =
1

4

∑

{u,v}⊆V (G)
uv ̸∈E(G)

d(u)d(v)d(u, v) +
1

4

∑

{u,v}⊆V (G)
uv∈E(G)

(d(u)d(v)− 1)d(u, v)

=
1

4
Gut(G)− m

4
.

Also, we have
∑

u∈V (G)

d(u)(d(u)− 1)

2
=

1

2
M1(G)−m.
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Plugging these expressions into the inequality yields the bound.

The equality holds if and only if for every pair of incident edges the equality holds in

(3) and for every pair of non-incident edges the equality holds in (2). The equality in (3)

for two incident edges e = ux and f = uy implies xy ∈ E(G). When applied to all edges

incident to the same vertex and then for all vertices, this further implies G = Kn.

The upper bound from the previous theorem is similar to the bound established in [17]

and it is obtained by a similar method, it is just a bit tighter. This tighter bound enables

us to establish the upper bound on the ratio W (L(G))/W (G) in terms of the maximum

and minimum degree of the graph.

Lemma 2 For a graph G on n vertices with maximum degree ∆ and minimum degree δ

it holds that
W (L(G))

W (G)
≤ 1

2n (n− 1)

(
(n− 1)2∆2 − δ2

)

with equality if and only if G = Kn.

Proof. Using Theorem 1 we have

W (L(G)) ≤ 1

4
Gut(G)− 3

8
M1(G) +

1

2
m2.

Since

m2 =
1

4
(2m)2 =

1

4
(
∑

u∈V (G)

d(u))2,

we further obtain

W (L(G)) ≤ 1

4
Gut(G)− 3

8

∑

u∈V (G)

d2(u) +
1

8
(
∑

u∈V (G)

d(u))2

=
1

4
Gut(G) +

1

8


(

∑

u∈V (G)

d(u))2 − 3
∑

u∈V (G)

d2(u)




=
1

4
Gut(G) +

1

4


 ∑

{u,v}⊆V (G)

d(u)d(v)−
∑

u∈V (G)

d2(u)


 .
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Let w be a vertex from G such that d(w) = δ and then notice the following

∑

{u,v}⊆V (G)

d(u)d(v)−
∑

u∈V (G)

d2(u) =
∑

u∈V (G)\{w}
d(u)d(w)

+
∑

{u,v}⊆V (G)\{w}
d(u)d(v)−

∑

u∈V (G)

d2(u)

=
∑

u∈V (G)\{w}
d(u)δ +

∑

{u,v}⊆V (G)\{w}
d(u)d(v)−

∑

u∈V (G)

d2(u)

≤
∑

{u,v}⊆V (G)\{w}
d(u)d(v)− d(w)2

≤
(
n− 1

2

)
∆2 − δ2.

Therefore, we have

W (L(G))

W (G)
≤ 1

4

Gut(G)

W (G)
+

1

4W (G)

((
n− 1

2

)
∆2 − δ2

)
,

where we plug
Gut(G)

W (G)
≤ ∆2 and W (G) ≥

(
n

2

)

which yields the desired bound. The equality holds if and only if at every step we have

equality, so Theorem 1 implies the equality holds only for G = Kn.

We can now establish the following theorem, which is the main result of the paper.

Theorem 3 For a graph G on n vertices it holds that

W (L(G))

W (G)
≤

(
n− 1

2

)

with equality if and only if G = Kn.

Proof. Let us first consider the complete graph Kn. We have W (Kn) =
(
n
2

)
. As for the

line graph, notice that dL(Kn)(e, f) = 2 except when e and f share an end-vertex in which

case dL(Kn)(e, f) = 1, so we conclude that

W (L(Kn))

W (Kn)
=

2
((n2)

2

)
− n

(
n−1
2

)
(
n
2

) =

(
n
2

)
(
(
n
2

)
− 1)−

(
n
2

)
(n− 2)(

n
2

) =

(
n− 1

2

)
.

Therefore, the bound holds for G = Kn with equality.

Again, let δ and ∆ respectively denote the minimum and maximum degree of a graph

G. For a graph G with ∆ ≤ n− 2, Lemma 2 implies

W (L(G))

W (G)
≤ 1

2n (n− 1)

(
(n− 1)2(n− 2)2 − 12

)
<

(
n− 1

2

)
.
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Assume therefore that G ̸= Kn is a graph with ∆ = n − 1 and let u be the vertex such

that d(u) = ∆ = n− 1. Let v be a vertex in G such that d(v) = δ < n− 1 and let w be

a vertex in G non adjacent to v. Notice that d(w) ≤ n− 2. Let G′ be the graph obtained

from G by adding the edge g = vw to it. For a pair of edges {e, f} ⊆ E(G) we denote

∆(e, f) = dL(G′)(e, f)− dL(G)(e, f),

so we have

W (L(G′))−W (L(G)) =
∑

{e,f}⊆E(G)

∆(e, f) +
∑

e∈E(G)

dL(G′)(e, g).

Notice that for e, f from E(G) it holds that ∆(e, f) = 0 except possibly when e is incident

to v and f is incident to w in which case ∆(e, f) = −1. Therefore,

∑

{e,f}⊆E(G)

∆(e, f) ≥ −d(v)d(w) ≥ −(n− 2)δ.

Furthermore, notice that dL(G′)(e, g) = 1 only if e is incident to v or w, otherwise

dL(G′)(e, g) ≥ 2. From this we obtain

∑

e∈E(G)

dL(G′)(e, g) ≥ 2 |E(G)| − d(v)− d(w) =
∑

x∈V (G)

d(x)− δ − d(w)

≥ δ + 1 +
∑

x∈V (G)\{u,w}
d(x)− δ > (n− 2)δ.

Therefore, we obtain W (L(G′))−W (L(G)) > 0 which further implies

W (L(G′))

W (G′)
>

W (L(G))

W (G′)
≥ W (L(G))

W (G)
.

If G′ = Kn, we are done, otherwise the edge addition can be repeated until Kn is obtained.
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