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Abstract

A caterpillar graph T (p1, . . . , pr) of order n = r +
∑r

i=1 pi, r ≥ 2, is a tree such
that removing all its pendent vertices gives rise to a path of order r. In this paper we
establish a necessary and sufficient condition for a real number to be an eigenvalue of
the Randić matrix of T (p1, . . . , pr). This result is applied to determine the extremal
caterpillars for the Randić energy of T (p1, . . . , pr) for cases r = 2 (the double star)
and r = 3. We characterize the extremal caterpillars for r = 2. Moreover, we study
the family of caterpillars T

(
p, n− p− q− 3, q

)
of order n, where q is a function of p,

and we characterize the extremal caterpillars for three cases: q = p, q = n−p−b−3
and q = b, for b ∈ {1, . . . , n− 6} fixed. Some illustrative examples are included.

1 Introduction

It is worth to start this section defining the Randić matrix of a graph G, denoted by

RG = (rij), which is such that rij = 1√
didj

if ij ∈ E(G) and zero otherwise, where dk

is the degree of the vertex k. The spectrum of RG is the multiset of its eigenvalues,

σR(G) = {ρ[m1]
1 , ρ

[m2]
2 , . . . , ρ

[ms]
s }, where mi stands for the multiplicity of ρi, for 1 ≤ i ≤ s,

and ρ1 > ρ2 > · · · > ρs are the distinct eigenvalues of RG.
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It is well known that ρ1(G) = 1 wheneverG is a graph with at least one edge (see [7, Th.

2.3]).

The Randić energy of a graph G is defined in [7] (see also [2, 3]) as follows:

RE(G) =
n∑

i=1

|ρi(G)|.

It is immediate that RE(G) = 0 if and only if all the vertices of G are isolated vertices.

Considering λ1 ≥ λ2 ≥ · · · ≥ λn as the eigenvalues of the adjacency matrix of a graph G

of order n, the ordinary energy of G [8, 11], herein denoted by E(G), is defined as

E(G) =
n∑

j=1

|λi|.

In [7], the Randić energy and the ordinary energy of the paths Pn and Pn−2, respectively,

are related as follows.

RE(Pn) = 2 +
1

2
E(Pn−2).

According to [5], if a graph G of order n has at least one edge, then

2 ≤ RE(G) ≤ n. (1)

Furthermore, the lower bound in (1) is attained if and only if one component of G is

a complete multipartite graph and all other components (if any) are isolated vertices. In

particular, RE(G) = 2 for complete graphs. The upper bound in (1) is attained only if

n is even and G is isomorphic to n
2
K2, or n is odd and G is the disjoin union of n−3

2
K2

plus a component which is a path P2 or a triangle K3.

The characterization of connected graphs with maximal Randić energy remains an

open problem as well as the following conjecture posed in [7] and computationally verified

for graphs of order n up to n = 10.

Conjecture 1 [7] The connected graph with maximal Randić energy is a tree.

The following more thinner conjecture, also posed in [7], remains open too.

Conjecture 2 [7] The connected graph of odd order n ≥ 1, having maximal Randić

energy is the sun [7, Fig. 2]. The connected graph of even order n ≥ 2, having maximal

Randić energy is the balanced double sun [7, Fig. 2].

The aim of this paper is to determine the extremal graphs for the Randić energy of a

family of caterpillars T (p1, · · · pr) of order n = r+
∑r

i=1 pi for cases r = 2 and r = 3. The
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paper is organized as follows. In Section 2 the notation and basic definitions of the main

concepts used through the text are introduced. In Section 3 a caterpillar is considered as

the H-join of graphs and some spectral results of graphs obtained by this operation are

recalled. Moreover, we get a necessary and sufficient condition for a real number to be

an eigenvalue of the Randić matrix. This result plays a important role throughout the

paper. In Section 4 we characterize the extremal caterpillar graphs for r = 2 (that are the

double star) as well as we study the family of caterpillars T
(
p, n−p− q−3, q

)
of order n,

and we characterize extremal caterpillar graphs for three cases: q = p, q = n− p− b− 3

and q = b, for any b ∈ {1, . . . , n− 6} fixed.

2 Preliminaries

In this paper we deal with undirected simple graphs. For a graph G the vertex set is

denoted by V (G) and the edge set by E(G) and |V (G)| is the order of G. The edges

of G denoted by ij, where i and j are the end-vertices of the edge. When ij ∈ E(G)

we say that the vertices i and j are adjacent and also that i is a neighbor of j (and

conversely). The neighborhood of a vertex v ∈ V (G) is the set of its neighbors and

is denoted by NG(v) = {w : vw ∈ E(G)}. The degree of v, denoted by dv, is the

cardinality of NG(v). The vertices i with 0 degree are called isolated vertices. Two

graphs G and H are isomorphic if there is a bijection ψ : V (G) → V (H) such that

ij ∈ E(G) if and only if ψ(i)ψ(j) ∈ E(H). This binary relation between graphs is

denoted by G ∼= H. The complement graph of a graph G, denoted by G, is such that

V (G) = V (G) and E(G) = {ij : ij ̸∈ E(G)}. The complete graph of order n, denote by

Kn, is a graph where every pair of vertices are adjacent. The vertices of the complement

of Kn are all isolated. The adjacency matrix of a graph G of order n = |V (G)| is n × n

symmetric matrix AG = (aij) such that aij = 1 if ij ∈ E(G) and zero otherwise. The

spectrum of a matrix M is the multiset of its eigenvalues denoted by σM . In particular,

the spectrum of the adjacency matrix of a graph G, also called the spectrum of G, is

σ(G) = {λ[m1]
1 , λ

[m2]
2 , . . . , λ

[ms]
s }, where mi stands for the multiplicity of λi, for 1 ≤ i ≤ s.

A path with r vertices, denoted by Pr, is a sequence of vertices v1, v2, . . . , vr such that

each vertex is adjacent to the next, that is v1vi+1 ∈ E(G) for i = 1, . . . , r− 1. A cycle Cr

is a closed path with r edges, that is, such that vr+1 = v1. A tree is a connected acyclic

graph; a star of order r, denoted by Sr+1, is a tree with a central vertex with degree r and

all the other r vertices are pendent. A caterpillar is a tree such that removing all pendent
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vertices give rise to a path with at least two vertices. In particular, T (p1, . . . , pr) denotes

a caterpillar obtained by attaching the central vertex of a star Spi+1 to the i-th vertex of

Pr, i = 1, . . . r. The order of a caterpillar is n = r +
∑r

i=1 pi.

A caterpillar T (p1, . . . , pr) can also be seen as the H-join H[G1, . . . , Gr, Gr+1, . . . , G2r],

where, for 1 ≤ i ≤ r,

{
Gi

∼= K1

Gi+r
∼= Kpi

and H is the caterpillar of order 2r, T (1, . . . , 1),

that is, a path Pr with one pendant vertex attached to each vertex of the path.

The null square and the identity matrices of order n are denoted by On and In,

respectively.

3 The Randić spectrum of a caterpillar viewed as H-

join

In this section, we consider a caterpillar as the H-join of a family of graphs (see [4]),

T (p1, . . . , pr) = H[K1, . . . , K1, Kp1 , . . . , Kpr ], where H is the caterpillar of order 2r,

T (1, 1, . . . , 1), that is, a path Pr with a pendant edge attached to each vertex of the path.

The following result, given in [1], characterizes Randić spectra of H-join graphs.

Theorem 3.1 [1] Let H be a graph of order k. Let Gj be a dj-regular graph of order

nj, with dj ≥ 0, nj ≥ 1, for j = 1, . . . , k and G = H[G1, . . . , Gk]. Let RG be the Randić

matrix of G. Then,

σRG
= σΓk

∪
k⋃

j=1

{
λ

Nj + dj
: λ ∈ σ

(
AGj

)
\ {dj}

}
,

where Nj =
∑

i∈NH(j)

ni, for j = 1, 2, . . . , k,

Γk =




d1
N1+d1

ρ12 . . . ρ1(k−1) ρ1k
ρ12

d2
N2+d2

. . . ρ2(k−1) ρ2k
...

...
. . .

...
...

ρ1(k−1) ρ2(k−1) . . . dk−1

Nk−1+dk−1
ρ(k−1)k

ρ1k ρ2k . . . ρ(k−1)k
dk

Nk+dk




and

ρij = δij

√
ninj√

(Ni + di)(Nj + dj)
,

with δij = 1 if ij ∈ E(H), and zero otherwise, for i = 1 . . . , k − 1 and j = i+ 1, . . . , k.

Remark 1 It is clear that the Randić matrix of a dj-regular graph Gj is RGj
= 1

dj
AGj

if dj > 0 and zero otherwise. On the other hand, if dj = 0, for j = 1, . . . , k, then

Γk = ΩAHΩ, with Ω = diag
{√

n1

N1
, . . . ,

√
nk

Nk

}
.
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Since K1 and Kpi , for i = 1, . . . , r, are 0-regular graphs, we have the following result,

which plays an important role in this paper:

Corollary 3.1 Let H = T (1, 1, . . . , 1) be the caterpillar of order 2r, r ≥ 2, obtained from

a path Pr and a pendent vertex attached to each vertex of the path. Let T = T (p1, . . . , pr) =

H[K1, . . . , K1, Kp1 , . . . , Kpr ] be a caterpillar of order n = r +
r∑

i=1

pi. Then,

σRT
= σΓ2r ∪

{
0[

∑r
i=1(pi−1)]

}
.

As a consequence, in order to obtain the spectrum of the Randić matrix of T (p1, . . . , pr)

we focus our attention on the spectrum of Γ2r. Firstly, note that

Ω = diag

{√
1

N1

, . . . ,

√
1

Nr

,

√
p1
Nr+1

, . . . ,

√
pr
N2r

}
=

[
Ω1 Or

Or Ω2

]

with

Ω1 = diag

{√
1

N1

, . . . ,

√
1

Nr

}
, Ω2 = diag

{√
p1
Nr+1

, . . . ,

√
pr
N2r

}
, (2)

Therefore, we can write

Γ2r = ΩAHΩ =

[
Ω1 Or

Or Ω2

] [
APr Ir
Ir Or

] [
Ω1 Or

Or Ω2

]
=

[
A B
B Or

]
, (3)

where

A = Ω1APrΩ1 and B = Ω1Ω2. (4)

It is worth to recall a famous determinantal identity presented by Issa Schur in 1917 [12]

referred as the formula of Schur by Gantmacher [6, p. 46]. In the sixties, the term Schur

complement was introduced by Emilie Haynsworth [9] jointly with the following notation.

Considering a square matrix M =

[
A B
C D

]
, where A and D are square block matrices

and A is nonsingular, the Schur complement of A in M is defined as

M/A = D − CA−1B.

For more details see [10]. Using the above notation, the next theorem states the Schur

determinantal identity. For the readers convenience, the very short proof presented in [10]

is reproduced.

Theorem 3.2 [12] Let M =

[
A B
C D

]
, where A and D are square submatrices of order

m and n, respectively. If A is nonsingular then

det(M) = det(A) · det(M/A).
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Proof It is immediate that

[
A B
C D

]
=

[
Im 0

CA−1 In

] [
A B
0 D − CA−1B

]
.

The identity follows by taking the determinant of both sides. ■

Similarly, if D is nonsingular then

det(M) = det(A−BD−1C) · det(D). (5)

Note that

[
A B
C D

]
=

[
Im BD−1

0 In

] [
A−BD−1C 0

C D

]
.

From (5), we may establish the following spectral characterization for the matrix Γ2r,

which will play an important role in getting our main results:

Theorem 3.3 Let H = T (1, 1, . . . , 1) be the caterpillar of order 2r, r ≥ 2 and let Γ2r be

partitioned as in (3). Then, λ ∈ σΓ2r if and only if

det(λ2Ir − λA−B2) = 0,

where A and B are defined as in (4).

Proof The characteristic polynomial of Γ2r is

pΓ2r(λ) = det(λI2r − Γ2r) = det

([
λIr − A −B
−B λIr

])
.

Thus, applying (5), we obtain

pΓ2r(λ) = det(λIr) · det
(
λIr − A−B

(
1

λ
Ir

)
B

)

= λr · det
((

1

λ

)
(λ2Ir − λA−B2)

)

= λr ·
(
1

λ

)r

· det
(
λ2Ir − λA−B2

)
= det

(
λ2Ir − λA−B2

)
.

■

4 Extremal caterpillar graphs for Randić energy

In this section, we obtain the extremal graphs in the family of caterpillars, for r = 2, 3.



735

4.1 Extremal caterpillar graphs T(p,n− p− 2), p = 1, . . . , ⌊n−2
2 ⌋.

1 2

. . .
︸ ︷︷ ︸

p

. . .
︸ ︷︷ ︸

n− p− 2

Theorem 4.1 Let Tp = T (p, n− p− 2), p = 1, . . . , ⌊n−2
2
⌋ be a caterpillar of order n ≥ 4.

Then

2 +

√
2(n− 3)

n− 2
≤ RE(Tp) ≤ 4− 4

n
.

The lower bound is attained if and only if p = 1 (the graph obtained by attaching a pendent

vertex to a pendent vertex of Sn−1) and the upper bound is attained if and only if Tp has

even order and p = n−2
2
.

Proof By Theorem 3.3, the eigenvalues of σΓ4 are the zeros of the polynomial det(λ2I2−
λA−B2) = 0 where (see (4)),

A =




0 1√
(p+1)(n−p−1)

1√
(p+1)(n−p−1)

0


 and B =

[ √
p√

p+1
0

0
√
n−p−2√
n−p−1

]
.

So,

det(λ2I2 − λA−B2) = det




λ2 − p
p+1

− λ√
(p+1)(n−p−1)

− λ√
(p+1)(n−p−1)

λ2 − n−p−2
n−p−1




=

(
λ2 − p

p+ 1

)(
λ2 − n− p− 2

n− p− 1

)
− λ2

(p+ 1)(n− p− 1)

=
λ2 − 1

(p+ 1)(n− p− 1)

(
(p+ 1)(n− p− 1)λ2 − p(n− p− 2)

)
.

Consequently,

σΓ4 =

{
±
√

p(n− p− 2)

(p+ 1)(n− p− 1)
,±1

}
.

and

RE(Tp) =
n∑

i=1

|λi(Tp)| = 2 + 2

√
p(n− p− 2)

(p+ 1)(n− p− 1)
,

for all p = 1, . . . ,
⌊
n−2
2

⌋
. For 1 ≤ x ≤

⌊
n−2
2

⌋
, let f(x) = x (n−x−2)

(x+1)(n−x−1)
. Then,

f ′(x) =

(
n− 1

)(
n− 2(x+ 1)

)

(x+ 1)2(n− x− 1)2
≥ 0.
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if and only if 1 ≤ x ≤ n−2
2
. Therefore, f is an increasing function in this interval, and

consequently,

2 +

√
2(n− 3)

n− 2
≤ RE(Tp) ≤ RE(T⌊n−2

2
⌋),

for all p = 1, . . . ,
⌊
n−2
2

⌋
. Finally, if n is even,

RE(T⌊n−2
2

⌋) = RE(Tn−2
2
) = 2 + 2

(
n− 2

n

)
= 4− 4

n
,

and if n is odd,

RE(T⌊n−2
2

⌋) = RE(T⌊n−3
2

+ 1
2
⌋) = RE(Tn−3

2
) = 2 + 2

(√
n− 3

n+ 2

)
< 4− 4

n

for all n ≥ 3. ■

4.2 Extremal caterpillar graphs T
(
p,n− p− q− 3,q

)
,

p,q ∈ {1, . . . ,n− 5}
1 2 3

. . .
︸ ︷︷ ︸

p

. . .
︸ ︷︷ ︸
n− p− q − 3

. . .
︸ ︷︷ ︸

q

For this class of caterpillars,

Ω1 = diag

{
1√
p+ 1

,
1√

n− p− q − 1
,

1√
q + 1

}

and

Ω2 = diag
{√

p,
√
n− p− q − 3,

√
q
}
.

Therefore (see (2), (3) and (4))

Γ6 = ΩAHΩ =

[
A B
B O3

]
,

with

A = Ω1AP3Ω1 =




0 1√
p+1

√
n−p−q−1

0
1√

p+1
√
n−p−q−1

0 1√
q+1

√
n−p−q−1

0 1√
q+1

√
n−p−q−1

0




and

B = Ω1Ω2 =




√
p√

p+1
0 0

0
√
n−p−q−3√
n−p−q−1

0

0 0
√
q√

q+1


 .
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By Theorem 3.3, as

λ2I3 − λA−B2 =




λ2 − p

p+ 1
− λ√

p+1
√
n−p−q−1

0

− λ√
p+1

√
n−p−q−1

λ2 − n−p−q−3
n−p−q−1

− λ√
q+1

√
n−p−q−1

0 − λ√
q+1

√
n−p−q−1

λ2 − q
q+1


 ,

det(λ2I3 − λA−B2) =

=

(
λ2 − p

p+ 1

)
det

([
λ2 − n−p−q−3

n−p−q−1 − λ√
q+1

√
n−p−q−1

− λ√
q+1

√
n−p−q−1

λ2 − q
q+1

])

+

(
λ√

p+ 1
√
n− p− q − 1

)
det

([
− λ√

p+1
√
n−p−q−1

− λ√
q+1

√
n−p−q−1

0 λ2 − q
q+1

])

=

(
λ2 − p

p+ 1

)[(
λ2 − n− p− q − 3

n− p− q − 1

)(
λ2 − q

q + 1

)
− λ2

(q + 1)(n− p− q − 1)

]

−
(

λ2

(p+ 1)(n− p− q − 1)

)(
λ2 − q

q + 1

)

=

(
λ2(p+ 1)− p

) [(
λ2(n− p− q − 1)− (n− p− q − 3)

) (
λ2(q + 1)− q

)
− λ2

]
− λ2

(
λ2(q + 1)− q

)

(p+ 1)(q + 1)(n− p− q − 1)
.

After some algebraic manipulation on the above expression, we get that

det(λ2I3 − λA−B2) =
1

(p+ 1)(q + 1)(n− p− q − 1)

[
(p+ 1)(q + 1)(n− p− q − 1)λ6

− [(n− p− q − 2) (q(2p+ 1) + p) + (p+ 1)(q + 1)(n− p− q − 1)]λ4

+ [pq(n− p− q − 3) + (n− p− q − 2) (q(2p+ 1) + p)]λ2 − pq(n− p− q − 3)

]

=

(λ2 − 1)

[
(p+ 1)(q + 1)(n− p− q − 1)λ4 − (n− p− q − 2) (q(2p+ 1) + p)λ2 + pq(n− p− q − 3)

]

(p+ 1)(q + 1)(n− p− q − 1)

=
1

η(n, p, q)

(
λ2 − 1

)[
η(n, p, q)λ4 − ζ(n, p, q)λ2 + χ(n, p, q)

]
,

being




η(n, p, q) = (p+ 1)(q + 1)(n− p− q − 1),

ζ(n, p, q) = (n− p− q − 2) (q(2p+ 1) + p)

χ(n, p, q) = pq(n− p− q − 3).

(6)
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When obtaining the roots of the biquadratic equation

η(n, p, q)λ4 − ζ(n, p, q)λ2 + χ(n, p, q) = 0,

we determinate the roots of the equation det(λ2I3 − λA−B2) = 0, given by:

λ1,2 = ±1

λ3,4 = ±
√
ζ(n, p, q) +

√
ζ2(n, p, q)− 4η(n, p, q)χ(n, p, q)

2η(n, p, q)

λ5,6 = ±
√
ζ(n, p, q)−

√
ζ2(n, p, q)− 4η(n, p, q)χ(n, p, q)

2η(n, p, q)
.

Using the notation




α(n, p, q) = ζ(n,p,q)
2η(n,p,q)

,

γ(n, p, q) = χ(n,p,q)
η(n,p,q)

,

β(n, p, q) =
√
α2(n, p, q)− γ(n, p, q),

(7)

we get, for a general caterpillar Tp,q = T (p, n− 3− p− q, q),

RE(Tp,q) = 2
(
1 +

√
α(n, p, q) + β(n, p, q) +

√
α(n, p, q)− β(n, p, q)

)
. (8)

In order to obtain the extreme graphs for certain subfamilies of caterpillar of the form

T (p, n−p−q−3, q), for n ≥ 7, we consider q as a function of x such that 1 ≤ q(x) ≤ n−5

for 1 ≤ x ≤ n− 5 and define

f(x) =
√
α(x) + β(x) +

√
α(x)− β(x), (9)

where α(x) := α(n, x, q(x)) and β(x) =
√
α2(x)− γ(x) := β(n, x, q(x)) as in (7). There-

fore,

f ′(x) =
1

2

(
α′(x) + β′(x)√
α(x) + β(x)

+
α′(x)− β′(x)√
α(x)− β(x)

)

=
1

2

(
f(x)α′(x) + (

√
α(x)− β(x)−

√
α(x) + β(x))β′(x)√

γ(x)

)

=
1

2

(
f2(x)α′(x)− 2β(x)β′(x)

f(x)
√

γ(x)

)

=
α′(x)

(
f2(x)− 2α(x)

)
+ γ′(x)

2f(x)
√

γ(x)

=
2α′(x)

√
γ(x) + γ′(x)

2f(x)
√
γ(x)

,
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where, γ(x) := γ(n, x, q(x)). So,

f ′(x) ≥ 0 if and only if λ(x) := 2α′(x)
√
γ(x) + γ′(x) ≥ 0. (10)

Taking into account (6) and (7), it is easy to see that 0 ≤ γ(x) < 1, for all 1 ≤ x ≤ n−5.

Thus,

i. If α′(x) ≥ 0 and γ′(x) ≤ 0, for x ∈ I ⊂ [1, n− 5], then by (10)

γ′(x) ≤ λ(x) < 2α′(x). (11)

ii. If α′(x) ≤ 0 and γ′(x) ≥ 0, for x ∈ I ⊂ [1, n− 5], then by (10)

2α′(x) < λ(x) ≤ γ′(x). (12)

Next we characterize the extremal caterpillars T (p, n − 2p − 3, q) for three specific

cases: q = p, q = n− p− b− 3 and q = b, for any b ∈ {1, . . . , n− 6} fixed.

4.2.1 Extremal graphs for the family of caterpillars T(p,b,n− p− b− 3)

1 2 3

. . .
︸ ︷︷ ︸

p

. . .
︸ ︷︷ ︸

b

. . .
︸ ︷︷ ︸
n− p− b− 3

Theorem 4.2 Let Tp = T (p, b, n − p − b − 3) be a caterpillar of order n ≥ 7, with

b ∈ {1, . . . , n− 6} fixed and p = 1, . . . , n− b− 4. Then

RE(T1) ≤ RE(Tp) ≤ RE
(
T⌊n−b−3

2
⌋

)
.

Proof Without loss of generality, we take 1 ≤ p ≤ ⌊n−b−3
2

⌋, since for p = 1, . . . , n− b− 4,

Tp and Tn−p−b−3 are isomorphic graphs. Replacing q by n−p−b−3 in (8), and considering

the function f(x), as in (9), for 1 ≤ x ≤ n−b−3
2

,

α′(x) =
(b+ 1)(n− b− 1)(n− 2x− b− 3)

2(b+ 2)
(
(x+ 1)(n− x− b− 2)

)2 ,

γ′(x) =
b(n− b− 2)(n− 2x− b− 3)

(b+ 2)(x+ 1)2(n− x− b− 2)2
.

we have both α′(x) ≥ 0 and γ′(x) ≥ 0 if and only if 1 ≤ x ≤ n−b−3
2

. Thus, by (10), f

increases in the interval [1, n−b−3
2

] and the proof is complete. ■
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4.2.2 Extremal graphs for the family of caterpillar T(p,n− 2p− 3,p)

1 2 3

. . .
︸ ︷︷ ︸

p

. . .
︸ ︷︷ ︸

n− 2p− 3

. . .
︸ ︷︷ ︸

p

Theorem 4.3 Let Tp = T (p, n − 2p − 3, p) be a caterpillar of order n ≥ 7, with p =

1, . . . , ⌊n−4
2
⌋. Then

RE(T1) ≤ RE(Tp) ≤ RE(Tz),

where z is an integer number in I = [round(r), round(s)] , with

r =
1

2

(
2n− 3−

√
2n(n− 2) + 3

)
and s =

1

2

(
2(n− 1)−

√
2n(n− 1)

)
.

Proof From (8), replacing q by p, consider (see (9)) f(x) for 1 ≤ x ≤ n−4
2
. The derivatives

of α and γ are

α′(x) =
2x2 − (4n− 4)x+ n2 − 3n+ 2

(x+ 1)2(n− 2x− 1)2

and

γ′(x) =
2x
(
2x2 − (4n− 6)x+ n2 − 4n+ 3

)

(x+ 1)3(n− 2x− 1)2

thus, we have α′(x) ≥ 0 if only if 2x2 − (4n − 4)x + n2 − 3n + 2 ≥ 0 which occurs for

x ≤ s1 or x ≥ s2 with s1,2 = 1
2

(
2(n− 1)∓

√
2n(n− 1)

)
.

Similarly, γ′(x) ≥ 0 if only if x
(
2x2 − (4n − 6)x + n2 − 4n + 3

)
≥ 0, that is, for

0 ≤ x ≤ r1 or x ≥ r2 with r1,2 = 1
2

(
2n− 3∓

√
2n(n− 2) + 3

)
.

We have 1 < r1 < s1 < n−4
2

< r2, s2. Therefore (see (10), (11) and (12)), f in-

creases in the interval [1, r1] and decreases in [s1,
n−4
2
]. By Bolzano’s Theorem, there

exists z̄ ∈ (r1, s1) such that f ′(z̄) = 0. Since s1 − r1 < 0.5, we take z = round(z̄) ∈
[round(r), round(s)], where r = r1 and s = s1. Finally, f(1) < f(n−4

2
), so f(1) is the

minimum of this function. ■

Example 1 A table with some values for RE(Tz−1), RE(Tz), RE(Tz+1) and extremal

caterpillars T (p, n− 3− 2p, p) are presented below.

n r s z RE(Tz−1) RE(Tz) RE(Tz+1) extremal graph
19 4.762261 4.923303 5 5.388854 5.406881 5.363498 T (5, 6, 5)
21 5.349028 5.508623 5 5.421848 5.458735 5.455208 T (5, 8, 5)
35 9.453171 9.607378 10 5.672191 5.672395 5.662869 T (10, 12, 10)
50 13.84816 14.000000 14 5.768798 5.770057 5.768229 T (14, 19, 14)
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4.2.3 Extremal graphs of the family of caterpillars T(p,n− p− b− 3,b)

1 2 3

. . .
︸ ︷︷ ︸

p

. . .
︸ ︷︷ ︸
n− p− b− 3

. . .
︸ ︷︷ ︸

b

Theorem 4.4 Let Tp = T (p, n − p − b − 3, b) be a caterpillar of order n ≥ 7, with

b ∈ {1, . . . , n− 6} fixed and p = 1, . . . , n− b− 4. Then,

RE(Tn−b−4) ≤ RE(Tp) ≤ RE(Tz), where z ∈ I = [round(r), round(s)] ,

with

r = −
(
n− b− 1

)
+
√
2(n− b− 1)(n− b− 2) (13)

and

s =
1

b

(
−
(
(b+ 1)(n− b)− 1

)
+
√
(b+ 1)(n− b− 1)

(
(2b+ 1)(n− 1)− 2b2

))
. (14)

Proof Replacing q by b in (8), we define f(x) as in (9) for 1 ≤ x ≤ n−b−4. We compute

α′(x) =
−bx2 − 2

(
(b+ 1)(n− b)− 1

)
x+ (b+ 1)n2 − (b+ 1)(2b+ 3)n+ b(b+ 2)2 + 2

2(b+ 1)
(
(x+ 1)(n− x− b− 1)

)2 ,

γ′(x) =
b
(
− x2 − 2(n− b− 1)x+ n2 − 2(b+ 2)n+ (b+ 3)(b+ 1)

)

(b+ 1)
(
(x+ 1)(n− x− b− 1)

)2 .

We have α′(x) ≥ 0 if only if s1 ≤ x ≤ s2 with

s1,2 =
1

b

(
−
(
(b+ 1)(n− b)− 1

)
∓
√
(b+ 1)(n− b− 1)

(
(2b+ 1)(n− 1)− 2b2

))
,

and γ′(x) ≥ 0 if only if r1 ≤ x ≤ r2 with

r1,2 = −
(
n− b− 1

)
∓
√

2(n− b− 1)(n− b− 2).

We have 1 < r2 < s2 < n − b − 4. So, for s = s2 and r = r2, we get that (see (10), (11)

and (12)) f is increasing in [1, r] and decreasing in [s, n− b− 4]. Therefore, there exists

z̄ ∈ (r, s) such that f ′(z̄) = 0. So, we take z = round(z̄) ∈ I = [round(r), round(s)].

Furthermore, f(n− b− 4) < f(1), which complets the proof. ■
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Example 2 To obtain the maximal Randić energy caterpillar graphs T (p1, p2, p3) of order

n = 33, we apply Theorems 5, 6 and 7, for slight different values of b, shown in the

following table.

Theorem b r s z RE(Tz) extremal graph
4.2 12 9 5.653986727 T (9, 12, 9)
4.2 9 10 5.639354482 T (10, 9, 11)
4.3 9 8.867059 9.021749 9 5.653986727 T (9, 12, 9)
4.4 9 8.811947 9.031236 9 5.653986727 T (9, 12, 9)
4.4 8 9.226495 9.469988 9 5.652375900 T (9, 13, 8)
4.4 10 8.397368 8.597041 9 5.651878107 T (8, 12, 10)

Remark 2 In Theorem 4.4, we find a estimated interval

I = [round(r), round(s)] ,

where r and s are given in (13) and (14), respectively, which contains the value of z that

maximizes Randić energy for the family of caterpillars Tp = T (p, n− p− b− 3, b), n ≥ 7,

with b ∈ {1, . . . , n− 6} fixed, for each p = 1, . . . , n− b− 4. In this case, we want to point

out that the interval I does not necessarily has range less than 1. In fact, that interval

have length less than 1 if and only if

g(n, b) = 8(n+ b− 1)2(n− b− 1)(n− b− 2)− (3n2 − 3bn− 9n+ 2b+ 6)2 > 0,

and this function g(n, b) can be written as:

g(n, b) = 8(n+ b− 1)2(n− b− 1)(n− b− 2)−
(
3(n− 1)(n− 2)− (3n− 2)b

)2
.

Since n− b− 1 > n− b− 2 > 0 then g(n, b) > h(n, b), with

h(n, b) = 8(n+ b− 1)2(n− b− 2)2 −
(
3(n− 1)(n− 2)− (3n− 2)b

)2

=
(√

8(n+ b− 1)(n− b− 2)− 3(n− 1)(n− 2) + (3n− 2)b
)

×
(√

8(n+ b− 1)(n− b− 2) + 3(n− 1)(n− 2)− (3n− 2)b
)
.

For each n, we find the values of b such that

∆1 =
√
8(n+ b− 1)(n− b− 2)− 3(n− 1)(n− 2) + (3n− 2)b > 0, and,

∆2 =
√
8(n+ b− 1)(n− b− 2) + 3(n− 1)(n− 2)− (3n− 2)b > 0.

Taking into account that 3n− 2 > 3(n− 1) > 0, then

∆1 >
√
8(n+ b− 1)(n− b− 2)− 3(n− 1)(n− 2) + 3(n− 1)b

=
(√

8b− (3−
√
8)(n− 1)

)
(n− b− 2).
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Since

√
8b− (3−

√
8)(n− 1) > 0 ⇔ b >

(3−
√
8)√

8
(n− 1) ≃ 0.06066(n− 1),

for such values of b, ∆1 > 0. Now, let us show that

∆2 =
√
8(n+ b− 1)(n− b− 2)− (3n− 2)b+ 3(n− 1)(n− 2) > 0.

From

−(3n− 2)b+ 3(n− 1)(n− 2) > 0 ⇔ b <
3(n− 1)(n− 2)

3n− 2

and

n−6 <
3(n− 1)(n− 2)

3n− 2
⇔ 3n3−20n+12 < 3(n2−3n+2) ⇔ 6 < 11n (which is true),

it follows that ∆2 > 0, for 1 ≤ b ≤ n− 6 < 3(n−1)(n−2)
3n−2

.

From the above, for n ≥ 7 and b ∈ N such that 0.06066(n− 1) ≤ b ≤ n− 6,

g(n, b) > h(n, b) = ∆1∆2 > 0.

Given n ≥ 7, consider bmin the smallest integer b ≥ 1 such that g(n, b) > 0 and let

b∗ = 0.06066(n− 1). For different values of n, b∗ remains close to the exact value bmin:

n bmin b∗

20 1 1.1525
30 2 1.7591
50 3 2.9723
100 6 6.0053
500 30 30.269
1000 61 60.599
5000 303 303.24
10000 606 606.54
20000 1213 1213.1
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