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Abstract

We present an algorithm for computing the ZZ polynomial of an arbitrary m-tier
regular strip of length n. Our approach is based on the equivalence between the ZZ
polynomial ZZ(S, x) of a regular benzenoid strip S and the extended strict order
polynomial E◦

S(n, 1 + x) of the corresponding poset S, demonstrated formally in
Part 1 of the current series of papers. The process of computing ZZ(S, x) in the
form of E◦

S(n, 1 + x) reduces to four, fully automatable steps: (i) Construction of
the poset S corresponding to S. (ii) Construction of the Jordan-Hölder set L(S)
of linear extensions of S. (iii) Computing the number des(w) of descents in each
w ∈ L(S). (iv) Computing the number fixS(w) of fixed labels in each w ∈ L(S).
The ZZ polynomial of S can then be expressed in the following form

ZZ(S, x) = E◦
S(n, 1 + x) =

∑

w∈L(S)

|S|∑

k=0

(|S| − fixS(w)
k − fixS(w)

)(
n+ des(w)

k

)
(1 + x)k ,

where |S| denotes the number of elements in S. Practical applications of the algo-
rithm are illustrated with a few examples. The complete account of ZZ polynomials
of regular m-tier benzenoid strips S with m = 1–6 computed using the introduced
algorithm is presented in Part 3 of the current series of papers.
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1 Introduction

Consider a cycle CH in a two-dimensional hexagonal grid H. We define the benzenoid B

as a graph consisting of all the vertices and edges of H which lie on CH and in the interior

of CH . We consider further two types of spanning subgraphs of B: Kekulé structures

and Clar covers [42]. A Kekulé structure K is a spanning subgraph of B in which every

component is isomorphic to K2 (i.e., a complete graph on two vertices). A Clar cover C

is a spanning subgraph of B in which every component is isomorphic either to K2 or to

C6 (i.e., a cycle graph with 6 vertices). Let us denote the number of Kekulé structures of

B by K ≡ K(B) and the number of Clar covers of B by C ≡ C(B). The determination of

K and C constitutes one of the most important problems in chemical graph theory. The

enumeration of Clar covers can be substantially simplified by stratifying the set of Clar

covers into strata indexed by their order k, which, for a given C, is defined as the number

of C6 components in C. Denoting by ck the cardinality of the stratum corresponding

to the order k, we immediately have K = c0 and C = c0 + · · · + cCl, where the number

Cl—usually referred to as the Clar number of B and naturally bounded from above by

|V(B)|/6—denotes the maximal number of C6 components that can be accommodated in

B. The generating function for the sequence [c0, c1, . . . , cCl]

ZZ (B, x) =
Cl∑

k=0

ckx
k, (1)

usually referred to as the Clar covering polynomial, the Zhang-Zhang polynomial, or simply

the ZZ polynomial of B, was introduced into chemical graph theory in 1996 by two Chinese

mathematicians, Heping Zhang and Fuji Zhang [80, 81, 83, 85, 86]. It was soon realized

that the ZZ polynomial of an arbitrary benzenoid B can be efficiently computed using a

recursive decomposition process [21, 45, 83, 85, 86] expressible in the form of a computer

algorithm [21, 45], which has been implemented in a number of freely available efficient

computer programs (initially ZZCalculator [20,21] and later ZZDecomposer [24,25,90,91]).

With these automatized programs, characterization and enumeration of Clar covers of

benzenoids containing up to a few thousands of vertices became a routine task [76].

ZZDecomposer played yet another important role in the development of the ZZ poly-

nomial theory: It allowed for the determination and derivation of closed-form ZZ polyno-

mial formulas for whole families of isostructural benzenoids [4,5,41,43,45,80–86], allowing

to extend the analogous, heroic effort of computing K (B) lead by Cyvin and Gutman
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some 30 years earlier [11, 29–38, 42, 44]. ZZDecomposer has been used in many appli-

cations [19–24, 26, 47, 54, 60, 62, 74–78] to find closed-form formulas for ZZ polynomials

of various families of basic catacondensed and pericondensed benzenoids, substantially

extending the total body of previously available results. The rapid development of Clar

theory stimulated by these discoveries in recent years lead to many new interesting ap-

plications and connections to other branches of chemistry, graph theory, and combina-

torics [1–6, 8–10, 15–18, 28, 40, 41, 46, 50, 54, 62, 64, 65, 71, 73, 79, 87–89]. A completely new

chapter in the research on Clar covers has been opened with the development of the in-

terface theory of benzenoids [52,53,55,56], which showed that the distribution of K2 and

C6 components in Clar covers of a benzenoid B is governed by a set of simple geometric

rules. Assume that B is oriented such that some of its edges are horizontal; then the total

number of C6 components and horizontally oriented K2 components depends only on the

shape of B. Likewise, the relative positions of these components are restricted: Between

two such components within the same vertical column of hexagons, one will always find

exactly one such component in each of the neighbouring hexagon columns. Conversely,

specifying the absolute positions within B of the C6 and horizontal K2 components of

a Clar cover C fully defines C. This observation gives rise to an important strategy for

enumerating Clar covers: We may encode every Clar cover of a given benzenoid B as a

map indicating the positions of its C6 and horizontal K2 components in B. The geometric

rules governing the number and distribution of the Clar cover components are naturally

translated into certain restrictions on the aforementioned maps, enabling us to construct

the full set of Clar covers of B in terms of the full set of maps following these restrictions.

In the prequel [58] to this paper we have demonstrated that for a particular class

of benzenoids referred to as regular m-tier strips, the enumeration of Clar covers can

be done in an especially efficient way using concepts borrowed from poset theory. A

regular m-tier strip S of length n is defined as follows. Take the previously considered

hexagonal grid H, oriented such that some of its edges are horizontal. A regular 1-tier

strip of length n is a graph obtained by merging n consecutive adjacent hexagons located

in the same vertical column of H. A regular m-tier strip S is obtained by merging m

consecutive regular 1-tier strips located in adjacent columns of H, in such a way that the

following two conditions are satisfied: (i) Two adjacent 1-strips differ at each end by ±1
2

hexagon unit. (ii) The first and the last regular 1-tier strips are both of the same length
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n [77,78]. This paper gives a detailed, self-contained, step-by-step guide on the practical

computation of Zhang-Zhang polynomials of regular strips. Let us summarize here the

underlying ideas behind this computational recipe, which are explained in much greater

detail in [58]. The special shape of regular m-tier strips translates into especially simple

rules governing the maps encoding their Clar covers: For any regular m-tier strip S, we

may construct a corresponding partially ordered set (poset) S such that every strictly

order-preserving map from an induced subposet Q of S to {1, 2, . . . , n} corresponds to

exactly one Kekulé structure of S with |Q| proper sextets , and consequently (since

we may replace any number of the proper sextets by aromatic rings C6 = ) to 2|Q|

Clar covers of S. Simultaneously, every Kekulé structure (and Clar cover) is associated

with exactly one such strictly order-preserving map from some induced subposet of S to

the set {1, 2, . . . , n}. This isomorphism between Kekulé structures and maps enables us

to use preexisting tools to enumerate these maps for the poset S, and in the same breath

obtain the number of Clar covers of the corresponding regular strip S. Specifically, we

may compute the Zhang-Zhang polynomial ZZ(S, x) of a given Kekuléan regular m-tier

strip S of length n as the extended strict order polynomial E◦
S(n, 1 + x) of the poset S

corresponding to S:

ZZ (S, x) = E◦
S(n, 1 + x). (2)

The extended strict order polynomial E◦
S(n, z) was introduced in our previous publications

[57, 58] as a generalization of the Stanley’s strict order polynomial Ω◦
P(n) [66–68], which

enumerates the strictly order-preserving maps ϕ : P → {1, . . . , n} and can be computed

as

Ω◦
P(n) =

∑

w∈L(P)

(
n+ des(w)

|P|

)
, (3)

where |P| denotes the cardinality of a poset P , L(P) denotes the Jordan-Hölder set of

linear extensions w of P , and des(w) is the number of descents in w. Based on this idea,

the extended strict order polynomial E◦
S(n, z) of the poset S is defined as

E◦
S(n, z) =

∑

P⊂S
Ω◦

P(n) z
|P|, (4)

with the summation running over all induced subposets of S. We have demonstrated

in [58] that it can be efficiently computed using the following formula

E◦
S(n, z) =

∑

w∈L(S)

|S|∑

k=0

(|S| − fixS(w)

k − fixS(w)

)(
n+ des(w)

k

)
zk, (5)
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where fixS(w) denotes the number of fixed labels in the linear extension w of S.

The following sections give step-by-step instructions for the practical computation of

Zhang-Zhang polynomials via extended strict order polynomials. This exposition uses

as little formal language as possible to highlight the practical aspects of the computa-

tions; we believe that the theoretical framework was sufficiently exposed in the preceding

publications [57, 58] to justify the course taken here.

2 Computation of ZZ polynomials via posets

The computation of the Zhang-Zhang polynomial ZZ(S, x) of a regular strip S as an

extended strict order polynomial E◦
S(n, 1 + x) of a corresponding poset S using Eq. (5)

consists of four, fully automatable steps:

1. Determination of the poset S corresponding to S—see Subsection 2.1.

2. Construction of the full set L(S) of linear extensions of S—see Subsection 2.2.

3. Counting the number des(w) of descents for each w ∈ L(S)—see Subsection 2.3.

4. Counting the number fixS(w) of fixed labels for each w ∈ L(S)—see Subsection 2.3.

Finally, all the precomputed ingredients are substituted into Eq. (5), which, by virtue of

Eq. (2), yields the ZZ polynomial of S.

2.1 Constructing the poset S from a regular strip S

The existence of a corresponding poset S for every Kekuléan strip S has been formally

demonstrated in [58] together with an outline of a construction of S; here we give a much

simpler, step-by-step recipe for constructing S. Let us start with a four-step graphical

representation of the process of creating S from S. Subsequently, we will give an algebraic

representation of this process, which is more suitable for developing an associated fully-

automatized computer code.

(i) Let S be any regular strip, such as the 7-tier

oblate pentagon Dj(4, 3) shown on the right. We

draw S in such a way that its defining hexagon

columns are oriented vertically.
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(ii) We trace the upper and lower boundaries of S

by connecting the centers of the top and bottom

horizontal edges of consecutive hexagon columns.

(iii) We construct a square grid G rotated by 45◦.

We embed the upper and lower boundaries of S in

G in such a way that the pattern of each boundary

is preserved and that the ends of both boundaries

coincide.1

(iv) The Hasse diagram of the poset S is obtained

by choosing all the vertices and edges of G which lie

on or below the upper boundary and on or above

the lower boundary.2

The Hasse diagram S of S is interpreted in the following standard way: Its vertices

represent the elements of S and its upward-directed edges, the cover relations in S: If a

vertex s ∈ V (S) is connected to a vertex t ∈ V (S) by an upwards-directed edge of S, we

say that t covers s and we write s ⋖S t. If a vertex s ∈ V (S) is connected to a vertex

t ∈ V (S) by an upward-directed path in S, we say that s is smaller (in S) than t and

we write s <S t. Clearly, specifying only the cover relations ⋖S is sufficient to define the

partial order <S (formally, as the transitive closure of ⋖S). These concepts are illustrated

(a)

ss

tt

(b)

ss

uu

(c)

Figure 1. (a) The Hasse diagram is a directed graph representation of a poset S:
The vertices correspond to the elements of S, and the upward-directed
edges to the cover relations in S. (b) Two elements s, t stand in the
relation s <S t if there is a monotonously upward-directed path from
s to t. (c) Two elements s, u are incomparable by <S if there is no
upward-directed path from s to u or vice versa.

1If it is not possible to make both ends coincide, S is non-Kekuléan. Similarly, if the upper boundary
departs more than one square down in G from the lower boundary, S is non-Kekuléan.

2If the boundaries cross, the Hasse diagram of S is disconnected, see e.g. Fig. 2 (iv).
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in Fig. 1. Practical application of this simple graphical algorithm is illustrated in Fig. 2

for five typical regular strips.

The presented graphical construction of the Hasse diagram of S corresponding to

a regular strip S seems to be the most intuitive. However, with a computer program

implementation in mind, it might be advantageous to give an alternative, algebraic rep-

resentation of the construction process.

To this end, let us first introduce a way of specifying the shape of any regular strip S

in a compact form, as a list of letters. As above, ensure that S is oriented such that its

(i)

(ii)

(iii)

(iv)

(v)

(a) (b) (c) (d)

Figure 2. Graphical construction of Hasse diagrams for various regular strips S:
(i) chevron Ch(2, 2, 2), (ii) hexagonal flake O(4, 2, 2), (iii) parallelo-
gram M(4, 3), (iv) streamer Σ(2, 3, n), and (v) prolate pentagon Di(3, 3).
Steps of the construction involve: (a) drawing S in vertical orientation,
(b) tracing the upper and lower boundary of S, (c) embedding the upper
and lower boundaries of S in the square grid G in such a way that the
pattern of each boundary is preserved and that the ends of both bound-
aries coincide, and (d) forming the Hasse diagram of S by selecting all
the vertices and edges of G which lie on or below the upper boundary
and on or above the lower boundary.
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defining columns run vertically. Then, going from left to right, compare each column ik

to the previous one (ik−1). We know from the definition of regular strips that, on the top

and bottom ends, ik is either half a hexagon longer or shorter than ik−1. We can therefore

distinguish four cases:

W (wider) if ik is longer than ik−1 on both ends.
N (narrower) if ik is shorter than ik−1 on both ends.
R (raised) if ik is longer than ik−1 on the top, but shorter on the bottom.
L (lowered) if ik is shorter than ik−1 on the top, but longer on the bottom.

Consequently, every regular m-tier strip S of length n can be uniquely represented by its

length n and a (m− 1)-letter sequence of these descriptors, obtained by comparing the

shapes of ik and ik−1 for k = 2, . . . ,m. For example, the structures (i) – (v) analyzed in

Fig. 2 can be uniquely represented by the following pairs: (i) ([L, R], n = 2), (ii) ([W, L, N],

n = 2), (iii) ([L, L, L], n = 3), (iv) ([N, W, R], n = 3), and (v) ([L, W, N, R], n = 3). The 7-tier

oblate pentagon Dj(4, 3) discussed in the first example corresponds to ([W, L, W, N, R, N],

n = 3). These sequences of column shapes are used as the input for Algorithm 1 for

constructing the poset S.

Algorithm 1: Construction of the poset S, with its order <S indicated through
the set C of cover relations.

Data: Sequence shapes of length m− 1

Result: Poset S with the set of cover relations C
l1 := 0; // Boundaries

r1 := 0;
S := {s0,0}; // Poset

C := {}; // Set of cover relations

for k = 2 to m do
if shapesk ∈ {W, L} then lk := lk−1 − 1 else lk := lk−1 + 1;
if shapesk ∈ {W, R} then rk := rk−1 + 1 else rk := rk−1 − 1;
if rk − lk < −2 then return "Non-Kekuléan strip, no corresponding poset.";
for j = lk to rk by 2 do

S := S ∪ {sk,j};
if sk−1,j−1 ∈ S then C := C ∪ {sk−1,j−1 ⋖S sk,j};
if sk−1,j+1 ∈ S then C := C ∪ {sk,j ⋖S sk−1,j+1};

end
end
return (S, C);
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2.2 Generation of the Jordan-Hölder set L(S) of S

Intuitively speaking, every partial order S can be extended to a linear order by augmenting

S with a certain number of additional “s <∗
S t” relations. Usually, such an extension can

be performed in multiple ways, resulting in multiple distinct linear orders compatible

with a given partial order S. The set of linear orders that can be generated in this way

is referred to as the Jordan-Hölder set L(S) of S, and a single linear order w ∈ L(S)
is referred to as a linear extension of S. A linear extension w ∈ L(S) of a p-element

poset S is represented as a sequence w = w1w2w3 . . . wp of labels wi ∈ {1, 2, . . . , p} in

the following way: First, we decide on a function ω : S → {1, 2, . . . , p} which assigns to

each element s of S a label ω(s) ∈ {1, 2, . . . , p}. It is useful to choose a natural labeling,

which means that whenever two elements s, t ∈ S stand in the relation s <S t, their labels

satisfy ω(s) < ω(t). Using this labeling, a sequence w = w1w2 . . . wp now signifies the

linear order ω−1(w1) <∗
S ω−1(w2) <∗

S . . . <∗
S ω−1(wp). A linear order <∗

S is compatible

with the partial order <S if for every s, t ∈ S with s <S t, we also have s <∗
S t. In other

words, a sequence w is a linear extension of S if for every s, t ∈ S with s <S t, the label

ω(s) precedes the label ω(t) in the sequence w.

We believe that it is in the spirit of the current guide to illustrate the introduced

theoretical concepts with some elementary examples. The introduced in Subsection 2.1

poset S corresponding to Dj(4, 3) has as many as 8580 linear extensions and does not

constitute a good elementary example. Instead, we analyze the linear extensions of the

five posets depicted in Fig. 2, which have manageable numbers of linear extensions.

Let us start the analysis on the example of the poset

S corresponding to Di(3, n) depicted in Fig. 2(v).

The first task is to assign labels ω(s) ∈ {1, 2, . . . , 6}
to each element s ∈ S in such a way that the map-

ping ω : S → {1, 2, . . . , 6} is a natural labeling.

This can be easily accomplished by labeling the

vertices of the corresponding Hasse diagram in

the bottom→top direction and (secondarily) in the

left→right direction.

4 5 6

1

2 3

Clearly, since ω is a natural labeling, the sequence 123456 is a linear extension. The
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remaining linear extensions are generated by considering all permutations of the labels

that are compatible with the studied poset S. In particular, for any linear extension

w of the poset S associated with Di(3, n), the following conditions must be satisfied:

(i) Since ω−1(1) <S ω−1(s) for all s ∈ S, the label 1 must precede all other labels.

(ii) Since ω−1(2) <S ω−1(4) and ω−1(2) <S ω−1(5), the label 2 must precede labels 4 and

5. (iii) Since ω−1(3) <S ω−1(5) and ω−1(3) <S ω−1(6), the label 3 must precede labels 5

and 6. It is easy to construct all 16 label sequences which satisfy these conditions; they

are listed in Eq. (8). We leave it as an exercise to the reader to demonstrate that the

Jordan-Hölder sets for the posets S depicted in Fig. 2(i–iv) are given by: (i) L(S) =

{123, 132}, (ii) L(S) = {123456, 132456, 123546, 132546, 124356}, (iii) L(S) = {1234},
and (iv) L(S) = {123, 213, 231}.

Analysis of linear extensions of finite posets has received considerable attention in

the literature. Counting linear extensions of a general poset S was demonstrated to be

#P-complete [13]. Several algorithms and strategies for generating linear extensions of

non-structured posets were reported over the years [7,12,14,27,39,48,49,51,61,63,70,72].

In our practical investigations, we generate L(S) using the command extensions from

Stembridge’s poset Maple package [69] for small and medium-size posets S; and for larger

posets, we use an in-house written Maple routine counting linear extensions using walks

on an auxiliary graph of “compatible” antichains of S. For example, the poset S associated

with Di(3, n) is represented in the Stembridge’s poset Maple package [69] as a set of edges

corresponding to the cover relations in S

S = {[1, 2], [1, 3], [2, 4], [2, 5], [3, 5], [3, 6]} (6)

and the linear extension w = 123645 is represented as the list

w = [1, 2, 3, 6, 4, 5]. (7)

The complete list of linear extensions produced by the command extensions(S) is pro-

duced by Maple in the form of a list of lists:

L(S) = [ [ 1, 2, 3, 4, 5, 6 ], [ 1, 2, 3, 4, 6, 5 ], [ 1, 2, 3, 5, 4, 6 ], [ 1, 2, 3, 5, 6, 4 ], (8)

[ 1, 2, 3, 6, 4, 5 ], [ 1, 2, 3, 6, 5, 4 ], [ 1, 2, 4, 3, 5, 6 ], [ 1, 2, 4, 3, 6, 5 ],

[ 1, 3, 2, 4, 5, 6 ], [ 1, 3, 2, 4, 6, 5 ], [ 1, 3, 2, 5, 4, 6 ], [ 1, 3, 2, 5, 6, 4 ],

[ 1, 3, 2, 6, 4, 5 ], [ 1, 3, 2, 6, 5, 4 ], [ 1, 3, 6, 2, 4, 5 ], [ 1, 3, 6, 2, 5, 4 ] ]
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2.3 Computing the number of descents des(w) and the number
of fixed labels fixS(w) for each linear extension w ∈ L(S)

In the next step, for each of the linear extension w ∈ L(S), we compute its two invariants:

the number of descents in w and the number of fixed labels in w. The number of descents,

des(w), is computed directly from the definition of a descent: If two subsequent labels

wi and wi+1 in w stand in the relation wi > wi+1, then the index i is called a descent of

w. The other invariant, fixS(w), is somewhat more complicated to compute. The—very

inefficient but human-readable—Algorithm 2 determines whether a label wi is fixed in a

linear extension w.

i wi wi>wi+1? L P max(L)>max(P )?

1 1 { } { } FALSE

2 3 { } {p |wp∈{1}}={1} FALSE

3 6 TRUE

4 2 {l |wl∈{6}}={3} {p |wp∈{1}}={1} TRUE

5 4 {l |wl∈{6}}={3} {p |wp∈{1,2}}={1,4} FALSE

6 5 {l |wl∈{6}}={3} {p |wp∈{1,2,3}}={1,2,4} FALSE

Table 1. Application of Algorithm 2 to the labels of the linear extension w =
136245: For the label w3 = 6, we find w3 > w4, which directly returns
TRUE. For all other labels, we find wi ≯ wi+1, and thus we proceed to com-
puting the sets L and P . For the label w4 = 2, we have max(L) > max(P ),
which returns TRUE; for the remaining labels the algorithm returns FALSE.

Algorithm 2: Is the label wi fixed in the sequence w?

Data: Poset S, linear extension w = w1w2w3 . . . wp, and an element wi of w.
Result: TRUE iff wi is fixed in w.

if wi > wi+1 then
return TRUE;

else
L := {l | l < i, wl > wi}; // Positions of llarger labels

P := {p |ω−1(wp) <S ω−1(wi)}; // Positions of necessarily ppreceding labels

if max(L) > max(P ) then return TRUE else return FALSE;
end
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Linear extension des(w) fixS(w) c
des(w),fixS(w)
k

1 2 3 4 5 6 0 0 c
0,0
k = (6−0

k−0)(
n+0
k )

1 33224 5 6

1 2 c1,2k = 6(6−2
k−2)(

n+1
k )

1 2 44335 6
1 3 66224 5
1 2 3 55446
1 2 3 4 6655
1 2 3 5 6644
1 2 3 664455 3 c1,3k = (6−3

k−3)(
n+1
k )

1 2 3 665544

2

c2,3k = (6−3
k−3)(

n+2
k )

1 332255446

4 c2,4k = 5(6−4
k−4)(

n+2
k )

1 33224 6655
1 3 66225544
1 2 44336655
1 33225 6644
1 3322664455 5 c2,5k = (6−5

k−5)(
n+2
k )

1 3322665544 3 c3,5k = (6−5
k−5)(

n+3
k )

Table 2. Zhang-Zhang polynomial of Di(3, n) from Fig. 2(v) can be computed as
ZZ(Di(3, n)) =

∑6
k=0 ck (1 + x)k, where ck = c0,0k + c1,2k + · · · c3,5k repre-

sents the sum
∑

w∈L(S)
(|S|−fixS(w)
k −fixS(w)

)(n+des(w)
k

)
. Descents and fixed labels

are highlighted for each w ∈ L(S) and the choice of colors pertains to
Algorithm 2.

Let us illustrate in detail the process of computation of both invariants on the example

of the linear extension w = 136245 of the poset S depicted in Fig. 2(v) and associated

with the prolate pentagon Di(3, n). There is only one descent in w at i = 3 given by

w3 = 6 > 2 = w4; for all remaining positions, i ̸= 3, we have wi < wi+1, meaning that

they are not descents in w. Therefore, des(w) = 1. Computation of fixS(w) proceeds

by application of Algorithm 2 to each label of w, which leads to the results displayed in

Table 1, showing that only the labels 6 and 2 are fixed in w. Therefore, fixS(w) = 2.

Table 2 lists all the linear extensions of the poset S associated with Di(3, n) together

with their des(w) and fixS(w) invariants. The class of linear extensions corresponding

to (des(w) = 1, fixS(w) = 2) consists of 6 linear extensions and the class corresponding

to (des(w) = 2, fixS(w) = 4), of 5 linear extensions; the remaining classes all consist of 1

linear extension. The coefficient
∑

w∈L(S)
(|S|−fixS(w)

k −fixS(w)

)(
n+des(w)

k

)
in Eq. (5) corresponding

to a given set of invariants, (des(w), fixS(w)), is denoted as cdes(w),fixS(w)
k ; these coefficients

are listed in the last column of Table 2. Substitution of these values into Eq. (5) yields
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the ZZ polynomial of the prolate pentagon Di(3, n) in the following form

ZZ(Di(3, n)) =
6∑

k=0

( (
6
k

)(
n
k

)
+

(
6
(

4
k−2

)
+
(

3
k−3

))(
n+1
k

)

+
((

3
k−3

)
+ 5

(
2

k−4

)
+
(

1
k−5

))(
n+2
k

)
+
(

1
k−5

)(
n+3
k

))
(1 + x)k.

In practical investigations, using the same representation of a linear extension w as in

Eq. (7), the number des(w) of descents can be computed using the Maple operator

des :=w → nops(select(x → x < 0, [ op(w[ 2..nops(w) ]), nops(w) + 1 ]− w)) (9)

and the number fixS(w) of fixed labels in w can be computed for example by the following

Maple operator

fixS := proc (w,S) (10)
local j, k, f:=[ op(w[2..nops(w) ]), nops(w) + 1 ]− w:
for j from 1 to nops(w) do
if f [ j ] > 0 then
for k from j − 1 to 1 by − 1 do
if evalb([w[ k ], w[ j ] ] in S) then break: fi:
if w[ j ] < w[ k ] then f [ j ]:=− k: break: fi: od: fi: od:

return nops(select(x → x < 0, f)):
end proc:

3 Examples of computation of the extended strict order
polynomial E◦

S(n, 1+x) for various classes of regular
benzenoid strips

In the previous section, we have explained in detail the construction of a poset S for any

Kekuléan regular strip S and using it for computing the ZZ polynomial of S in the form

of the extended strict order polynomial of S. In this section, we illustrate this process on

several examples, producing a number of non-trivial results. In every case, the process

starts with a molecular graph of a given regular m-tier benzenoid strip S of length n,

and proceeds via construction of the corresponding poset S, generating the set L(S) of

linear extensions of S, finding the invariants des(w) and fixS(w) for each w ∈ L(S), and

substituting all the ingredients into the working equation

ZZ(S, x) = E◦
S(n, 1 + x) =

∑

w∈L(S)

|S|∑

k=0

(|S| − fixS(w)

k − fixS(w)

)(
n+ des(w)

k

)
(1 + x)k . (11)
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The described above steps constitute a very efficient and straightforward algorithm for

determination of ZZ polynomials, providing additionally deep understanding of their in-

ternal structure and relative complexity.

Example 1. For any parallelogram M(m,n), the

corresponding Hasse diagram is a chain m. Thus,

L(S) contains only the one element w = 123 . . .m,

for which we find des(w) = 0 and fixS(w) = 0. It

follows immediately from Eq. (11) that

ZZ(M(m,n), x) = E◦
m(n, 1 + x) =

m∑

k=0

(mk)(
n
k) (1 + x)k ,

which reproduces the well-known formula given by Eq. (4) of [23] and agrees with similar

formulas given in [43].

Example 2. For a chevron Ch(2,m, n), the corre-

sponding Hasse diagram consists of two chains (m

and 2), which are merged at their minimal elements.

This poset has m linear extensions, each of them in

the form of the sequence 1345 . . . (m+ 1) with the

label 2 inserted in any position after 1. The linear

extension 1234 . . . (m+ 1) has 0 descents and 0 fixed labels; the remaining m − 1 linear

extensions have 1 descent and 2 fixed labels that are involved in the descent. Consequently,

the ZZ polynomial of a chevron Ch(2,m, n) is given by

ZZ(Ch(2,m, n), x) = E◦
2∨m(n, 1 + x) =

m+1∑

k=0

[
(m+1

k )(nk)+(m−1)(m−1
k−2)(

n+1
k )

]
(1 + x)k .

Similar considerations for a chevron Ch(3,m, n) show that it has 1 linear extension with 0

descents and 0 fixed labels, 2 (m− 1) linear extensions with 1 descent and 2 fixed labels,

and
(
m−1
2

)
linear extensions with 2 descent and 4 fixed labels. Consequently, the ZZ

polynomial of a chevron Ch(3,m, n) is given by

ZZ(Ch(3,m, n), x) = E◦
3∨m(n, 1+x) =

m+2∑

k=0

[
(m+2

k )(nk)+2(m−1)( m
k−2)(

n+1
k )+(m−1

2 )(m−2
k−4)(

n+2
k )

]
(1 + x)k .
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Example 3. The two formulas given in

Example 2 show a large degree of similarity.

It is plausible to make a conjuncture that

the generalization of these two formulas to

a poset S = l∨m with an arbitrary positive

integer value of l (i.e., to a general chevron

Ch(l,m, n) represented by the poset S =

l ∨m) is given by the following expression

ZZ(Ch(l,m, n), x) = E◦
l∨m(n, 1 + x) =

m+l−1∑

k=0

m+l∑

d=0

(l−1
d )(

m−1
d )(m+l−1−2d

k−2d )(n+d
k ) (1 + x)k . (12)

Indeed, direct, brute-force computation of the ZZ polynomial of Ch(3,m, n) using ZZDe-

composer [24, 25, 90, 91] with preselected values of the structural parameters l, m, and n

shows that Eq. (12) is correct. Since a closed-form expression for the ZZ polynomial of a

general chevron Ch(l,m, n) was reported in the literature (Eq. (16) of [23])

ZZ(Ch(l,m, n), x) = 2F1

[
1−l,−n

1
; 1 + x

]
· 2F1

[
1−m,−n

1
; 1 + x

]
(13)

+
n−1∑

k=0

(1 + x) · 2F1

[
1−l,−k

1
; 1 + x

]
· 2F1

[
1−m,−k

1
; 1 + x

]

it remains to be demonstrated that these two equations are equivalent. In particular,

after expanding the hypergeometric functions in Eq. (13) as binomial sums, it is sufficient

to show that for arbitrary positive values of k, l, m, and n the following equality holds

l−1∑

d=0

(
l−1
d

)(
m−1
d

)(
m+l−1−2d

k−2d

)(
n+d
k

)

=
l−1∑

d=0

(
l−1
d

)
[
(
n
d

)(
m−1
k−d

)(
n

k−d

)
+

n−1∑

j=0

(
j
d

)(
m−1

k−1−d

)(
j

k−1−d

)
]

in order to prove many interesting properties of linear extensions of the poset S = l ∨m

(which might, alternatively, also be understood through combinatorial considerations):

• The maximal number of descents in linear extensions of S = l∨m is min(l−1,m−1).

• For any linear extension w ∈ L(l ∨m), we have fixS(w) = 2 des(w), i.e., labels are

fixed only if they are involved in descents.

• The number of linear extensions with d descents and 2d fixed labels is
(
l−1
d

)(
m−1
d

)
.
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• The total number of linear extensions for S = l ∨m is |L(l ∨m)| =
(
m+l−2
l−1

)
.

Alternatively, one may demonstrate correctness of Eq. (12) directly by designing combi-

natorial proofs of the listed facts, based on the number of different ways of monotonic

merging of chains l − 1 and m − 1.

4 Conclusion

We have presented an algorithm and a practical guide for computing the ZZ polynomial

ZZ(S, x) of an arbitrary regular m-tier benzenoid strip S in the form of the extended

strict order polynomial E◦
S(n, 1+x) of the corresponding poset S associated with S. The

algorithm is based on the equivalence between ZZ(S, x) and E◦
S(n, 1 + x) demonstrated

in the prequel to this paper [58], and used for the determination of the ZZ polynomials

of all regular m-tier strips with m = 1− 6 in the sequel [59]. The presented algorithm is

illustrated with several examples to facilitate its use in practice. The algorithm consists

of a number of fully automatable steps: generation of the poset S associated with S,

constructing the set L(S) of linear extensions of S, computing the invariants des(w) and

fixS(w) for each w ∈ L(S), and substituting all the computed ingredients into the generic

equation

ZZ(S, x) = E◦
S(n, 1 + x) =

∑

w∈L(S)

|S|∑

k=0

(|S| − fixS(w)

k − fixS(w)

)(
n+ des(w)

k

)
(1 + x)k . (14)

Application of the algorithm to a sequence of chevrons Ch(l,m, n) resulted in a com-

pletely new, simpler form of the ZZ polynomial of a general chevron Ch(l,m, n), given by

Eq. (12) (currently as a conjecture). Simultaneously, the analysis revealed (also as con-

jectures) a number of interesting facts about the linear extensions of a poset S = l ∨m

(i.e., a poset formed from two chains of length l and m by merging them at their minimal

elements). We believe that the presented methodology will open a path to more efficient

methods of computing ZZ polynomials of general benzenoids, possibly without the actual

construction of the entire set L(S). At the same time, it seems to us that the multiple

interesting properties of ZZ polynomials for various classes of benzenoids might provide

valuable information about properties of various posets and their linear extensions.
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