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Abstract

Let G be a simple graph of order n, without isolated vertices.
An important spectrum–based graph invariant is the graph energy.
In this paper, we obtain several new upper bounds of the McClel-
land type on graph energy and characterize graphs for which these
bounds are best possible. The bounds represent generalization and
improvement of some known results from the literature.

1 Introduction

Let G = (V,E), V = {v1, v2, . . . , vn}, be a simple connected graph with

n = |V | vertices, m = |E| edges, with vertex degree sequence d1 ≥ d2 ≥
· · · ≥ dn, di = d(vi). The greatest, the second greatest, the smallest and

the second smallest vertex degrees with be, respectively, denoted as ∆ =

d1, ∆2 = d2, δ = dn, and δ2 = dn−1. Denote by D = diag(d1, d2, . . . , dn)

the diagonal matrix of vertex degrees. Let A = (aij), be the (0, 1) adja-

cency matrix of G. The eigenvalues of matrix A, λ1 ≥ λ2 ≥ · · · ≥ λn, are

the (ordinary) eigenvalues of G.
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One of the most studied spectrum–based invariant in graph theory is

the graph (ordinary) energy defined in [10]. It is calculated as

E(G) =

n∑
i=1

|λi| .

More on energy of graphs and matrices one can find in monographs [11,16]

and papers [25,26].

The sum of the α-th powers of the degrees of a graph G

0Rα(G) =

n∑
i=1

dαi ,

is known as general zeroth–order Randić index [13]. It is also met under

names general first Zagreb index [17] and variable first Zagreb index [20]

(see also [2, 3]). Here we are interested in the following special cases of
0Rα(G):

• The inverse degree or modified total adjacency index, ID(G) =
0R−1(G) [7, 27].

• The zeroth–order connectivity index or zeroth–order Randić index,
0R(G) = 0R−1/2(G) [14].

• The first Zagreb index, M1(G) = 0R2(G) [12].

• The forgotten topological index, F (G) = 0R3(G) [9].

2 Preliminaries

In this section we list several bounds on E(G) reported in the literature

that are of interest for the present paper. Also, we recall some analytical

inequalities that will be used in proofs of theorems.

Lemma 1. [19] Let G be a graph with n vertices and m edges. Then

E(G) ≤
√
2mn . (1)
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Equality holds if and only if G ∼= Kn, or G ∼= n
2K2, for even n.

Lemma 2. [21] Let G be a graph with n ≥ 2 vertices and m edges. Then

E(G) ≤
√
∆+

√
(n− 1)(2m−∆) . (2)

Equality holds if and only if G ∼= Kn, or G ∼= n
2K2, for even n.

The above inequality was proved in [1] also.

Lemma 3. [8] Let G be a graph with n ≥ 3 vertices and m edges. Then

E(G) ≤
√
∆+

√
δ +

√
(n− 2)(2m−∆− δ) . (3)

Equality holds if and only if G ∼= Kn, or G ∼= n
2K2, for even n.

Lemma 4. [5] Let G be a graph with n vertices and m edges. Then

E(G) ≤
n∑

i=1

√
di . (4)

Equality holds if and only if G ∼= Kn, or G ∼= t·K2∪(n−2t)K1, 1 ≤ t ≤ n
2 .

Remark. The inequality (4) is the fundamental one from which a number

of upper bounds for E(G) can be obtained. For example, in [8] it was

proven that inequalities (2) and (3) can be obtained from (4). Also, it is

not difficult do observe that the simplest proof of (1) can be derived using

(4). Namely, since
n∑

i=1

√
di ≤

√
2mn ,

from the above and (4), the inequality (1) directly follows. Inspired by

this fact, based on (4) we will prove the inequalities that generalize (1),

(2) and (3).

The following inequalities for the real number sequences will be used

in the proofs of the results in the next section.

Lemma 5. [15] Let a = (ai), i = 1, 2, . . . , n, be a sequence of positive real
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numbers. Then(
n∑

i=1

√
ai

)2

≤ (n− 1)

n∑
i=1

ai + n

(
n∏

i=1

ai

)1/n

. (5)

Equality holds if and only if a1 = a2 = · · · = an.

Lemma 6. [24] Let = (pi), i = 1, 2, . . . , n be a sequence of non–negative

real numbers and a = (ai), i = 1, 2, . . . , n, a sequence of positive real

numbers. Then, for any real r ≤ 0 or r ≥ 1, holds(
n∑

i=1

pi

)r−1 n∑
i=1

pia
r
i ≥

(
n∑

i=1

piai

)r

. (6)

When 0 ≤ r ≤ 1, the opposite inequality holds. Equality holds if and only

either r = 0, or r = 1, or a1 = a2 = · · · = an, or p1 = p2 = · · · = pt = 0

and at+1 = · · · = an, or pt+1 = · · · = pn = 0 and a1 = · · · = at, for some

t, 1 ≤ t ≤ n− 1.

3 Main results

In the next theorem we establish an upper bound for the E(G) in terms

of parameters n, m, ∆, ∆2, δ and δ2.

Theorem 1. Let G be a graph of order n ≥ 4 and size m without isolated

vertices. Then we have

E(G) ≤
√
∆+

√
δ+

√
(n− 2)(2m−∆− δ)− n− 2

2

(√
∆2 −

√
δ2

)2
. (7)

Equality holds if and only if G ∼= n
2K2, where n is even.

Proof. Having in mind the Lagrage’s identity (see for example [23]), the
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following inequalities are valid

(n− 2)

n−1∑
i=2

di −

(
n−1∑
i=2

√
di

)2

=
∑

2≤i<j≤n−1

(√
di −

√
dj

)2
≥

≥
(√

∆2 −
√
δ2

)2
+

n−2∑
i=3

((√
∆2 −

√
di

)2
+
(√

di −
√
δ2

)2)
≥

≥
(√

∆2 −
√
δ2

)2
+

1

2

n−2∑
i=3

(√
∆2 −

√
δ2

)2
=

n− 2

2

(√
∆2 −

√
δ2

)2
.

From the above we have that(
n∑

i=1

√
di −

√
∆−

√
δ

)2

≤ (n− 2)

(
n∑

i=1

di −∆− δ

)
− n− 2

2

(√
∆2 −

√
δ2
)2

,

that is

n∑
i=1

√
di ≤

√
∆+

√
δ +

√
(n− 2)(2m−∆− δ)− n− 2

2

(√
∆2 −

√
δ2
)2

. (8)

From the above and inequality (4), the inequality (7) immediately follows.

Equality in (8) holds if and only if di ∈ {∆, δ}, for every i, 2 ≤ i ≤ n−1.

Since graph G has no isolated vertices, equality in (4) holds if and only if

G ∼= n
2K2, for even n. This implies that equality in (7) holds if and only

if G ∼= n
2K2, for even n.

Remark. Since (
√
∆2 −

√
δ2)

2 ≥ 0, we have that

E(G) ≤
√
∆+

√
δ +

√
(n− 2)(2m−∆− δ)− n− 2

2

(√
∆2 −

√
δ2
)2

≤

≤
√
∆+

√
δ +

√
(n− 2)(2m−∆− δ) .

This means that inequality (7) is stronger than (3).

Proofs of the next theorems are analogous to that of Theorem 1, hence

omitted.

Theorem 2. Let G be a graph of order n ≥ 3 and size m without isolated
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vertices. Then we have

E(G) ≤
√
∆+

√
(n− 1)(2m−∆)− n− 1

2

(√
∆2 −

√
δ
)2

. (9)

Equality holds if and only if G ∼= n
2K2, for even n.

Remark. Since
(√

∆2 −
√
δ
)2

≥ 0, we have that

E(G) ≤
√
∆+

√
(n− 1)(2m−∆)− n− 1

2

(√
∆2 −

√
δ
)2

≤

≤
√
∆+

√
(n− 1)(2m−∆) .

This means that inequality (9) is stronger than (2).

Theorem 3. Let G be a graph of order n ≥ 2 and size m without isolated

vertices. Then we have

E(G) ≤
√
2mn− n

2
(
√
∆−

√
δ)2 . (10)

Equality holds if and only if G ∼= n
2K2, for even n.

Remark. Since (
√
∆−

√
δ)2 ≥ 0 we have that

E(G) ≤
√
2mn− n

2
(
√
∆−

√
δ)2 ≤

√
2mn .

This means that (10) is stronger than (1).

In the next theorem we determine an upper bound for E(G) in terms of

number of vertices, number of edges and maximum and minimum vertex

degrees.

Theorem 4. Let G be a graph of order n ≥ 3 and size m without isolated

vertices. Then we have

E(G) ≤
√
∆+

√
δ +

√
(n− 3)(2m−∆− δ) + (n− 2)

(
detD

∆δ

)1/(n−2)

. (11)

Equality holds if and only if G ∼= n
2K2, for even n.



147

Proof. The inequality (5) can be considered in the form

(
n−1∑
i=2

√
ai

)2

≤ (n− 3)
n−1∑
i=2

ai + (n− 2)

(
n−1∏
i=2

ai

)1/(n−2)

.

For ai = di, i = 2, 3, . . . , n− 1, the above inequality becomes

(
n−1∑
i=2

√
di

)2

≤ (n− 3)

n−1∑
i=2

di + (n− 2)

(
n−1∏
i=2

di

)1/(n−2)

,

that is

n∑
i=1

√
di−

√
∆−

√
δ ≤

√√√√(n− 3)

(
n∑

i=1

di −∆− δ

)
+ (n− 2)

(∏n
i=1 di

∆δ

)1/(n−2)

,

from which we obtain

n∑
i=1

√
di ≤

√
∆+

√
δ+

√
(n− 3)(2m−∆− δ) + (n− 2)

(
detD

∆δ

)1/(n−2)

. (12)

From the above and (4) we arrive at (11).

Equality in (12) holds if and only if d2 = d3 = · · · = dn−1. Since G

has no isolated vertices, equality in (4) holds if and only if G ∼= n
2K2, for

even n. This implies that equality in (11) holds if and only if G ∼= n
2K2,

for even n.

Remark. Since

(n− 2)

(
detD

∆δ

)1/(n−2)

≤
n−1∑
i=2

di = 2m−∆− δ ,

we have that

(n− 3)(2m−∆− δ) + (n− 2)

(
detD

∆δ

)1/(n−2)

≤

≤ (n− 3)(2m−∆− δ) + 2m−∆− δ = (n− 2)(2m−∆− δ) .
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Therefore

E(G) ≤
√
∆+

√
δ +

√
(n− 3)(2m−∆− δ) + (n− 2)

(
detD

∆δ

)1/(n−2)

≤

≤
√
∆+

√
δ +

√
(n− 2)(2m−∆− δ) ,

which means that inequality (11) is stronger than (3).

Proofs of the next theorems are similar to that of Theorem 4, thus

omitted.

Theorem 5. Let G be a graph of order n ≥ 2 and size m without isolated

vertices. Then we have

E(G) ≤
√
∆+

√
(n− 2)(2m−∆) + (n− 1)

(
detD

∆

)1/(n−1)

. (13)

Equality holds if and only if G ∼= n
2K2, for even n.

Remark. Since

(n− 1)

(
detD

∆

)1/(n−1)

≤
n∑

i=2

di = 2m−∆ ,

we have that the following inequality is valid

(n− 2)(2m−∆) + (n− 1)

(
detD

∆

) 1
n−1

≤ (n− 2)(2m−∆) + 2m−∆ =

= (n− 1)(2m−∆) .

Therefore

E(G) ≤
√
∆+

√
(n− 2)(2m−∆) + (n− 1)

(
detD

∆

)1/(n−1)

≤

≤
√
∆+

√
(n− 1)(2m−∆) ,

which means that inequality (13) is stronger than (2).

Theorem 6. Let G be a graph of order n ≥ 2 and size m without isolated
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vertices. Then we have

E(G) ≤
√
2m(n− 1) + n(detD)1/n . (14)

Equality holds if and only if G ∼= n
2K2, for even n.

Remark. Since

n(detD)1/n ≤
n∑

i=1

di = 2m,

we have that

2m(n− 1) + n(detD)1/n ≤ 2m(n− 1) + 2m = 2mn .

Therefore

E(G) ≤
√
2m(n− 1) + n(detD)1/n ≤

√
2mn ,

which means that inequality (14) is stronger than (1).

Theorem 7. Let G be a graph of order n ≥ 3 and size m without isolated

vertices. Then for any real β we have that

E(G) ≤
√
∆+

√
δ +

√
(0R1−β(G)−∆1−β − δ1−β) (0Rβ(G)−∆β − δβ) . (15)

Equality holds if and only if G ∼= n
2K2, for even n.

Proof. In [22] it was proven that for any real α and β holds

0Rα(G) ≤ ∆α + δα +
√

(0R2α−β(G)−∆2α−β − δ2α−β) (0Rβ(G)−∆β − δβ) .

For α = 1
2 , the above inequality becomes

n∑
i=1

√
di ≤

√
∆+

√
δ+
√

(0R1−β(G)−∆1−β − δ1−β) (0Rβ(G)−∆β − δβ) . (16)

Now, from the above and inequality (4) we obtain (15).

Equality in (16) holds if and only if β = 1
2 , or d2 = · · · = dn−1. Since

G has no isolated vertices, equality in (4) holds if and only if G ∼= n
2K2, for

even n, which implies that equality in (15) holds under the same condition.
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Remark. For β = 1, the inequality (15) becomes

E(G) ≤
√
∆+

√
δ +

√
(n− 2)(2m−∆− δ) ,

that is, we obtain (3). This means that (3) is corollary of (15).

By a similar procedure the next theorem can be proved.

Theorem 8. Let G be a graph of order n ≥ 2 and size m without isolated

vertices. Then for any real β we have that

E(G) ≤
√
∆+

√
(0R1−β(G)−∆1−β) (0Rβ(G)−∆β) . (17)

Equality holds if and only if G ∼= n
2K2, for even n.

Remark. For β = 1, the inequality (17) becomes

E(G) ≤
√
∆+

√
(n− 1)(2m−∆) .

Namely, the inequality (2) is obtained. This means that inequality (2) is

a corollary of (17).

Theorem 9. Let G be a graph of order n and size m without isolated

vertices. Then for any real β we have that

E(G) ≤
√

0R1−β(G) 0Rβ(G) . (18)

Equality holds if and only if G ∼= n
2K2, for even n.

Remark. For β = 1, the inequality (18) becomes

E(G) ≤
√
2mn ,

that is, the inequality (1) is obtained. This means that inequality (1) is a

corollary of (18).

Remark. The inequalities (15), (17) and (18) depend on parameter β which

is an arbitrary real number. This can be used to obtain a relationship

between E(G) and some other graph invariants. For the sake of illustration
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we take β = 2 and from (15), (17) and (18), respectively, we obtain

E(G) ≤
√
∆+

√
δ +

√(
ID(G)− 1

∆
− 1

δ

)
(M1(G)−∆2 − δ2) ,

E(G) ≤
√
∆+

√(
ID(G)− 1

∆

)
(M1(G)−∆2) ,

E(G) ≤
√
ID(G)M1(G) .

These inequalities were proven in [4].

Remark. The sum–connectivity index [28] is defined as

SC(G) =
∑
i∼j

1√
di + dj

,

where summation is performed over all adjacent vertices vi and vj in G.

In [6] it was proven that

2
√
2SC(G) ≤

n∑
i=1

√
di .

It can be concluded that all upper bounds obtained for E(G) from (4) are

also an upper bounds of 2
√
2SC(G). Thus, for example, according to the

inequalities proved in the present paper, we have that for any real β hold

2
√
2SC(G) ≤

√
∆+

√
δ +

√
(0R1−β(G)−∆1−β − δ1−β) (0Rβ(G)−∆β − δβ) ,

2
√
2SC(G) ≤

√
∆+

√
(0R1−β(G)−∆1−β) (0Rβ(G)−∆β) ,

2
√
2SC(G) ≤

√
0R1−β(G) 0Rβ(G) .

When β = 1, we have that

2
√
2SC(G) ≤

√
2mn , (19)

2
√
2SC(G) ≤

√
∆+

√
(n− 1)(2m−∆) , (20)

2
√
2SC(G) ≤

√
∆+

√
δ +

√
(n− 2)(2m−∆− δ) .

The inequality (19) was proven in [28], whereas (20) in [6].
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Theorem 10. Let G be a graph of order n ≥ 3 and size m without isolated

vertices. Then, for any real β ≥ 1, we have that

E(G) ≤
√
∆+

√
δ + (n− 2)

β−1
β

(
0R β

2
(G)−∆

β
2 − δ

β
2

) 1
β

. (21)

Equality holds if and only if G ∼= n
2K2, for even n.

Proof. The inequality (6) can be considered in the following form

(
n−1∑
i=2

pi

)r−1 n−1∑
i=2

pia
r
i ≥

(
n−1∑
i=2

piai

)r

.

For r = β, β ≥ 1, pi = 1, ai =
√
di, i = 2, . . . , n− 1, the above inequality

becomes (
n−1∑
i=2

1

)β−1 n−1∑
i=2

d
β
2
i ≥

(
n−1∑
i=2

√
di

)β

, (22)

that is (
n∑

i=1

√
di −

√
∆−

√
δ

)β

≤ (n− 2)β−1

(
n∑

i=1

d
β
2
i −∆

β
2 − δ

β
2

)
,

n∑
i=1

√
di ≤

√
∆+

√
δ + (n− 2)

β−1
β

(
0R β

2
(G)−∆

β
2 − δ

β
2

) 1
β

.

Now, from the above and inequality (4) we arrive at (21).

Equality in (22) holds if and only if d2 = d3 = · · · = dn−1. Equality in

(4) holds if and only ifG ∼= Kn orG ∼= tK2+(n−2t)K1, 1 ≤ t ≤
[
n
2

]
. Since

G has no isolated vertices, equality in (21) holds if and only if G ∼= n
2K2,

for even n.

Remark. For β = 1, from (21) we obtain (4), whereas for β = 2 the

inequality (3) is obtained. For β = 4 and β = 6, respectively, the following

inequalities are obtained

E(G) ≤
√
∆+

√
δ + (n− 2)

3
4

(
M1(G)−∆2 − δ2

) 1
4 ,

E(G) ≤
√
∆+

√
δ + (n− 2)

5
6 (F (G)−∆3 − δ3)

1
6 .
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Proofs of the next two theorems are similar to that of Theorem 10,

hence omitted.

Theorem 11. Let G be a graph of order n ≥ 2 and size m without isolated

vertices. Then, for any real β ≥ 1, we have that

E(G) ≤
√
∆+ (n− 1)

β−1
β

(
0R β

2
(G)−∆

β
2

) 1
β

. (23)

Equality holds if and only if G ∼= n
2K2, for even n.

Remark. For β = 4 and β = 6, respectively, from (23) the following in-

equalities are obtained

E(G) ≤
√
∆+ (n− 1)

3
4

(
M1(G)−∆2

) 1
4 ,

E(G) ≤
√
∆+ (n− 1)

5
6

(
F (G)−∆3

) 1
6 .

Theorem 12. Let G be a graph of order n ≥ 2 and size m without isolated

vertices. Then, for any real β ≥ 1, we have that

E(G) ≤ n
β−1
β 0R β

2
(G)

1
β . (24)

Equality holds if and only if G ∼= n
2K2, for even n.

Remark. For β = 2 from (24) the inequality (1) is obtained. For β = 4

and β = 6, respectively, the following inequalities are obtained

E(G) ≤ 4
√
n3M1(G) ,

E(G) ≤ 6
√
n5F (G) .
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