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Abstract

Let G be a simple and connected graph. A vertex vi is said to be pendent if
dG(vi) = 1, and its adjacent vertex is called a quasi-pendent vertex. Let T (n) be a
set of trees of order n with at most two quasi-pendent vertices of degree less than
4. We name T (n) the set of coral trees.

The Randić matrix of G, denoted by R(G), is an n×n matrix whose (i, j)-entry
is equal to 1√

dG(vi)dG(vj)
if vivj ∈ E(G), and 0 otherwise. The Randić energy of G

is defined as

ER(G) =

n∑

i=1

|µi(G)|,

where µ1(G), µ2(G), . . . , µn(G) are the eigenvalues of R(G).
In [I. Gutman, B. Furtula, S. B. Bozkurt, On Randić energy, Linear Algebra

Appl. 442 (2014) 50–57], the authors conjectured that for a tree T of order n, if n
is odd, then the maximum ER(T ) is achieved for T being the (n−1

2 )-sun; if n is even,
then the maximum ER(T ) is achieved for T being the (⌈n−2

4 ⌉, ⌊n−2
4 ⌋)-double sun.

In this work, we get the following results.
(1) For T ∈ T (n), ER(T ) ≤ ER(Pn).
(2) For a graph G, if ER(G) ≤ ER(Pn), then G satisfies the conjecture.
(3) T (n) is a family of trees that satisfies the conjecture.

1 Introduction

Let G be a simple and connected graph of order n with vertex set V (G) = {v1, v2, . . . , vn}
and edge set E(G). For i = 1, 2, . . . , n, denote by dG(vi) the degree of the vertex vi in G.
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A vertex vi ∈ V (G) is said to be pendent if dG(vi) = 1, and its adjacent vertex is called a

quasi-pendent vertex of G. If a quasi-pendent vertex has degree less than 4, then we call

it a small quasi-pendent vertex.

Let T (n) be the set of trees of order n with at most two small quasi-pendent vertices.

For each T ∈ T (n), we name it coral tree and say that T (n) is the set of coral trees.

The Randić index of a graph G is defined as ( [13])

χ(G) =
∑

vivj∈E(G)

1√
dG(vi)dG(vj)

.

The Randić matrix of G, denoted by R(G) ( [3, 4, 11]), is an n × n matrix whose (i, j)-

entry is equal to 1√
dG(vi)dG(vj)

if vivj ∈ E(G), and 0 otherwise. The Randić energy of G is

defined as ( [4])

ER(G) =
n∑

i=1

|µi(G)|,

where µ1(G), µ2(G), . . . , µn(G) are the eigenvalues of R(G).

Let p ≥ 0. The tree Sup of order n = 2p + 1, containing with p pendent vertices,

each attached to a vertex of degree 2, and a vertex of degree p, is called the p-sun. Let

p, q ≥ 0. The tree DSup,q of order n = 2(p + q + 1), obtained from a p-sun and a q-sun,

by connecting their central vertices, is called a (p, q)-double sun.

In [11], the authors proved that the star Sn is the unique tree with minimal Randić

energy over all trees, pointed out that for n ≥ 7, the path Pn is not the connected n-vertex

graph with maximal Randić energy. They also presented the following conjecture about

the trees with maximal ER(T ).

Conjecture 1.1 ( [11]) Let T be a tree of order n. If n is odd, then the maximum

ER(T ) is achieved for T being the (n−1
2
)-sun. If n is even, then the maximum ER(T ) is

achieved for T being the (⌈n−2
4
⌉, ⌊n−2

4
⌋)-double sun.

In [9], the authors got the minimal Randić energy of trees with given diameter. In [8],

the author showed that the generalized double suns of odd order satisfy Conjecture 1.1.

In [1, 2], the authors presented some families of graphs that satisfy Conjecture 1.1. For

more related research results, we refer to [3, 4, 6, 7, 9, 11,12].

In this paper, we get the following results.

(1) For T ∈ T (n), ER(T ) ≤ ER(Pn).

(2) For a graph G, if ER(G) ≤ ER(Pn), then G satisfies Conjecture 1.1.

(3) T (n) is a family of trees that satisfies Conjecture 1.1.
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2 Preliminaries

For a tree T , we use Mk(T ) to denote the set of all k-matchings of T . If e = vivj ∈ E(T )

and αk = {e1, e2, . . . , ek} ∈ Mk(T ), then we denote RT (e) = RT (vivj) =
1

dG(vi)dG(vj)
and

RT (αk) =
k∏

i=1

RT (ei), respectively.

Let T be a tree of order n with matrix R(T ). Then the Randić characteristic polyno-

mial of T can be written as ( [5])

ϕR(T, x) = |xI −R(T )| =
⌊n
2
⌋∑

k=0

(−1)kb(R(T ), k)xn−2k,

where b(R(T ), 0) = 1, and b(R(T ), k) =
∑

αk∈Mk(T )

RT (αk) for 1 ≤ k ≤ ⌊n
2
⌋.

Lemma 2.1 ( [9]) Let T1 and T2 be two trees of order n, and let their Randić charac-

teristic polynomials be

ϕR(T1, x) =

⌊n
2
⌋∑

k=0

(−1)kb(R(T1), k)x
n−2k, ϕR(T2, x) =

⌊n
2
⌋∑

k=0

(−1)kb(R(T2), k)x
n−2k,

respectively. If b(R(T1), k) ≤ b(R(T2), k) for all k ≥ 0, and there is a positive integer k

such that b(R(T1), k) < b(R(T2), k), then

ER(T1) < ER(T2).

Lemma 2.2 ( [10]) Let T be a tree of order n. Then |Mk(T )| ≤ |Mk(Pn)| for 1 ≤ k ≤
⌊n
2
⌋.

3 Some operations

Let T be the tree as shown in Figure 1, where T1 is a subtree of T with v0 ∈ V (T1), t ≥ 2,

and dT (v0) ≥ 3. Let T ′ = T − {v0v2, . . . , v0vt} + v1v2 . . . vt. We say that T ′ is obtained

from T by Operation I (as depicted in Figure 1).

Lemma 3.1 Let T ′ be obtained from T by Operation I. Then ER(T ) < ER(T ′).

Proof. Let the R-characteristic polynomials of T and T ′ be

ϕR(T, x) =

⌊n
2
⌋∑

k=0

(−1)kb(R(T ), k)xn−2k, ϕR(T
′, x) =

⌊n
2
⌋∑

k=0

(−1)kb(R(T ′), k)xn−2k,
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��
��
T1

···
•

•

•v0 v1

vt

T

=⇒

��
��
T1

· · ·• • • •v0 v1 vt−1 vt

T ′

Figure 1. Operation I.

respectively, where b(R(T ), 0) = b(R(T ′), 0) = 1.

Denote NT (v0) = {v1, . . . , vt, u1, . . . , us}, where t ≥ 2, s ≥ 1. Note that dT (v0) = s+ t,

dT ′(v0) = s+ 1, and dT (ui) = dT ′(ui) for i = 1, 2, . . . , s. Then

b(R(T ′), 1)− b(R(T ), 1)

=
s∑

i=1

RT ′(v0ui) +
t−1∑

j=0

RT ′(vjuj+1)−
s∑

i=1

RT (v0ui)−
t∑

j=1

RT (v0vj)

=
s∑

i=1

t− 1

(s+ 1)(s+ t)dT (ui)
+

s(t− 1)(t− 2) + t(s2 + t− 2)

4(s+ 1)(s+ t)
> 0.

For 2 ≤ k ≤ ⌊n
2
⌋,

b(R(T ′), k)

≥
∑

αk∈Mk(T1)

RT (αk) +
t−1∑

i=0

RT ′(vivi+1)
∑

αk−1∈Mk−1(T−v0)

RT ′(αk−1)

=
∑

αk∈Mk(T1)

RT (αk) +

(
1

2(s+ 1)
+

t− 2

4
+

1

2

) ∑

αk−1∈Mk−1(T1−v0)

RT (αk−1),

b(R(T ), k)

=
∑

αk∈Mk(T1)

RT (αk) +
t

s+ t

∑

αk−1∈Mk−1(T−v0)

RT (αk−1),

b(R(T ′), k)− b(R(T ), k)

≥
(

1

2(s+ 1)
+

t

4
− t

s+ t

) ∑

αk−1∈Mk−1(T−v0)

RT (αk−1) > 0.

By Lemma 2.1, the lemma holds.

Corollary 3.2 Let T ∈ T (n) be a tree of order n (as depicted in Figure 2(a)), where

T1 is a subtree of T with v0, u0 ∈ V (T1), t ≥ 2, s ≥ 2. T ′ (as depicted in Figure 2(b)) is

obtained from T by Operation I, and T ′′ (as depicted in Figure 2(c)) is obtained from T ′

by Operation I. Then

ER(T ) < ER(T ′) < ER(T ′′).
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Figure 2(b). T ′
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��
T1• • • • • • • •· · · · · ·vt vt−1 v1 v0 u0 u1 us−1 us

Figure 2(c). T ′′

By Corollary 3.2, the following result is clear.

Lemma 3.3 Let T ∈ T (n) and u0 be a quasi-pendent vertex of T . If d(u0) ≥ 3 and

there are at least two pendent vertices in NT (u0), then there is T ′ ∈ T (n) such that T ′

satisfies the following conditions.

(1) u0 is no longer a quasi-pendent vertex and us−1 is a new small quasi-pendent

vertex;

(2) There is just one pendent vertex in NT ′(us−1);

(3) ER(T ) ≤ ER(T ′).

Let T be the tree as shown in Figure 2(c), where T1 is a subtree of T with u1 ∈ V (T1)

and dT (u1) ≥ 2, t ≥ 7. Let T ′ = T − v4v5 . . . vt + v1v4v5 . . . vt (as depicted in Figure 3).

We say that T ′ is obtained from T by Operation II for v1.

��
��
T1

· · ·• • • • •v1 v2 vt−1 vtu1

T

=⇒
�

�
�
�

•
•

v2

v3

��
��
T1

· · ·• • • • •v1 v4 vt−1 vtu1

T ′

Figure 3. Operation II.

Lemma 3.4 Let T ′ be obtained from T by Operation II. Then ER(T ) ≤ ER(T ′).

Proof. Let the Randić characteristic polynomials of T and T ′ be

ϕR(T, x) =

⌊n
2
⌋∑

k=0

(−1)kb(R(T ), k)xn−2k, ϕR(T
′, x) =

⌊n
2
⌋∑

k=0

(−1)kb(R(T ′), k)xn−2k,

respectively, where b(R(T ), 0) = b(R(T ′), 0) = 1.
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Note that dT (v1) = 2, dT ′(v1) = 3, dT (v3) = 2, dT ′(v3) = 1 and dT (u1) = dT ′(u1) ≥ 2.

Then

b(R(T ′), 1)− b(R(T ), 1)

= RT ′(u1v1) +RT ′(v1v2) +RT ′(v2v3) +RT ′(v1v4)

−(RT (u1v1) +RT (v1v2) +RT (v2v3) +RT (v3v4))

=
1

12
− 1

6dT (u1)
≥ 0.

For 2 ≤ k ≤ ⌊n
2
⌋, denote P = v5v6 . . . vt. Then

b(M(T ), k)

=
∑

αk∈Mk(T1∪P )

RT (αk) +
1

2dT (u1)

∑

αk−1∈Mk−1((T1−u1)∪P )

RT (αk−1)

+
3

4

∑

αk−1∈Mk−1(T1∪P )

RT (αk−1) +
1

4

∑

αk−1∈Mk−1(T1∪(P−v5))

RT (αk−1)

+
1

4dT (u1)

∑

αk−2∈Mk−2((T1−u1)∪P )

RT (αk−2)

+
1

8dT (u1)

∑

αk−2∈Mk−2((T1−u1)∪(P−v5))

RT (αk−2)

+
1

16

∑

αk−2∈Mk−2(T1∪P )

RT (αk−2) +
1

8

∑

αk−2∈Mk−2(T1∪(P−v5))

RT (αk−2)

+
1

32dT (u1)

∑

αk−3∈Mk−3((T1−u1)∪(P−v5))

RT (αk−3),

b(M(T ′), k)

=
∑

αk∈Mk(T1∪P )

RT (αk) +
1

3dT (u1)

∑

αk−1∈Mk−1((T1−u1)∪P )

RT (αk−1)

+
5

6

∑

αk−1∈Mk−1(T1∪P )

RT (αk−1) +
1

4

∑

αk−1∈Mk−1(T1∪(P−v5))

RT (αk−1)

+
1

6dT (u1)

∑

αk−2∈Mk−2((T1−u1)∪P )

RT (αk−2)

+
1

12dT (u1)

∑

αk−2∈Mk−2((T1−u1)∪(P−v5))

RT (αk−2)

+
1

12

∑

αk−2∈Mk−2(T1∪P )

RT (αk−2) +
1

6

∑

αk−2∈Mk−2(T1∪(P−v5))

RT (αk−2)

+
1

24dT (u1)

∑

αk−3∈Mk−3((T1−u1)∪(P−v5))

RT (αk−3).
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Note that

1

12

∑

αk−1∈Mk−1(T1∪P )

RT (αk−1) ≥
1

6dT (u1)

∑

αk−1∈Mk−1((T1−u1)∪P )

RT (αk−1),

∑

αk−2∈Mk−2(T1∪P )

RT (αk−2)

=
∑

αk−2∈Mk−2(T1∪(P−v5))

RT (αk−2) +
1

4

∑

αk−3∈Mk−3(T1∪(P−v5−v6))

RT (αk−3),

∑

αk−2∈Mk−2((T1−u1)∪P )

RT (αk−2)

=
∑

αk−2∈Mk−2((T1−u1)∪(P−v5))

RT (αk−2) +
1

4

∑

αk−3∈Mk−3((T1−u1)∪(P−v5−v6))

RT (αk−3).

So

b(M(T ′), k)− b(M(T ), k)

= − 1

6dT (u1)

∑

αk−1∈Mk−1((T1−u1)∪P )

RT (αk−1) +
1

12

∑

αk−1∈Mk−1(T1∪P )

RT (αk−1)

− 1

12dT (u1)

∑

αk−2∈Mk−2((T1−u1)∪P )

RT (αk−2)

− 1

24dT (u1)

∑

αk−2∈Mk−2((T1−u1)∪(P−v5))

RT (αk−2)

+
1

48

∑

αk−2∈Mk−2(T1∪P )

RT (αk−2) +
1

24

∑

αk−2∈Mk−2(T1∪(P−v5))

RT (αk−2)

+
1

96dT (u1)

∑

αk−3∈Mk−3((T1−u1)∪(P−v5))

RT (αk−3)

≥ − 1

12dT (u1)

∑

αk−2∈Mk−2((T1−u1)∪(P−v5))

RT (αk−2)

− 1

12dT (u1)
× 1

4

∑

αk−3∈Mk−3((T1−u1)∪(P−v5−v6))

RT (αk−3)

− 1

24dT (u1)

∑

αk−2∈Mk−2((T1−u1)∪(P−v5))

RT (αk−2)

+
1

48

∑

αk−2∈Mk−2(T1∪(P−v5))

RT (αk−2) +
1

48
× 1

4

∑

αk−3∈Mk−3(T1∪(P−v5−v6))

RT (αk−3)
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+
1

24

∑

αk−2∈Mk−2(T1∪(P−v5))

RT (αk−2) +
1

96dT (u1)

∑

αk−3∈Mk−3((T1−u1)∪(P−v5))

RT (αk−3)

=
1

16

∑

αk−2∈Mk−2(T1∪(P−v5))

RT (αk−2)−
1

8dT (u1)

∑

αk−2∈Mk−2((T1−u1)∪(P−v5))

RT (αk−2)

+
1

192

∑

αk−3∈Mk−3(T1∪(P−v5−v6))

RT (αk−3)

− 1

96dT (u1)

∑

αk−3∈Mk−3((T1−u1)∪(P−v5−v6))

RT (αk−3)

− 1

96dT (u1)

∑

αk−3∈Mk−3((T1−u1)∪(P−v5−v6))

RT (αk−3)

+
1

96dT (u1)

∑

αk−3∈Mk−3((T1−u1)∪(P−v5))

RT (αk−3).

Since dT (u1) ≥ 2, and

∑
αk−2∈Mk−2(T1∪(P−v5))

RT (αk−2) ≥
∑

αk−2∈Mk−2((T1−u1)∪(P−v5))

RT (αk−2),

∑
αk−3∈Mk−3(T1∪(P−v5−v6))

RT (αk−3) ≥
∑

αk−3∈Mk−3((T1−u1)∪(P−v5−v6))

RT (αk−3),

∑
αk−3∈Mk−3((T1−u1)∪(P−v5))

RT (αk−3) ≥
∑

αk−3∈Mk−3((T1−u1)∪(P−v5−v6))

RT (αk−3),

we get b(M(T ′), k)− b(M(T ), k) ≥ 0.

By Lemma 2.1, ER(T ) ≤ ER(T ′).

· · ·• • • • • •v1 v2 vt−1 vtu2 u1

Pn

=⇒

�
�

�
�

•
•

v2

v3

• • • • • •v1 v4 · · · vt−1 vtu2 u1

T

Figure 4.

Corollary 3.5 Let T be the tree of order n ≥ 9 (as depicted in Figure 4). Then

ER(Pn) ≤ ER(T ).

��
��
T1

· · ·• • • •v1 v2 vt−1 vt

T

=⇒

��
��
T1

�
�
�
�

•
•

v2

v3

· · ·• • • •v1 v4 vt−1 vt

T ′

Figure 5. Operation III.
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Lemma 3.6 ( [8]) Let T and T ′ be trees of order n as depicted in Figure 5, where t ≥ 5,

dT (v1) ≥ 3, NT (v1) has no pendent vertices, and T1 is a subtree of T with v1 ∈ V (T1).

Then ER(T ) ≤ ER(T ′).

4 Main result

In this section, we will show that for any coral tree T ∈ T (n), ER(T ) ≤ ER(Pn). That is,

Pn is the connected n-vertex graph with maximal Randić energy for T (n). Furthermore,

we will prove that if for a graph G, ER(G) ≤ ER(Pn), then G satisfies Conjecture 1.1.

That means that the coral trees set T (n) is a family that satisfies Conjecture 1.1.

Lemma 4.1 Let T ∈ T (n) be a coral tree with two small quasi-pendent vertices. If

there is just one pendent vertex in the neighborhood of a small quasi-pendent vertex, then

ER(T ) ≤ ER(Pn).

Proof. Without loss of generality, we assume that v2, vn−1 are two small quasi-pendent

vertices. Then T is a tree as depicted in Figure 6, where T1 is a subtree of order n − 2.

Consider the tree T ′ which is obtained from T by replacing T1 with the path of order

n − 2. Clearly, T ′ is a path of order n as depicted in Figure 6. For 1 ≤ i < j ≤ n, use

Pvi,vj to denote the path of T ′ from vi to vj.

��
��
T1• • • •v1 v2 vn−1 vn

T

• • • • • •v1 v2 v3 · · ·vn−2 vn−1 vn

T ′

Figure 6.

Let the Randić characteristic polynomials of T and T ′ be

ϕR(T, x) =

⌊n
2
⌋∑

k=0

(−1)kb(R(T ), k)xn−2k, ϕR(T
′, x) =

⌊n
2
⌋∑

k=0

(−1)kb(R(T ′), k)xn−2k,

respectively, where b(R(T ), 0) = b(R(T ′), 0) = 1.

Note that the following facts.

• RT ′(v1v2) =
1
2
≥ RT (v1v2), RT ′(vn−1vn) =

1
2
≥ RT (vn−1vn).

• For each edge vivj ∈ E(T ′), 2 ≤ i < j ≤ n − 1, RT ′(vivj) = 1
4
. For each edge

uv ∈ E(T ) \ {v1v2, vn−1vn}, RT (uv) ≤ 1
4
.
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• For any positive integer l, by Lemma 2.2,

∑

α′
l∈Ml(Pv2,vn−1 )

RT ′(α′
l) = (

1

4
)l|Ml(Pv2,vn−1)| ≥

∑

αl∈Ml(T1)

RT (αl),

∑

α′
l∈Ml(Pv3,vn−1 )

RT ′(α′
l) = (

1

4
)l|Ml(Pv3,vn−1)| ≥

∑

αl∈Ml(T1−v2)

RT (αl),

∑

α′
l∈Ml(Pv2,vn−2 )

RT ′(α′
l) = (

1

4
)l|Ml(Pv2,vn−2)| ≥

∑

αl∈Ml(T1−vn−1)

RT (αl),

∑

α′
l∈Ml(Pv3,vn−2 )

RT ′(α′
l) = (

1

4
)l|Ml(Pv3,vn−2)| ≥

∑

αl∈Ml(T1−v2−vn−1)

RT (αl).

It is clear that b(R(T ′), k) ≥ b(R(T ), k) for 2 ≤ k ≤ ⌊n
2
⌋.

By Lemma 2.1, ER(T ) ≤ ER(T ′) = ER(Pn).

Theorem 4.2 Let T ∈ T (n) be a coral tree. Then ER(T ) ≤ ER(Pn).

Proof. If T ∈ T (n) is a coral tree with two small quasi-pendent vertices and there is just

one pendent vertex in the neighborhood of a small quasi-pendent vertex, then by Lemma

4.1, ER(T ) ≤ ER(Pn).

Otherwise, by Lemma 3.3, there is T ′ ∈ T (n) satisfies the following conditions.

(1) T ′ ∈ T (n) is a coral tree with two small quasi-pendent vertices;

(2) There is just one pendent vertex in the neighborhood of a small quasi-pendent

vertex;

(3) ER(T ) ≤ ER(T ′).

Therefore ER(T ) ≤ ER(T ′) ≤ ER(Pn).

Theorem 4.3 Let n be odd. Then ER(Pn) ≤ ER(Sun−1
2
).

Proof. Case 1. 3 ≤ n ≤ 7.

If n = 3, then P3
∼= Su1.

If n = 5, then P5
∼= Su2.

If n = 7, we denote T = Su3 and

ϕR(T, x) =

⌊ 7
2
⌋∑

k=0

(−1)kb(R(T ), k)xn−2k, ϕR(P7, x) =

⌊ 7
2
⌋∑

k=0

(−1)kb(R(P7), k)x
n−2k,
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where b(R(T ), 0) = b(R(P7), 0) = 1. Note that

b(M(T ), 1)− b(M(P7), 1) = 2− 2 = 0,

b(M(T ), 2)− b(M(P7), 2) =
5

4
− 19

16
> 0,

b(M(T ), 3)− b(M(P7), 3) =
1

4
− 3

16
> 0.

By Lemma 2.1, ER(P7) < ER(T ).
Case 2. n ≥ 9.

Let T be the tree as depicted in Figure 4. By Corollary 3.5, ER(Pn) ≤ ER(T ). Applying
Operation III to T successively, by Lemma 3.6, we find that the Randić energy is increasing

as dT (v1) is increasing. So, ER(Pn) ≤ ER(Sun−1
2
).

The theorem now follows.

Theorem 4.4 Let n be even. Then ER(Pn) ≤ ER(DSu⌊n−2
4

⌋,⌈n−2
4

⌉).

Proof. Case 1. 2 ≤ n ≤ 12.

If n = 2, then P2
∼= DSu0,0.

If n = 4, then P4
∼= DSu0,1.

If n = 6, then P6
∼= DSu1,1.

If n = 8, we denote T = DSu1,2 and

ϕR(T, x) =
4∑

k=0

(−1)kb(R(T ), k)xn−2k, ϕR(P8, x) =
4∑

k=0

(−1)kb(R(P8), k)x
n−2k,

where b(R(T ), 0) = b(R(P8), 0) = 1. Note that

b(M((T ), 1)− b(M(P8), 1) =
9

4
− 9

4
= 0,

b(M(T ), 2)− b(M(P8), 2) =
5

3
− 13

8
> 0,

b(M(T ), 3)− b(M(P8), 3) =
7

16
− 25

64
> 0,

b(M(T ), 4)− b(M(P8), 4) =
1

48
− 1

64
> 0.

By Lemma 2.1, ER(P8) < ER(DSu1,2).

If n = 10, we denote T = DSu2,2 and

ϕR(T, x) =
5∑

k=0

(−1)kb(R(T ), k)xn−2k, ϕR(P10, x) =
5∑

k=0

(−1)kb(R(P10), k)x
n−2k,
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where b(R(T ), 0) = b(R(P10), 0) = 1. Note that

b(M(T ), 1)− b(M(P10), 1) =
25

9
− 11

4
> 0,

b(M(T ), 2)− b(M(P10), 2) =
17

6
− 43

16
> 0,

b(M(T ), 3)− b(M(P10), 3) =
23

18
− 35

32
> 0,

b(M(T ), 4)− b(M(P10), 4) =
25

144
− 41

256
> 0,

b(M(T ), 5)− b(M(P10), 5) =
1

144
− 1

256
> 0.

By Lemma 2.1, ER(P10) < ER(DSu2,2).

If n = 12, we denote T = DSu2,3 and

ϕR(T, x) =
6∑

k=0

(−1)kb(R(T ), k)xn−2k, ϕR(P12, x) =
6∑

k=0

(−1)kb(R(P12), k)x
n−2k,

where b(R(T ), 0) = b(R(P12), 0) = 1. Note that

b(M(T ), 1)− b(M(P12), 1) =
79

24
− 13

4
=

1

24
> 0,

b(M(T ), 2)− b(M(P12), 2) =
101

24
− 4 > 0,

b(M(T ), 3)− b(M(P12), 3) =
251

72
− 133

64
> 0,

b(M(T ), 4)− b(M(P12), 4) =
83

96
− 139

256
> 0,

b(M(T ), 5)− b(M(P12), 5) =
17

192
− 39

1024
> 0,

b(M(T ), 6)− b(M(P12), 6) =
1

384
− 1

1024
> 0.

By Lemma 2.1, ER(P12) < ER(DSu2,3).

Case 2. n ≥ 14.

Denote by T ′ and T ′′ the trees depicted in Figures 7(a) and 7(b), where x = n
2
if n

2
is

odd, and x = n−2
2

if n
2
is even.

Let T be the tree of order n ≥ 14 as depicted in Figure 4. By Corollary 3.5, ER(Pn) <

ER(T ). Applying Operation III to T successively, by Lemma 3.6, ER(Pn) < ER(T ′).

@
@

@@

•••
vxv2v1

··· •
•

vx−1

vx−2

• · · · •
vx+1 vn

Figure 7(a). Tree T ′

@
@

@@

•••
vxv2v1

··· •
•

vx−1

vx−2

�
�

��

• • •
vx+1 vn−1 vn

···•
•

vx+2

vx+3

Figure 7(b). Tree T ′′
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Applying Operation II to T ′ for vx+1 firstly, then applying Operation III to the resulting

tree successively, by Lemmas 3.4 and 3.6, we find that the Randić energy is increasing

as dT (vx+1) is increasing. So, ER(Pn) < ER(T ′) < ER(T ′′), where T ′′ is DSu⌊n−2
4

⌋,⌈n−2
4

⌉ as

depicted in Figure 7(b).

By Theorems 4.2, 4.3 and 4.4, we get the following results.

(1) For T ∈ T (n), ER(T ) ≤ ER(Pn).

(2) For a graph G, if ER(G) ≤ ER(Pn), then G satisfies Conjecture 1.1.

(3) T (n) is a family of trees that satisfies Conjecture 1.1.
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