On the Randić Energy of Caterpillar Graphs

Domingos M. Cardoso ${ }^{1,2}$, Paula Carvalho ${ }^{2}$, Roberto C. Díaz ${ }^{3, *}$, Paula Rama ${ }^{2}$

> ${ }^{1}$ Center for Research and Development in Mathematics and Applications,
> ${ }^{2}$ Department of Mathematics, Universidade de Aveiro, Aveiro, Portugal
> dcardoso@ua.pt, paula.carvalho@ua.pt, prama@ua.pt
> ${ }^{3}$ Departamento de Matematicas, Universidad de La Serena, Cisternas 1200, La Serena, Chile
> roberto.diazm@userena.cl

(Received July 19, 2021)

Abstract

A caterpillar graph $T\left(p_{1}, \ldots, p_{r}\right)$ of order $n=r+\sum_{i=1}^{r} p_{i}, r \geq 2$, is a tree such that removing all its pendent vertices gives rise to a path of order r. In this paper we establish a necessary and sufficient condition for a real number to be an eigenvalue of the Randić matrix of $T\left(p_{1}, \ldots, p_{r}\right)$. This result is applied to determine the extremal caterpillars for the Randić energy of $T\left(p_{1}, \ldots, p_{r}\right)$ for cases $r=2$ (the double star) and $r=3$. We characterize the extremal caterpillars for $r=2$. Moreover, we study the family of caterpillars $T(p, n-p-q-3, q)$ of order n, where q is a function of p, and we characterize the extremal caterpillars for three cases: $q=p, q=n-p-b-3$ and $q=b$, for $b \in\{1, \ldots, n-6\}$ fixed. Some illustrative examples are included.

1 Introduction

It is worth to start this section defining the Randić matrix of a graph G, denoted by $R_{G}=\left(r_{i j}\right)$, which is such that $r_{i j}=\frac{1}{\sqrt{d_{i} d_{j}}}$ if $i j \in E(G)$ and zero otherwise, where d_{k} is the degree of the vertex k. The spectrum of R_{G} is the multiset of its eigenvalues, $\sigma_{R}(G)=\left\{\rho_{1}^{\left[m_{1}\right]}, \rho_{2}^{\left[m_{2}\right]}, \ldots, \rho_{s}^{\left[m_{s}\right]}\right\}$, where m_{i} stands for the multiplicity of ρ_{i}, for $1 \leq i \leq s$, and $\rho_{1}>\rho_{2}>\cdots>\rho_{s}$ are the distinct eigenvalues of R_{G}.

[^0]It is well known that $\rho_{1}(G)=1$ whenever G is a graph with at least one edge (see [7, Th. 2.3]).

The Randić energy of a graph G is defined in [7] (see also $[2,3]$) as follows:

$$
R E(G)=\sum_{i=1}^{n}\left|\rho_{i}(G)\right|
$$

It is immediate that $R E(G)=0$ if and only if all the vertices of G are isolated vertices. Considering $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ as the eigenvalues of the adjacency matrix of a graph G of order n, the ordinary energy of $G[8,11]$, herein denoted by $\mathcal{E}(G)$, is defined as

$$
\mathcal{E}(G)=\sum_{j=1}^{n}\left|\lambda_{i}\right| .
$$

In [7], the Randić energy and the ordinary energy of the paths P_{n} and P_{n-2}, respectively, are related as follows.

$$
R E\left(P_{n}\right)=2+\frac{1}{2} \mathcal{E}\left(P_{n-2}\right) .
$$

According to [5], if a graph G of order n has at least one edge, then

$$
\begin{equation*}
2 \leq R E(G) \leq n \tag{1}
\end{equation*}
$$

Furthermore, the lower bound in (1) is attained if and only if one component of G is a complete multipartite graph and all other components (if any) are isolated vertices. In particular, $R E(G)=2$ for complete graphs. The upper bound in (1) is attained only if n is even and G is isomorphic to $\frac{n}{2} K_{2}$, or n is odd and G is the disjoin union of $\frac{n-3}{2} K_{2}$ plus a component which is a path P_{2} or a triangle K_{3}.

The characterization of connected graphs with maximal Randić energy remains an open problem as well as the following conjecture posed in [7] and computationally verified for graphs of order n up to $n=10$.

Conjecture 1 [7] The connected graph with maximal Randić energy is a tree.
The following more thinner conjecture, also posed in [7], remains open too.
Conjecture 2 [7] The connected graph of odd order $n \geq 1$, having maximal Randić energy is the sun [7, Fig. 2]. The connected graph of even order $n \geq 2$, having maximal Randić energy is the balanced double sun [7, Fig. 2].

The aim of this paper is to determine the extremal graphs for the Randić energy of a family of caterpillars $T\left(p_{1}, \cdots p_{r}\right)$ of order $n=r+\sum_{i=1}^{r} p_{i}$ for cases $r=2$ and $r=3$. The
paper is organized as follows. In Section 2 the notation and basic definitions of the main concepts used through the text are introduced. In Section 3 a caterpillar is considered as the H -join of graphs and some spectral results of graphs obtained by this operation are recalled. Moreover, we get a necessary and sufficient condition for a real number to be an eigenvalue of the Randić matrix. This result plays a important role throughout the paper. In Section 4 we characterize the extremal caterpillar graphs for $r=2$ (that are the double star) as well as we study the family of caterpillars $T(p, n-p-q-3, q)$ of order n, and we characterize extremal caterpillar graphs for three cases: $q=p, q=n-p-b-3$ and $q=b$, for any $b \in\{1, \ldots, n-6\}$ fixed.

2 Preliminaries

In this paper we deal with undirected simple graphs. For a graph G the vertex set is denoted by $V(G)$ and the edge set by $E(G)$ and $|V(G)|$ is the order of G. The edges of G denoted by $i j$, where i and j are the end-vertices of the edge. When $i j \in E(G)$ we say that the vertices i and j are adjacent and also that i is a neighbor of j (and conversely). The neighborhood of a vertex $v \in V(G)$ is the set of its neighbors and is denoted by $N_{G}(v)=\{w: v w \in E(G)\}$. The degree of v, denoted by d_{v}, is the cardinality of $N_{G}(v)$. The vertices i with 0 degree are called isolated vertices. Two graphs G and H are isomorphic if there is a bijection $\psi: V(G) \rightarrow V(H)$ such that ij $\in E(G)$ if and only if $\psi(i) \psi(j) \in E(H)$. This binary relation between graphs is denoted by $G \cong H$. The complement graph of a graph G, denoted by \bar{G}, is such that $V(\bar{G})=V(G)$ and $E(\bar{G})=\{i j: i j \notin E(G)\}$. The complete graph of order n, denote by K_{n}, is a graph where every pair of vertices are adjacent. The vertices of the complement of K_{n} are all isolated. The adjacency matrix of a graph G of order $n=|V(G)|$ is $n \times n$ symmetric matrix $A_{G}=\left(a_{i j}\right)$ such that $a_{i j}=1$ if $i j \in E(G)$ and zero otherwise. The spectrum of a matrix M is the multiset of its eigenvalues denoted by σ_{M}. In particular, the spectrum of the adjacency matrix of a graph G, also called the spectrum of G, is $\sigma(G)=\left\{\lambda_{1}^{\left[m_{1}\right]}, \lambda_{2}^{\left[m_{2}\right]}, \ldots, \lambda_{s}^{\left[m_{s}\right]}\right\}$, where m_{i} stands for the multiplicity of λ_{i}, for $1 \leq i \leq s$.

A path with r vertices, denoted by P_{r}, is a sequence of vertices $v_{1}, v_{2}, \ldots, v_{r}$ such that each vertex is adjacent to the next, that is $v_{1} v_{i+1} \in E(G)$ for $i=1, \ldots, r-1$. A cycle C_{r} is a closed path with r edges, that is, such that $v_{r+1}=v_{1}$. A tree is a connected acyclic graph; a star of order r, denoted by S_{r+1}, is a tree with a central vertex with degree r and all the other r vertices are pendent. A caterpillar is a tree such that removing all pendent
vertices give rise to a path with at least two vertices. In particular, $T\left(p_{1}, \ldots, p_{r}\right)$ denotes a caterpillar obtained by attaching the central vertex of a star $S_{p_{i}+1}$ to the i-th vertex of $P_{r}, i=1, \ldots r$. The order of a caterpillar is $n=r+\sum_{i=1}^{r} p_{i}$.

A caterpillar $T\left(p_{1}, \ldots, p_{r}\right)$ can also be seen as the H-join $H\left[G_{1}, \ldots, G_{r}, G_{r+1}, \ldots, G_{2 r}\right]$, where, for $1 \leq i \leq r,\left\{\begin{array}{l}G_{i} \cong \frac{K_{1}}{K_{p_{i}}} \\ G_{i+r} \cong \frac{K_{2}}{}\end{array}\right.$ and H is the caterpillar of order $2 r, T(1, \ldots, 1)$, that is, a path P_{r} with one pendant vertex attached to each vertex of the path.

The null square and the identity matrices of order n are denoted by O_{n} and I_{n}, respectively.

3 The Randić spectrum of a caterpillar viewed as H_{-} join

In this section, we consider a caterpillar as the H-join of a family of graphs (see [4]), $T\left(p_{1}, \ldots, p_{r}\right)=H\left[K_{1}, \ldots, K_{1}, \overline{K_{p_{1}}}, \ldots, \overline{K_{p_{r}}}\right]$, where H is the caterpillar of order $2 r$, $T(1,1, \ldots, 1)$, that is, a path P_{r} with a pendant edge attached to each vertex of the path. The following result, given in [1], characterizes Randić spectra of H-join graphs.

Theorem 3.1 [1] Let H be a graph of order k. Let G_{j} be a d_{j}-regular graph of order n_{j}, with $d_{j} \geq 0, n_{j} \geq 1$, for $j=1, \ldots, k$ and $G=H\left[G_{1}, \ldots, G_{k}\right]$. Let R_{G} be the Randić matrix of G. Then,

$$
\sigma_{R_{G}}=\sigma_{\Gamma_{k}} \cup \bigcup_{j=1}^{k}\left\{\frac{\lambda}{N_{j}+d_{j}}: \lambda \in \sigma\left(A_{G_{j}}\right) \backslash\left\{d_{j}\right\}\right\}
$$

where $N_{j}=\sum_{i \in N_{H}(j)} n_{i}$, for $j=1,2, \ldots, k$,

$$
\Gamma_{k}=\left(\begin{array}{ccccc}
\frac{d_{1}}{N_{1}+d_{1}} & \rho_{12} & \cdots & \rho_{1(k-1)} & \rho_{1 k} \\
\rho_{12} & \frac{d_{2}}{N_{2}+d_{2}} & \cdots & \rho_{2(k-1)} & \rho_{2 k} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\rho_{1(k-1)} & \rho_{2(k-1)} & \cdots & \frac{d_{k-1}}{N_{k-1}+d_{k-1}} & \rho_{(k-1) k} \\
\rho_{1 k} & \rho_{2 k} & \cdots & \rho_{(k-1) k} & \frac{d_{k}}{N_{k}+d_{k}}
\end{array}\right)
$$

and

$$
\rho_{i j}=\delta_{i j} \frac{\sqrt{n_{i} n_{j}}}{\sqrt{\left(N_{i}+d_{i}\right)\left(N_{j}+d_{j}\right)}},
$$

with $\delta_{i j}=1$ if ij $\in E(H)$, and zero otherwise, for $i=1 \ldots, k-1$ and $j=i+1, \ldots, k$.
Remark 1 It is clear that the Randić matrix of a d_{j}-regular graph G_{j} is $R_{G_{j}}=\frac{1}{d_{j}} A_{G_{j}}$ if $d_{j}>0$ and zero otherwise. On the other hand, if $d_{j}=0$, for $j=1, \ldots, k$, then $\Gamma_{k}=\Omega A_{H} \Omega$, with $\Omega=\operatorname{diag}\left\{\sqrt{\frac{n_{1}}{N_{1}}}, \ldots, \sqrt{\frac{n_{k}}{N_{k}}}\right\}$.

Since K_{1} and $\overline{K_{p_{i}}}$, for $i=1, \ldots, r$, are 0 -regular graphs, we have the following result, which plays an important role in this paper:

Corollary 3.1 Let $H=T(1,1, \ldots, 1)$ be the caterpillar of order $2 r, r \geq 2$, obtained from a path P_{r} and a pendent vertex attached to each vertex of the path. Let $T=T\left(p_{1}, \ldots, p_{r}\right)=$ $H\left[K_{1}, \ldots, K_{1}, \overline{K_{p_{1}}}, \ldots, \overline{K_{p_{r}}}\right]$ be a caterpillar of order $n=r+\sum_{i=1}^{r} p_{i}$. Then,

$$
\sigma_{R_{T}}=\sigma_{\Gamma_{2 r}} \cup\left\{0^{\left[\sum_{i=1}^{r}\left(p_{i}-1\right)\right]}\right\} .
$$

As a consequence, in order to obtain the spectrum of the Randić matrix of $T\left(p_{1}, \ldots, p_{r}\right)$ we focus our attention on the spectrum of $\Gamma_{2 r}$. Firstly, note that

$$
\Omega=\operatorname{diag}\left\{\sqrt{\frac{1}{N_{1}}}, \ldots, \sqrt{\frac{1}{N_{r}}}, \sqrt{\frac{p_{1}}{N_{r+1}}}, \ldots, \sqrt{\frac{p_{r}}{N_{2 r}}}\right\}=\left[\begin{array}{cc}
\Omega_{1} & O_{r} \\
O_{r} & \Omega_{2}
\end{array}\right]
$$

with

$$
\begin{equation*}
\Omega_{1}=\operatorname{diag}\left\{\sqrt{\frac{1}{N_{1}}}, \ldots, \sqrt{\frac{1}{N_{r}}}\right\}, \quad \Omega_{2}=\operatorname{diag}\left\{\sqrt{\frac{p_{1}}{N_{r+1}}}, \ldots, \sqrt{\frac{p_{r}}{N_{2 r}}}\right\} \tag{2}
\end{equation*}
$$

Therefore, we can write

$$
\Gamma_{2 r}=\Omega A_{H} \Omega=\left[\begin{array}{ll}
\Omega_{1} & O_{r} \tag{3}\\
O_{r} & \Omega_{2}
\end{array}\right]\left[\begin{array}{cc}
A_{P_{r}} & I_{r} \\
I_{r} & O_{r}
\end{array}\right]\left[\begin{array}{ll}
\Omega_{1} & O_{r} \\
O_{r} & \Omega_{2}
\end{array}\right]=\left[\begin{array}{cc}
A & B \\
B & O_{r}
\end{array}\right],
$$

where

$$
\begin{equation*}
A=\Omega_{1} A_{P_{r}} \Omega_{1} \quad \text { and } \quad B=\Omega_{1} \Omega_{2} \tag{4}
\end{equation*}
$$

It is worth to recall a famous determinantal identity presented by Issa Schur in 1917 [12] referred as the formula of Schur by Gantmacher [6, p. 46]. In the sixties, the term Schur complement was introduced by Emilie Haynsworth [9] jointly with the following notation. Considering a square matrix $M=\left[\begin{array}{cc}A & B \\ C & D\end{array}\right]$, where A and D are square block matrices and A is nonsingular, the Schur complement of A in M is defined as

$$
M / A=D-C A^{-1} B .
$$

For more details see [10]. Using the above notation, the next theorem states the Schur determinantal identity. For the readers convenience, the very short proof presented in [10] is reproduced.

Theorem 3.2 [12] Let $M=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$, where A and D are square submatrices of order m and n, respectively. If A is nonsingular then

$$
\operatorname{det}(M)=\operatorname{det}(A) \cdot \operatorname{det}(M / A)
$$

Proof It is immediate that

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\left[\begin{array}{cc}
I_{m} & 0 \\
C A^{-1} & I_{n}
\end{array}\right]\left[\begin{array}{cc}
A & B \\
0 & D-C A^{-1} B
\end{array}\right] .
$$

The identity follows by taking the determinant of both sides.
Similarly, if D is nonsingular then

$$
\begin{equation*}
\operatorname{det}(M)=\operatorname{det}\left(A-B D^{-1} C\right) \cdot \operatorname{det}(D) \tag{5}
\end{equation*}
$$

Note that $\left[\begin{array}{cc}A & B \\ C & D\end{array}\right]=\left[\begin{array}{cc}I_{m} & B D^{-1} \\ 0 & I_{n}\end{array}\right]\left[\begin{array}{cc}A-B D^{-1} C & 0 \\ C & D\end{array}\right]$.
From (5), we may establish the following spectral characterization for the matrix $\Gamma_{2 r}$, which will play an important role in getting our main results:

Theorem 3.3 Let $H=T(1,1, \ldots, 1)$ be the caterpillar of order $2 r, r \geq 2$ and let $\Gamma_{2 r}$ be partitioned as in (3). Then, $\lambda \in \sigma_{\Gamma_{2 r}}$ if and only if

$$
\operatorname{det}\left(\lambda^{2} I_{r}-\lambda A-B^{2}\right)=0,
$$

where A and B are defined as in (4).
Proof The characteristic polynomial of $\Gamma_{2 r}$ is

$$
p_{\Gamma_{2 r}}(\lambda)=\operatorname{det}\left(\lambda I_{2 r}-\Gamma_{2 r}\right)=\operatorname{det}\left(\left[\begin{array}{cc}
\lambda I_{r}-A & -B \\
-B & \lambda I_{r}
\end{array}\right]\right) .
$$

Thus, applying (5), we obtain

$$
\begin{aligned}
p_{\Gamma_{2 r}}(\lambda) & =\operatorname{det}\left(\lambda I_{r}\right) \cdot \operatorname{det}\left(\lambda I_{r}-A-B\left(\frac{1}{\lambda} I_{r}\right) B\right) \\
& =\lambda^{r} \cdot \operatorname{det}\left(\left(\frac{1}{\lambda}\right)\left(\lambda^{2} I_{r}-\lambda A-B^{2}\right)\right) \\
& =\lambda^{r} \cdot\left(\frac{1}{\lambda}\right)^{r} \cdot \operatorname{det}\left(\lambda^{2} I_{r}-\lambda A-B^{2}\right)=\operatorname{det}\left(\lambda^{2} I_{r}-\lambda A-B^{2}\right) .
\end{aligned}
$$

4 Extremal caterpillar graphs for Randić energy

In this section, we obtain the extremal graphs in the family of caterpillars, for $r=2,3$.

4.1 Extremal caterpillar graphs $T(p, n-p-2), p=1, \ldots,\left\lfloor\frac{\mathbf{n}-\mathbf{2}}{2}\right\rfloor$.

Theorem 4.1 Let $T_{p}=T(p, n-p-2), p=1, \ldots,\left\lfloor\frac{n-2}{2}\right\rfloor$ be a caterpillar of order $n \geq 4$. Then

$$
2+\sqrt{\frac{2(n-3)}{n-2}} \leq R E\left(T_{p}\right) \leq 4-\frac{4}{n} .
$$

The lower bound is attained if and only if $p=1$ (the graph obtained by attaching a pendent vertex to a pendent vertex of S_{n-1}) and the upper bound is attained if and only if T_{p} has even order and $p=\frac{n-2}{2}$.

Proof By Theorem 3.3, the eigenvalues of $\sigma_{\Gamma_{4}}$ are the zeros of the polynomial $\operatorname{det}\left(\lambda^{2} I_{2}-\right.$ $\left.\lambda A-B^{2}\right)=0$ where (see (4)),

$$
A=\left[\begin{array}{cc}
0 & \frac{1}{\sqrt{(p+1)(n-p-1)}} \\
\frac{1}{\sqrt{(p+1)(n-p-1)}} & 0
\end{array}\right] \text { and } B=\left[\begin{array}{cc}
\frac{\sqrt{p}}{\sqrt{p+1}} & 0 \\
0 & \frac{\sqrt{n-p-2}}{\sqrt{n-p-1}}
\end{array}\right] .
$$

So,

$$
\begin{aligned}
\operatorname{det}\left(\lambda^{2} I_{2}-\lambda A-B^{2}\right) & =\operatorname{det}\left[\begin{array}{cc}
\lambda^{2}-\frac{p}{p+1} & -\frac{\lambda}{\sqrt{(p+1)(n-p-1)}} \\
-\frac{\lambda}{\sqrt{(p+1)(n-p-1)}} & \lambda^{2}-\frac{n-p-2}{n-p-1}
\end{array}\right] \\
& =\left(\lambda^{2}-\frac{p}{p+1}\right)\left(\lambda^{2}-\frac{n-p-2}{n-p-1}\right)-\frac{\lambda^{2}}{(p+1)(n-p-1)} \\
& =\frac{\lambda^{2}-1}{(p+1)(n-p-1)}\left((p+1)(n-p-1) \lambda^{2}-p(n-p-2)\right) .
\end{aligned}
$$

Consequently,

$$
\sigma_{\Gamma_{4}}=\left\{ \pm \sqrt{\frac{p(n-p-2)}{(p+1)(n-p-1)}}, \pm 1\right\}
$$

and

$$
R E\left(T_{p}\right)=\sum_{i=1}^{n}\left|\lambda_{i}\left(T_{p}\right)\right|=2+2 \sqrt{\frac{p(n-p-2)}{(p+1)(n-p-1)}},
$$

for all $p=1, \ldots,\left\lfloor\frac{n-2}{2}\right\rfloor$. For $1 \leq x \leq\left\lfloor\frac{n-2}{2}\right\rfloor$, let $f(x)=\frac{x(n-x-2)}{(x+1)(n-x-1)}$. Then,

$$
f^{\prime}(x)=\frac{(n-1)(n-2(x+1))}{(x+1)^{2}(n-x-1)^{2}} \geq 0
$$

if and only if $1 \leq x \leq \frac{n-2}{2}$. Therefore, f is an increasing function in this interval, and consequently,

$$
2+\sqrt{\frac{2(n-3)}{n-2}} \leq R E\left(T_{p}\right) \leq R E\left(T_{\left\lfloor\frac{n-2}{2}\right\rfloor}\right)
$$

for all $p=1, \ldots,\left\lfloor\frac{n-2}{2}\right\rfloor$. Finally, if n is even,

$$
R E\left(T_{\left\lfloor\frac{n-2}{2}\right\rfloor}\right)=R E\left(T_{\frac{n-2}{2}}\right)=2+2\left(\frac{n-2}{n}\right)=4-\frac{4}{n},
$$

and if n is odd,

$$
R E\left(T_{\left\lfloor\frac{n-2}{2}\right\rfloor}\right)=R E\left(T_{\left\lfloor\frac{n-3}{2}+\frac{1}{2}\right\rfloor}\right)=R E\left(T_{\frac{n-3}{2}}\right)=2+2\left(\sqrt{\frac{n-3}{n+2}}\right)<4-\frac{4}{n}
$$

for all $n \geq 3$.

4.2 Extremal caterpillar graphs $\mathbf{T}(\mathbf{p}, \mathbf{n}-\mathbf{p}-\mathbf{q}-3, \mathbf{q})$, $\mathbf{p}, \mathbf{q} \in\{1, \ldots, \mathbf{n}-5\}$

For this class of caterpillars,

$$
\Omega_{1}=\operatorname{diag}\left\{\frac{1}{\sqrt{p+1}}, \frac{1}{\sqrt{n-p-q-1}}, \frac{1}{\sqrt{q+1}}\right\}
$$

and

$$
\Omega_{2}=\operatorname{diag}\{\sqrt{p}, \sqrt{n-p-q-3}, \sqrt{q}\} .
$$

Therefore (see (2), (3) and (4))

$$
\Gamma_{6}=\Omega A_{H} \Omega=\left[\begin{array}{cc}
A & B \\
B & O_{3}
\end{array}\right],
$$

with

$$
A=\Omega_{1} A_{P_{3}} \Omega_{1}=\left[\begin{array}{ccc}
0 & \frac{1}{\sqrt{p+1} \sqrt{n-p-q-1}} & 0 \\
\frac{1}{\sqrt{p+1} \sqrt{n-p-q-1}} & 0 & \frac{1}{\sqrt{q+1} \sqrt{n-p-q-1}} \\
0 & \frac{1}{\sqrt{q+1} \sqrt{n-p-q-1}} & 0
\end{array}\right]
$$

and

$$
B=\Omega_{1} \Omega_{2}=\left[\begin{array}{ccc}
\frac{\sqrt{p}}{\sqrt{p+1}} & 0 & 0 \\
0 & \frac{\sqrt{n-p-q-3}}{\sqrt{n-p-q-1}} & 0 \\
0 & 0 & \frac{\sqrt{q}}{\sqrt{q+1}}
\end{array}\right]
$$

By Theorem 3.3, as

$$
\lambda^{2} I_{3}-\lambda A-B^{2}=\left[\begin{array}{ccc}
\lambda^{2}-\frac{p}{p+1} & -\frac{\lambda}{\sqrt{p+1} \sqrt{n-p-q-1}} & 0 \\
-\frac{\lambda}{\sqrt{p+1} \sqrt{n-p-q-1}} & \lambda^{2}-\frac{n-p-q-3}{n-p-q-1} & -\frac{\lambda}{\sqrt{q+1} \sqrt{n-p-q-1}} \\
0 & -\frac{\lambda}{\sqrt{q+1} \sqrt{n-p-q-1}} & \lambda^{2}-\frac{q}{q+1}
\end{array}\right]
$$

$$
\operatorname{det}\left(\lambda^{2} I_{3}-\lambda A-B^{2}\right)=
$$

$$
=\left(\lambda^{2}-\frac{p}{p+1}\right) \operatorname{det}\left(\left[\begin{array}{cc}
\lambda^{2}-\frac{n-p-q-3}{n-p-q-1} & -\frac{\lambda}{\sqrt{q+1} \sqrt{n-p-q-1}} \\
-\frac{\lambda}{\sqrt{q+1} \sqrt{n-p-q-1}} & \lambda^{2}-\frac{q}{q+1}
\end{array}\right]\right)
$$

$$
+\left(\frac{\lambda}{\sqrt{p+1} \sqrt{n-p-q-1}}\right) \operatorname{det}\left(\left[\begin{array}{cc}
-\frac{\lambda}{\sqrt{p+1} \sqrt{n-p-q-1}} & -\frac{\lambda}{\sqrt{q+1} \sqrt{n-p-q-1}} \\
0 & \lambda^{2}-\frac{q}{q+1}
\end{array}\right]\right)
$$

$$
=\left(\lambda^{2}-\frac{p}{p+1}\right)\left[\left(\lambda^{2}-\frac{n-p-q-3}{n-p-q-1}\right)\left(\lambda^{2}-\frac{q}{q+1}\right)-\frac{\lambda^{2}}{(q+1)(n-p-q-1)}\right]
$$

$$
-\left(\frac{\lambda^{2}}{(p+1)(n-p-q-1)}\right)\left(\lambda^{2}-\frac{q}{q+1}\right)
$$

$$
=\frac{\left(\lambda^{2}(p+1)-p\right)\left[\left(\lambda^{2}(n-p-q-1)-(n-p-q-3)\right)\left(\lambda^{2}(q+1)-q\right)-\lambda^{2}\right]-\lambda^{2}\left(\lambda^{2}(q+1)-q\right)}{(p+1)(q+1)(n-p-q-1)}
$$

After some algebraic manipulation on the above expression, we get that

$$
\begin{aligned}
& \begin{aligned}
& \operatorname{det}\left(\lambda^{2} I_{3}-\lambda A-B^{2}\right)=\frac{1}{(p+1)(q+1)(n-p-q-1)}\left[(p+1)(q+1)(n-p-q-1) \lambda^{6}\right. \\
& \quad-[(n-p-q-2)(q(2 p+1)+p)+(p+1)(q+1)(n-p-q-1)] \lambda^{4} \\
&\left.+[p q(n-p-q-3)+(n-p-q-2)(q(2 p+1)+p)] \lambda^{2}-p q(n-p-q-3)\right] \\
&= \frac{\left(\lambda^{2}-1\right)\left[(p+1)(q+1)(n-p-q-1) \lambda^{4}-(n-p-q-2)(q(2 p+1)+p) \lambda^{2}+p q(n-p-q-3)\right]}{(p+1)(q+1)(n-p-q-1)} \\
&=\frac{1}{\eta(n, p, q)}\left(\lambda^{2}-1\right)\left[\eta(n, p, q) \lambda^{4}-\zeta(n, p, q) \lambda^{2}+\chi(n, p, q)\right]
\end{aligned}
\end{aligned}
$$

being

$$
\begin{cases}\eta(n, p, q) & =(p+1)(q+1)(n-p-q-1) \tag{6}\\ \zeta(n, p, q) & =(n-p-q-2)(q(2 p+1)+p) \\ \chi(n, p, q) & =p q(n-p-q-3)\end{cases}
$$

When obtaining the roots of the biquadratic equation

$$
\eta(n, p, q) \lambda^{4}-\zeta(n, p, q) \lambda^{2}+\chi(n, p, q)=0
$$

we determinate the roots of the equation $\operatorname{det}\left(\lambda^{2} I_{3}-\lambda A-B^{2}\right)=0$, given by:

$$
\begin{aligned}
& \lambda_{1,2}= \pm 1 \\
& \lambda_{3,4}= \pm \sqrt{\frac{\zeta(n, p, q)+\sqrt{\zeta^{2}(n, p, q)-4 \eta(n, p, q) \chi(n, p, q)}}{2 \eta(n, p, q)}} \\
& \lambda_{5,6}= \pm \sqrt{\frac{\zeta(n, p, q)-\sqrt{\zeta^{2}(n, p, q)-4 \eta(n, p, q) \chi(n, p, q)}}{2 \eta(n, p, q)}} .
\end{aligned}
$$

Using the notation

$$
\begin{cases}\alpha(n, p, q) & =\frac{\zeta(n, p, q)}{2 \eta(n, p, q)} \tag{7}\\ \gamma(n, p, q) & =\frac{\chi(n, p, q)}{\eta(n, p, q)} \\ \beta(n, p, q) & =\sqrt{\alpha^{2}(n, p, q)-\gamma(n, p, q)}\end{cases}
$$

we get, for a general caterpillar $T_{p, q}=T(p, n-3-p-q, q)$,

$$
\begin{equation*}
R E\left(T_{p, q}\right)=2(1+\sqrt{\alpha(n, p, q)+\beta(n, p, q)}+\sqrt{\alpha(n, p, q)-\beta(n, p, q)}) . \tag{8}
\end{equation*}
$$

In order to obtain the extreme graphs for certain subfamilies of caterpillar of the form $T(p, n-p-q-3, q)$, for $n \geq 7$, we consider q as a function of x such that $1 \leq q(x) \leq n-5$ for $1 \leq x \leq n-5$ and define

$$
\begin{equation*}
f(x)=\sqrt{\alpha(x)+\beta(x)}+\sqrt{\alpha(x)-\beta(x)}, \tag{9}
\end{equation*}
$$

where $\alpha(x):=\alpha(n, x, q(x))$ and $\beta(x)=\sqrt{\alpha^{2}(x)-\gamma(x)}:=\beta(n, x, q(x))$ as in (7). Therefore,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{2}\left(\frac{\alpha^{\prime}(x)+\beta^{\prime}(x)}{\sqrt{\alpha(x)+\beta(x)}}+\frac{\alpha^{\prime}(x)-\beta^{\prime}(x)}{\sqrt{\alpha(x)-\beta(x)}}\right) \\
& =\frac{1}{2}\left(\frac{f(x) \alpha^{\prime}(x)+\left(\sqrt{\alpha(x)-\beta(x)}-\sqrt{\alpha(x)+\beta(x))} \beta^{\prime}(x)\right.}{\sqrt{\gamma(x)}}\right) \\
& =\frac{1}{2}\left(\frac{f^{2}(x) \alpha^{\prime}(x)-2 \beta(x) \beta^{\prime}(x)}{f(x) \sqrt{\gamma(x)}}\right) \\
& =\frac{\alpha^{\prime}(x)\left(f^{2}(x)-2 \alpha(x)\right)+\gamma^{\prime}(x)}{2 f(x) \sqrt{\gamma(x)}} \\
& =\frac{2 \alpha^{\prime}(x) \sqrt{\gamma(x)}+\gamma^{\prime}(x)}{2 f(x) \sqrt{\gamma(x)}},
\end{aligned}
$$

where, $\gamma(x):=\gamma(n, x, q(x))$. So,

$$
\begin{equation*}
f^{\prime}(x) \geq 0 \quad \text { if and only if } \quad \lambda(x):=2 \alpha^{\prime}(x) \sqrt{\gamma(x)}+\gamma^{\prime}(x) \geq 0 \tag{10}
\end{equation*}
$$

Taking into account (6) and (7), it is easy to see that $0 \leq \gamma(x)<1$, for all $1 \leq x \leq n-5$. Thus,
i. If $\alpha^{\prime}(x) \geq 0$ and $\gamma^{\prime}(x) \leq 0$, for $x \in I \subset[1, n-5]$, then by (10)

$$
\begin{equation*}
\gamma^{\prime}(x) \leq \lambda(x)<2 \alpha^{\prime}(x) \tag{11}
\end{equation*}
$$

ii. If $\alpha^{\prime}(x) \leq 0$ and $\gamma^{\prime}(x) \geq 0$, for $x \in I \subset[1, n-5]$, then by (10)

$$
\begin{equation*}
2 \alpha^{\prime}(x)<\lambda(x) \leq \gamma^{\prime}(x) \tag{12}
\end{equation*}
$$

Next we characterize the extremal caterpillars $T(p, n-2 p-3, q)$ for three specific cases: $q=p, q=n-p-b-3$ and $q=b$, for any $b \in\{1, \ldots, n-6\}$ fixed.

4.2.1 Extremal graphs for the family of caterpillars $\mathbf{T}(\mathbf{p}, \mathbf{b}, \mathbf{n}-\mathbf{p}-\mathbf{b}-3)$

Theorem 4.2 Let $T_{p}=T(p, b, n-p-b-3)$ be a caterpillar of order $n \geq 7$, with $b \in\{1, \ldots, n-6\}$ fixed and $p=1, \ldots, n-b-4$. Then

$$
R E\left(T_{1}\right) \leq R E\left(T_{p}\right) \leq R E\left(T_{\left\lfloor\frac{n-b-3}{2}\right\rfloor}\right) .
$$

Proof Without loss of generality, we take $1 \leq p \leq\left\lfloor\frac{n-b-3}{2}\right\rfloor$, since for $p=1, \ldots, n-b-4$, T_{p} and $T_{n-p-b-3}$ are isomorphic graphs. Replacing q by $n-p-b-3$ in (8), and considering the function $f(x)$, as in (9), for $1 \leq x \leq \frac{n-b-3}{2}$,

$$
\begin{aligned}
\alpha^{\prime}(x) & =\frac{(b+1)(n-b-1)(n-2 x-b-3)}{2(b+2)((x+1)(n-x-b-2))^{2}}, \\
\gamma^{\prime}(x) & =\frac{b(n-b-2)(n-2 x-b-3)}{(b+2)(x+1)^{2}(n-x-b-2)^{2}} .
\end{aligned}
$$

we have both $\alpha^{\prime}(x) \geq 0$ and $\gamma^{\prime}(x) \geq 0$ if and only if $1 \leq x \leq \frac{n-b-3}{2}$. Thus, by (10), f increases in the interval $\left[1, \frac{n-b-3}{2}\right]$ and the proof is complete.

4.2.2 Extremal graphs for the family of caterpillar $T(p, n-2 p-3, p)$

Theorem 4.3 Let $T_{p}=T(p, n-2 p-3, p)$ be a caterpillar of order $n \geq 7$, with $p=$ $1, \ldots,\left\lfloor\frac{n-4}{2}\right\rfloor$. Then

$$
R E\left(T_{1}\right) \leq R E\left(T_{p}\right) \leq R E\left(T_{z}\right),
$$

where z is an integer number in $I=[\operatorname{round}(r)$, $\operatorname{round}(s)]$, with

$$
r=\frac{1}{2}(2 n-3-\sqrt{2 n(n-2)+3}) \quad \text { and } \quad s=\frac{1}{2}(2(n-1)-\sqrt{2 n(n-1)}) .
$$

Proof From (8), replacing q by p, consider (see (9)) $f(x)$ for $1 \leq x \leq \frac{n-4}{2}$. The derivatives of α and γ are

$$
\alpha^{\prime}(x)=\frac{2 x^{2}-(4 n-4) x+n^{2}-3 n+2}{(x+1)^{2}(n-2 x-1)^{2}}
$$

and

$$
\gamma^{\prime}(x)=\frac{2 x\left(2 x^{2}-(4 n-6) x+n^{2}-4 n+3\right)}{(x+1)^{3}(n-2 x-1)^{2}}
$$

thus, we have $\alpha^{\prime}(x) \geq 0$ if only if $2 x^{2}-(4 n-4) x+n^{2}-3 n+2 \geq 0$ which occurs for $x \leq s_{1}$ or $x \geq s_{2}$ with $s_{1,2}=\frac{1}{2}(2(n-1) \mp \sqrt{2 n(n-1)})$.

Similarly, $\gamma^{\prime}(x) \geq 0$ if only if $x\left(2 x^{2}-(4 n-6) x+n^{2}-4 n+3\right) \geq 0$, that is, for $0 \leq x \leq r_{1}$ or $x \geq r_{2}$ with $r_{1,2}=\frac{1}{2}(2 n-3 \mp \sqrt{2 n(n-2)+3})$.

We have $1<r_{1}<s_{1}<\frac{n-4}{2}<r_{2}, s_{2}$. Therefore (see (10), (11) and (12)), f increases in the interval $\left[1, r_{1}\right]$ and decreases in $\left[s_{1}, \frac{n-4}{2}\right]$. By Bolzano's Theorem, there exists $\bar{z} \in\left(r_{1}, s_{1}\right)$ such that $f^{\prime}(\bar{z})=0$. Since $s_{1}-r_{1}<0.5$, we take $z=\operatorname{round}(\bar{z}) \in$ $[\operatorname{round}(r), \operatorname{round}(s)]$, where $r=r_{1}$ and $s=s_{1}$. Finally, $f(1)<f\left(\frac{n-4}{2}\right)$, so $f(1)$ is the minimum of this function.

Example $1 A$ table with some values for $R E\left(T_{z-1}\right), R E\left(T_{z}\right), R E\left(T_{z+1}\right)$ and extremal caterpillars $T(p, n-3-2 p, p)$ are presented below.

n	r	s	z	$R E\left(T_{z-1}\right)$	$R E\left(T_{z}\right)$	$R E\left(T_{z+1}\right)$	extremal graph
19	4.762261	4.923303	5	5.388854	5.406881	5.363498	$T(5,6,5)$
21	5.349028	5.508623	5	5.421848	5.458735	5.455208	$T(5,8,5)$
35	9.453171	9.607378	10	5.672191	5.672395	5.662869	$T(10,12,10)$
50	13.84816	14.000000	14	5.768798	5.770057	5.768229	$T(14,19,14)$

4.2.3 Extremal graphs of the family of caterpillars $T(\mathbf{p}, \mathbf{n}-\mathbf{p}-\mathbf{b}-\mathbf{3}, \mathbf{b})$

Theorem 4.4 Let $T_{p}=T(p, n-p-b-3, b)$ be a caterpillar of order $n \geq 7$, with $b \in\{1, \ldots, n-6\}$ fixed and $p=1, \ldots, n-b-4$. Then,

$$
R E\left(T_{n-b-4}\right) \leq R E\left(T_{p}\right) \leq R E\left(T_{z}\right), \text { where } z \in I=[\operatorname{round}(r), \operatorname{round}(s)],
$$

with

$$
\begin{equation*}
r=-(n-b-1)+\sqrt{2(n-b-1)(n-b-2)} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
s=\frac{1}{b}\left(-((b+1)(n-b)-1)+\sqrt{(b+1)(n-b-1)\left((2 b+1)(n-1)-2 b^{2}\right)}\right) . \tag{14}
\end{equation*}
$$

Proof Replacing q by b in (8), we define $f(x)$ as in (9) for $1 \leq x \leq n-b-4$. We compute

$$
\begin{gathered}
\alpha^{\prime}(x)=\frac{-b x^{2}-2((b+1)(n-b)-1) x+(b+1) n^{2}-(b+1)(2 b+3) n+b(b+2)^{2}+2}{2(b+1)((x+1)(n-x-b-1))^{2}}, \\
\gamma^{\prime}(x)=\frac{b\left(-x^{2}-2(n-b-1) x+n^{2}-2(b+2) n+(b+3)(b+1)\right)}{(b+1)((x+1)(n-x-b-1))^{2}} .
\end{gathered}
$$

We have $\alpha^{\prime}(x) \geq 0$ if only if $s_{1} \leq x \leq s_{2}$ with

$$
s_{1,2}=\frac{1}{b}\left(-((b+1)(n-b)-1) \mp \sqrt{(b+1)(n-b-1)\left((2 b+1)(n-1)-2 b^{2}\right)}\right),
$$

and $\gamma^{\prime}(x) \geq 0$ if only if $r_{1} \leq x \leq r_{2}$ with

$$
r_{1,2}=-(n-b-1) \mp \sqrt{2(n-b-1)(n-b-2)} .
$$

We have $1<r_{2}<s_{2}<n-b-4$. So, for $s=s_{2}$ and $r=r_{2}$, we get that (see (10), (11) and (12)) f is increasing in $[1, r]$ and decreasing in $[s, n-b-4]$. Therefore, there exists $\bar{z} \in(r, s)$ such that $f^{\prime}(\bar{z})=0$. So, we take $z=\operatorname{round}(\bar{z}) \in I=[\operatorname{round}(r)$, $\operatorname{round}(s)]$. Furthermore, $f(n-b-4)<f(1)$, which complets the proof.

Example 2 To obtain the maximal Randić energy caterpillar graphs $T\left(p_{1}, p_{2}, p_{3}\right)$ of order $n=33$, we apply Theorems 5, 6 and 7, for slight different values of b, shown in the following table.

Theorem	b	r	s	z	$R E\left(T_{z}\right)$	extremal graph
4.2	12			9	5.653986727	$T(9,12,9)$
4.2	9			10	5.639354482	$T(10,9,11)$
4.3	9	8.867059	9.021749	9	5.653986727	$T(9,12,9)$
4.4	9	8.811947	9.031236	9	5.653986727	$T(9,12,9)$
4.4	8	9.226495	9.469988	9	5.652375900	$T(9,13,8)$
4.4	10	8.397368	8.597041	9	5.651878107	$T(8,12,10)$

Remark 2 In Theorem 4.4, we find a estimated interval

$$
I=[\operatorname{round}(r), \operatorname{round}(s)],
$$

where r and s are given in (13) and (14), respectively, which contains the value of z that maximizes Randić energy for the family of caterpillars $T_{p}=T(p, n-p-b-3, b), n \geq 7$, with $b \in\{1, \ldots, n-6\}$ fixed, for each $p=1, \ldots, n-b-4$. In this case, we want to point out that the interval I does not necessarily has range less than 1 . In fact, that interval have length less than 1 if and only if

$$
g(n, b)=8(n+b-1)^{2}(n-b-1)(n-b-2)-\left(3 n^{2}-3 b n-9 n+2 b+6\right)^{2}>0
$$

and this function $g(n, b)$ can be written as:

$$
g(n, b)=8(n+b-1)^{2}(n-b-1)(n-b-2)-(3(n-1)(n-2)-(3 n-2) b)^{2}
$$

Since $n-b-1>n-b-2>0$ then $g(n, b)>h(n, b)$, with

$$
\begin{aligned}
h(n, b) & =8(n+b-1)^{2}(n-b-2)^{2}-(3(n-1)(n-2)-(3 n-2) b)^{2} \\
& =(\sqrt{8}(n+b-1)(n-b-2)-3(n-1)(n-2)+(3 n-2) b) \\
& \times(\sqrt{8}(n+b-1)(n-b-2)+3(n-1)(n-2)-(3 n-2) b)
\end{aligned}
$$

For each n, we find the values of b such that

$$
\begin{aligned}
& \Delta_{1}=\sqrt{8}(n+b-1)(n-b-2)-3(n-1)(n-2)+(3 n-2) b>0, \text { and, } \\
& \Delta_{2}=\sqrt{8}(n+b-1)(n-b-2)+3(n-1)(n-2)-(3 n-2) b>0 .
\end{aligned}
$$

Taking into account that $3 n-2>3(n-1)>0$, then

$$
\begin{aligned}
\Delta_{1} & >\sqrt{8}(n+b-1)(n-b-2)-3(n-1)(n-2)+3(n-1) b \\
& =(\sqrt{8} b-(3-\sqrt{8})(n-1))(n-b-2)
\end{aligned}
$$

Since

$$
\sqrt{8} b-(3-\sqrt{8})(n-1)>0 \Leftrightarrow b>\frac{(3-\sqrt{8})}{\sqrt{8}}(n-1) \simeq 0.06066(n-1),
$$

for such values of $b, \Delta_{1}>0$. Now, let us show that

$$
\Delta_{2}=\sqrt{8}(n+b-1)(n-b-2)-(3 n-2) b+3(n-1)(n-2)>0 .
$$

From

$$
-(3 n-2) b+3(n-1)(n-2)>0 \Leftrightarrow b<\frac{3(n-1)(n-2)}{3 n-2}
$$

and
$n-6<\frac{3(n-1)(n-2)}{3 n-2} \Leftrightarrow 3 n^{3}-20 n+12<3\left(n^{2}-3 n+2\right) \Leftrightarrow 6<11 n \quad$ (which is true), it follows that $\Delta_{2}>0$, for $1 \leq b \leq n-6<\frac{3(n-1)(n-2)}{3 n-2}$.
From the above, for $n \geq 7$ and $b \in \mathbb{N}$ such that $0.06066(n-1) \leq b \leq n-6$,

$$
g(n, b)>h(n, b)=\Delta_{1} \Delta_{2}>0
$$

Given $n \geq 7$, consider $b_{\min }$ the smallest integer $b \geq 1$ such that $g(n, b)>0$ and let $b^{*}=0.06066(n-1)$. For different values of n, b^{*} remains close to the exact value $b_{\min }$:

n	$b_{\text {min }}$	b^{*}
20	1	1.1525
30	2	1.7591
50	3	2.9723
100	6	6.0053
500	30	30.269
1000	61	60.599
5000	303	303.24
10000	606	606.54
20000	1213	1213.1

Acknowledgments: This research is partially supported by the Portuguese Foundation for Science and Technology ("FCT-Fundação para a Ciência e a Tecnologia"), through the CIDMA - Center for Research and Development in Mathematics and Applications, within project UID/MAT/04106/2013. The research of R. C. Díaz was supported by Conicyt-Fondecyt de Postdoctorado $2017 N^{o} 3170065$, Chile.

References

[1] E. Andrade, H. Gomes, M. Robbiano, Spectra and Randić spectra of caterpillar graphs and applications to the energy, MATCH Commun. Math. Comput. Chem. 77 (2017) 61-75.
[2] B. Bozkurt, A. D. Güngör, I. Gutman, Randić sectral radius and Randić energy, MATCH Commun. Math. Comput. Chem. 64 (2019) 321-334.
[3] B. Bozkurt, A. D. Güngör, I. Gutman, A. S. Çevik, Randić matrix and Randić energy, MATCH Commun. Math. Comput. Chem. 64 (2010) 239-334.
[4] D. M. Cardoso, M. A. de Freitas, E. A. Martins, M. Robbiano, Spectra of graphs obtained by a generalization of the join graph operation, Discr. Math. 313 (2013) 733-741.
[5] M. Cavers, S. Fallat, S. Kirkland, On the normalized Laplacian energy and general Randić index R_{-1} of graphs, Lin. Algebra Appl. 433 (2010) 172-190.
[6] F. R. Gantmacher, The Theory of Matrices, AMS Chelsea Pub., Providence 1998.
[7] I. Gutman, B. Furtula, B. Bozkurt, On Randić energy, Lin. Algebra Appl. 442 (2014) 50-57.
[8] I. Gutman, The energy of a graph, Ber. Math. Stat. Sekt. Forschungsz Graz 103 (1978) 1-22.
[9] E. V. Haynsworth, Determination of the inertia of a partitioned Hermitian matrix, Lin. Algebra Appl. 1 (1968) 73-81.
[10] R. A. Horn, F. Zhang, Basic properties of the Schur complement, in: F. Zhang (Ed.), The Schur Complement and Its Applications, Springer, New York, 2005, pp. 17-41.
[11] X. Li, Y. Shi, I. Gutman, Graph Energy, Springer, New York, 2012.
[12] I. Schur, Überpotenzreihen die im innern des einheitskreises berchränkt sind [I], J. für die Reine und Angew. Math. 147 (1917) 205-232.

[^0]: *Corresponding author

