On the Randić Energy of Caterpillar Graphs

Domingos M. Cardoso^{1,2}, Paula Carvalho², Roberto C. Díaz^{3,*}, Paula Rama²

¹Center for Research and Development in Mathematics and Applications, ²Department of Mathematics, Universidade de Aveiro,

Aveiro, Portugal

dcardoso@ua.pt , paula.carvalho@ua.pt , prama@ua.pt

³Departamento de Matematicas, Universidad de La Serena,

Cisternas 1200, La Serena, Chile

roberto.diazm@userena.cl

(Received July 19, 2021)

Abstract

A caterpillar graph $T(p_1, \ldots, p_r)$ of order $n = r + \sum_{i=1}^r p_i$, $r \ge 2$, is a tree such that removing all its pendent vertices gives rise to a path of order r. In this paper we establish a necessary and sufficient condition for a real number to be an eigenvalue of the Randić matrix of $T(p_1, \ldots, p_r)$. This result is applied to determine the extremal caterpillars for the Randić energy of $T(p_1, \ldots, p_r)$ for cases r = 2 (the double star) and r = 3. We characterize the extremal caterpillars for r = 2. Moreover, we study the family of caterpillars T(p, n - p - q - 3, q) of order n, where q is a function of p, and we characterize the extremal caterpillars for three cases: q = p, q = n - p - b - 3 and q = b, for $b \in \{1, \ldots, n - 6\}$ fixed. Some illustrative examples are included.

1 Introduction

It is worth to start this section defining the Randić matrix of a graph G, denoted by $R_G = (r_{ij})$, which is such that $r_{ij} = \frac{1}{\sqrt{d_i d_j}}$ if $ij \in E(G)$ and zero otherwise, where d_k is the degree of the vertex k. The spectrum of R_G is the multiset of its eigenvalues, $\sigma_R(G) = \{\rho_1^{[m_1]}, \rho_2^{[m_2]}, \ldots, \rho_s^{[m_s]}\}$, where m_i stands for the multiplicity of ρ_i , for $1 \leq i \leq s$, and $\rho_1 > \rho_2 > \cdots > \rho_s$ are the distinct eigenvalues of R_G .

^{*}Corresponding author

It is well known that $\rho_1(G) = 1$ whenever G is a graph with at least one edge (see [7, Th. 2.3]).

The Randić energy of a graph G is defined in [7] (see also [2,3]) as follows:

$$RE(G) = \sum_{i=1}^{n} |\rho_i(G)|.$$

It is immediate that RE(G) = 0 if and only if all the vertices of G are isolated vertices. Considering $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$ as the eigenvalues of the adjacency matrix of a graph G of order n, the ordinary energy of G [8,11], herein denoted by $\mathcal{E}(G)$, is defined as

$$\mathcal{E}(G) = \sum_{j=1}^{n} |\lambda_i|.$$

In [7], the Randić energy and the ordinary energy of the paths P_n and P_{n-2} , respectively, are related as follows.

$$RE(P_n) = 2 + \frac{1}{2}\mathcal{E}(P_{n-2})$$

According to [5], if a graph G of order n has at least one edge, then

$$2 \le RE(G) \le n. \tag{1}$$

Furthermore, the lower bound in (1) is attained if and only if one component of G is a complete multipartite graph and all other components (if any) are isolated vertices. In particular, RE(G) = 2 for complete graphs. The upper bound in (1) is attained only if n is even and G is isomorphic to $\frac{n}{2}K_2$, or n is odd and G is the disjoin union of $\frac{n-3}{2}K_2$ plus a component which is a path P_2 or a triangle K_3 .

The characterization of connected graphs with maximal Randić energy remains an open problem as well as the following conjecture posed in [7] and computationally verified for graphs of order n up to n = 10.

Conjecture 1 [7] The connected graph with maximal Randić energy is a tree.

The following more thinner conjecture, also posed in [7], remains open too.

Conjecture 2 [7] The connected graph of odd order $n \ge 1$, having maximal Randić energy is the sun [7, Fig. 2]. The connected graph of even order $n \ge 2$, having maximal Randić energy is the balanced double sun [7, Fig. 2].

The aim of this paper is to determine the extremal graphs for the Randić energy of a family of caterpillars $T(p_1, \dots, p_r)$ of order $n = r + \sum_{i=1}^r p_i$ for cases r = 2 and r = 3. The

paper is organized as follows. In Section 2 the notation and basic definitions of the main concepts used through the text are introduced. In Section 3 a caterpillar is considered as the H-join of graphs and some spectral results of graphs obtained by this operation are recalled. Moreover, we get a necessary and sufficient condition for a real number to be an eigenvalue of the Randić matrix. This result plays a important role throughout the paper. In Section 4 we characterize the extremal caterpillar graphs for r = 2 (that are the double star) as well as we study the family of caterpillars T(p, n - p - q - 3, q) of order n, and we characterize extremal caterpillar graphs for three cases: q = p, q = n - p - b - 3and q = b, for any $b \in \{1, ..., n - 6\}$ fixed.

2 Preliminaries

In this paper we deal with undirected simple graphs. For a graph G the vertex set is denoted by V(G) and the edge set by E(G) and |V(G)| is the order of G. The edges of G denoted by ij, where i and j are the end-vertices of the edge. When $ij \in E(G)$ we say that the vertices i and j are adjacent and also that i is a neighbor of j (and conversely). The neighborhood of a vertex $v \in V(G)$ is the set of its neighbors and is denoted by $N_G(v) = \{w : vw \in E(G)\}$. The degree of v, denoted by d_v , is the cardinality of $N_G(v)$. The vertices i with 0 degree are called isolated vertices. Two graphs G and H are isomorphic if there is a bijection $\psi: V(G) \to V(H)$ such that $ij \in E(G)$ if and only if $\psi(i)\psi(j) \in E(H)$. This binary relation between graphs is denoted by $G \cong H$. The complement graph of a graph G, denoted by \overline{G} , is such that $V(\overline{G}) = V(G)$ and $E(\overline{G}) = \{ij : ij \notin E(G)\}$. The complete graph of order n, denote by K_n , is a graph where every pair of vertices are adjacent. The vertices of the complement of K_n are all isolated. The adjacency matrix of a graph G of order n = |V(G)| is $n \times n$ symmetric matrix $A_G = (a_{ij})$ such that $a_{ij} = 1$ if $ij \in E(G)$ and zero otherwise. The spectrum of a matrix M is the multiset of its eigenvalues denoted by σ_M . In particular, the spectrum of the adjacency matrix of a graph G, also called the spectrum of G, is $\sigma(G) = \{\lambda_1^{[m_1]}, \lambda_2^{[m_2]}, \dots, \lambda_s^{[m_s]}\}, \text{ where } m_i \text{ stands for the multiplicity of } \lambda_i, \text{ for } 1 \leq i \leq s.$

A path with r vertices, denoted by P_r , is a sequence of vertices v_1, v_2, \ldots, v_r such that each vertex is adjacent to the next, that is $v_1v_{i+1} \in E(G)$ for $i = 1, \ldots, r-1$. A cycle C_r is a closed path with r edges, that is, such that $v_{r+1} = v_1$. A tree is a connected acyclic graph; a star of order r, denoted by S_{r+1} , is a tree with a central vertex with degree r and all the other r vertices are pendent. A caterpillar is a tree such that removing all pendent vertices give rise to a path with at least two vertices. In particular, $T(p_1, \ldots, p_r)$ denotes a caterpillar obtained by attaching the central vertex of a star S_{p_i+1} to the *i*-th vertex of P_r , $i = 1, \ldots r$. The order of a caterpillar is $n = r + \sum_{i=1}^r p_i$.

A caterpillar $T(p_1, \ldots, p_r)$ can also be seen as the H-join $H[G_1, \ldots, G_r, G_{r+1}, \ldots, G_{2r}]$, where, for $1 \leq i \leq r$, $\begin{cases} G_i \cong K_1 \\ G_{i+r} \cong K_{p_i} \end{cases}$ and H is the caterpillar of order $2r, T(1, \ldots, 1)$, that is, a path P_r with one pendant vertex attached to each vertex of the path.

The null square and the identity matrices of order n are denoted by O_n and I_n , respectively.

3 The Randić spectrum of a caterpillar viewed as *H*-join

In this section, we consider a caterpillar as the H-join of a family of graphs (see [4]), $T(p_1, \ldots, p_r) = H[K_1, \ldots, K_1, \overline{K_{p_1}}, \ldots, \overline{K_{p_r}}]$, where *H* is the caterpillar of order 2r, $T(1, 1, \ldots, 1)$, that is, a path P_r with a pendant edge attached to each vertex of the path. The following result, given in [1], characterizes Randić spectra of *H*-join graphs.

Theorem 3.1 [1] Let H be a graph of order k. Let G_j be a d_j -regular graph of order n_j , with $d_j \ge 0$, $n_j \ge 1$, for j = 1, ..., k and $G = H[G_1, ..., G_k]$. Let R_G be the Randić matrix of G. Then,

$$\sigma_{R_{G}} = \sigma_{\Gamma_{k}} \cup \bigcup_{j=1}^{k} \left\{ \frac{\lambda}{N_{j} + d_{j}} : \lambda \in \sigma\left(A_{G_{j}}\right) \setminus \{d_{j}\} \right\},\$$

where $N_j = \sum_{i \in N_H(j)} n_i$, for j = 1, 2, ..., k,

$$\Gamma_{k} = \begin{pmatrix} \frac{d_{1}}{N_{1}+d_{1}} & \rho_{12} & \dots & \rho_{1(k-1)} & \rho_{1k} \\ \rho_{12} & \frac{d_{2}}{N_{2}+d_{2}} & \dots & \rho_{2(k-1)} & \rho_{2k} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \rho_{1(k-1)} & \rho_{2(k-1)} & \dots & \frac{d_{k-1}}{N_{k-1}+d_{k-1}} & \rho(k-1)k \\ \rho_{1k} & \rho_{2k} & \dots & \rho(k-1)k & \frac{d_{k}}{N_{k}+d_{k}} \end{pmatrix}$$

and

$$\rho_{ij} = \delta_{ij} \frac{\sqrt{n_i n_j}}{\sqrt{(N_i + d_i)(N_j + d_j)}}$$

with $\delta_{ij} = 1$ if $ij \in E(H)$, and zero otherwise, for i = 1..., k-1 and j = i+1, ..., k.

Remark 1 It is clear that the Randić matrix of a d_j -regular graph G_j is $R_{G_j} = \frac{1}{d_j}A_{G_j}$ if $d_j > 0$ and zero otherwise. On the other hand, if $d_j = 0$, for $j = 1, \ldots, k$, then $\Gamma_k = \Omega A_H \Omega$, with $\Omega = \text{diag}\left\{\sqrt{\frac{n_1}{N_1}}, \ldots, \sqrt{\frac{n_k}{N_k}}\right\}$. Since K_1 and $\overline{K_{p_i}}$, for i = 1, ..., r, are 0-regular graphs, we have the following result, which plays an important role in this paper:

Corollary 3.1 Let H = T(1, 1, ..., 1) be the caterpillar of order $2r, r \ge 2$, obtained from a path P_r and a pendent vertex attached to each vertex of the path. Let $T = T(p_1, ..., p_r) =$ $H[K_1, ..., K_1, \overline{K_{p_1}}, ..., \overline{K_{p_r}}]$ be a caterpillar of order $n = r + \sum_{i=1}^r p_i$. Then,

$$\sigma_{R_T} = \sigma_{\Gamma_{2r}} \cup \left\{ 0^{\left[\sum_{i=1}^r (p_i - 1)\right]} \right\}.$$

As a consequence, in order to obtain the spectrum of the Randić matrix of $T(p_1, \ldots, p_r)$ we focus our attention on the spectrum of Γ_{2r} . Firstly, note that

$$\Omega = \operatorname{diag}\left\{\sqrt{\frac{1}{N_1}}, \dots, \sqrt{\frac{1}{N_r}}, \sqrt{\frac{p_1}{N_{r+1}}}, \dots, \sqrt{\frac{p_r}{N_{2r}}}\right\} = \begin{bmatrix}\Omega_1 & O_r\\O_r & \Omega_2\end{bmatrix}$$

with

$$\Omega_1 = \operatorname{diag}\left\{\sqrt{\frac{1}{N_1}}, \dots, \sqrt{\frac{1}{N_r}}\right\}, \qquad \Omega_2 = \operatorname{diag}\left\{\sqrt{\frac{p_1}{N_{r+1}}}, \dots, \sqrt{\frac{p_r}{N_{2r}}}\right\}, \tag{2}$$

Therefore, we can write

$$\Gamma_{2r} = \Omega A_H \Omega = \begin{bmatrix} \Omega_1 & O_r \\ O_r & \Omega_2 \end{bmatrix} \begin{bmatrix} A_{P_r} & I_r \\ I_r & O_r \end{bmatrix} \begin{bmatrix} \Omega_1 & O_r \\ O_r & \Omega_2 \end{bmatrix} = \begin{bmatrix} A & B \\ B & O_r \end{bmatrix},$$
(3)

where

$$A = \Omega_1 A_{P_r} \Omega_1 \quad \text{and} \quad B = \Omega_1 \Omega_2. \tag{4}$$

It is worth to recall a famous determinantal identity presented by Issa Schur in 1917 [12] referred as the formula of Schur by Gantmacher [6, p. 46]. In the sixties, the term Schur complement was introduced by Emilie Haynsworth [9] jointly with the following notation. Considering a square matrix $M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$, where A and D are square block matrices and A is nonsingular, the Schur complement of A in M is defined as

$$M/A = D - CA^{-1}B.$$

For more details see [10]. Using the above notation, the next theorem states the Schur determinantal identity. For the readers convenience, the very short proof presented in [10] is reproduced.

Theorem 3.2 [12] Let $M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$, where A and D are square submatrices of order m and n, respectively. If A is nonsingular then

$$\det(M) = \det(A) \cdot \det(M/A).$$

Proof It is immediate that

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} I_m & 0 \\ CA^{-1} & I_n \end{bmatrix} \begin{bmatrix} A & B \\ 0 & D - CA^{-1}B \end{bmatrix}.$$

The identity follows by taking the determinant of both sides.

Similarly, if D is nonsingular then

$$\det(M) = \det(A - BD^{-1}C) \cdot \det(D).$$
(5)

Note that $\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} I_m & BD^{-1} \\ 0 & I_n \end{bmatrix} \begin{bmatrix} A - BD^{-1}C & 0 \\ C & D \end{bmatrix}$. From (5), we may establish the following spectral characterization for the matrix Γ_{2r} ,

From (5), we may establish the following spectral characterization for the matrix Γ_{2r} , which will play an important role in getting our main results:

Theorem 3.3 Let H = T(1, 1, ..., 1) be the caterpillar of order $2r, r \ge 2$ and let Γ_{2r} be partitioned as in (3). Then, $\lambda \in \sigma_{\Gamma_{2r}}$ if and only if

$$det(\lambda^2 I_r - \lambda A - B^2) = 0,$$

where A and B are defined as in (4).

Proof The characteristic polynomial of Γ_{2r} is

$$p_{\Gamma_{2r}}(\lambda) = \det(\lambda I_{2r} - \Gamma_{2r}) = det \left(\begin{bmatrix} \lambda I_r - A & -B \\ -B & \lambda I_r \end{bmatrix} \right).$$

Thus, applying (5), we obtain

$$p_{\Gamma_{2r}}(\lambda) = det(\lambda I_r) \cdot det\left(\lambda I_r - A - B\left(\frac{1}{\lambda}I_r\right)B\right)$$
$$= \lambda^r \cdot det\left(\left(\frac{1}{\lambda}\right)(\lambda^2 I_r - \lambda A - B^2)\right)$$
$$= \lambda^r \cdot \left(\frac{1}{\lambda}\right)^r \cdot det\left(\lambda^2 I_r - \lambda A - B^2\right) = det\left(\lambda^2 I_r - \lambda A - B^2\right).$$

4 Extremal caterpillar graphs for Randić energy

In this section, we obtain the extremal graphs in the family of caterpillars, for r = 2, 3.

Theorem 4.1 Let $T_p = T(p, n - p - 2), p = 1, ..., \lfloor \frac{n-2}{2} \rfloor$ be a caterpillar of order $n \ge 4$. Then

$$2 + \sqrt{\frac{2(n-3)}{n-2}} \leq RE(T_p) \leq 4 - \frac{4}{n}.$$

The lower bound is attained if and only if p = 1 (the graph obtained by attaching a pendent vertex to a pendent vertex of S_{n-1}) and the upper bound is attained if and only if T_p has even order and $p = \frac{n-2}{2}$.

Proof By Theorem 3.3, the eigenvalues of σ_{Γ_4} are the zeros of the polynomial $\det(\lambda^2 I_2 - \lambda A - B^2) = 0$ where (see (4)),

$$A = \begin{bmatrix} 0 & \frac{1}{\sqrt{(p+1)(n-p-1)}} \\ \frac{1}{\sqrt{(p+1)(n-p-1)}} & 0 \end{bmatrix} \text{ and } B = \begin{bmatrix} \frac{\sqrt{p}}{\sqrt{p+1}} & 0 \\ 0 & \frac{\sqrt{n-p-2}}{\sqrt{n-p-1}} \end{bmatrix}.$$

So,

$$\det(\lambda^2 I_2 - \lambda A - B^2) = \det \begin{bmatrix} \lambda^2 - \frac{p}{p+1} & -\frac{\lambda}{\sqrt{(p+1)(n-p-1)}} \\ -\frac{\lambda}{\sqrt{(p+1)(n-p-1)}} & \lambda^2 - \frac{n-p-2}{n-p-1} \end{bmatrix}$$
$$= \left(\lambda^2 - \frac{p}{p+1}\right) \left(\lambda^2 - \frac{n-p-2}{n-p-1}\right) - \frac{\lambda^2}{(p+1)(n-p-1)}$$
$$= \frac{\lambda^2 - 1}{(p+1)(n-p-1)} \left((p+1)(n-p-1)\lambda^2 - p(n-p-2)\right).$$

Consequently,

$$\sigma_{\Gamma_4} = \left\{ \pm \sqrt{\frac{p(n-p-2)}{(p+1)(n-p-1)}}, \pm 1 \right\}.$$

and

$$RE(T_p) = \sum_{i=1}^{n} |\lambda_i(T_p)| = 2 + 2\sqrt{\frac{p(n-p-2)}{(p+1)(n-p-1)}},$$

for all $p = 1, \dots, \lfloor \frac{n-2}{2} \rfloor$. For $1 \le x \le \lfloor \frac{n-2}{2} \rfloor$, let $f(x) = \frac{x(n-x-2)}{(x+1)(n-x-1)}$. Then,

$$f'(x) = \frac{(n-1)(n-2(x+1))}{(x+1)^2(n-x-1)^2} \ge 0$$

if and only if $1 \le x \le \frac{n-2}{2}$. Therefore, f is an increasing function in this interval, and consequently,

$$2 + \sqrt{\frac{2(n-3)}{n-2}} \le RE(T_p) \le RE(T_{\lfloor \frac{n-2}{2} \rfloor}),$$

for all $p = 1, \dots, \lfloor \frac{n-2}{2} \rfloor$. Finally, if n is even,

$$RE(T_{\lfloor \frac{n-2}{2} \rfloor}) = RE(T_{\frac{n-2}{2}}) = 2 + 2\left(\frac{n-2}{n}\right) = 4 - \frac{4}{n}$$

and if n is odd,

$$RE(T_{\lfloor \frac{n-2}{2} \rfloor}) = RE(T_{\lfloor \frac{n-3}{2} + \frac{1}{2} \rfloor}) = RE(T_{\frac{n-3}{2}}) = 2 + 2\left(\sqrt{\frac{n-3}{n+2}}\right) < 4 - \frac{4}{n}$$

for all $n \geq 3$.

 $\begin{array}{ll} \textbf{4.2} & \textbf{Extremal caterpillar graphs } T\big(p,n-p-q-3,q\big), \\ & p,q\in\{1,\ldots,n-5\} \end{array}$

For this class of caterpillars,

$$\Omega_1 = \operatorname{diag}\left\{\frac{1}{\sqrt{p+1}}, \frac{1}{\sqrt{n-p-q-1}}, \frac{1}{\sqrt{q+1}}\right\}$$

and

$$\Omega_2 = \operatorname{diag}\left\{\sqrt{p}, \sqrt{n-p-q-3}, \sqrt{q}\right\}.$$

Therefore (see (2), (3) and (4))

$$\Gamma_6 = \Omega A_H \Omega = \begin{bmatrix} A & B \\ B & O_3 \end{bmatrix},$$

with

$$A = \Omega_1 A_{P_3} \Omega_1 = \begin{bmatrix} 0 & \frac{1}{\sqrt{p+1}\sqrt{n-p-q-1}} & 0\\ \frac{1}{\sqrt{p+1}\sqrt{n-p-q-1}} & 0 & \frac{1}{\sqrt{q+1}\sqrt{n-p-q-1}}\\ 0 & \frac{1}{\sqrt{q+1}\sqrt{n-p-q-1}} & 0 \end{bmatrix}$$

and

$$B = \Omega_1 \Omega_2 = \begin{bmatrix} \frac{\sqrt{p}}{\sqrt{p+1}} & 0 & 0\\ 0 & \frac{\sqrt{n-p-q-3}}{\sqrt{n-p-q-1}} & 0\\ 0 & 0 & \frac{\sqrt{q}}{\sqrt{q+1}} \end{bmatrix}.$$

By Theorem 3.3, as

$$\lambda^{2} I_{3} - \lambda A - B^{2} = \begin{bmatrix} \lambda^{2} - \frac{p}{p+1} & -\frac{\lambda}{\sqrt{p+1}\sqrt{n-p-q-1}} & 0\\ -\frac{\lambda}{\sqrt{p+1}\sqrt{n-p-q-1}} & \lambda^{2} - \frac{n-p-q-3}{n-p-q-1} & -\frac{\lambda}{\sqrt{q+1}\sqrt{n-p-q-1}}\\ 0 & -\frac{\lambda}{\sqrt{q+1}\sqrt{n-p-q-1}} & \lambda^{2} - \frac{q}{q+1} \end{bmatrix},$$

 $\det(\lambda^2 I_3 - \lambda A - B^2) =$

$$\begin{split} &= \left(\lambda^{2} - \frac{p}{p+1}\right) \det \left(\begin{bmatrix} \lambda^{2} - \frac{n-p-q-3}{n-p-q-1} & -\frac{\lambda}{\sqrt{q+1}\sqrt{n-p-q-1}} \\ -\sqrt{q+1}\sqrt{n-p-q-1} & \lambda^{2} - \frac{q}{q+1} \end{bmatrix} \right) \\ &+ \left(\frac{\lambda}{\sqrt{p+1}\sqrt{n-p-q-1}} \right) \det \left(\begin{bmatrix} -\frac{\lambda}{\sqrt{p+1}\sqrt{n-p-q-1}} & -\frac{\lambda}{\sqrt{q+1}\sqrt{n-p-q-1}} \\ 0 & \lambda^{2} - \frac{q}{q+1} \end{bmatrix} \right) \\ &= \left(\lambda^{2} - \frac{p}{p+1}\right) \left[\left(\lambda^{2} - \frac{n-p-q-3}{n-p-q-1}\right) \left(\lambda^{2} - \frac{q}{q+1}\right) - \frac{\lambda^{2}}{(q+1)(n-p-q-1)} \right] \\ &- \left(\frac{\lambda^{2}}{(p+1)(n-p-q-1)} \right) \left(\lambda^{2} - \frac{q}{q+1} \right) \\ &= \frac{\left(\lambda^{2}(p+1) - p\right) \left[\left(\lambda^{2}(n-p-q-1) - (n-p-q-3)\right) \left(\lambda^{2}(q+1) - q\right) - \lambda^{2} \right] - \lambda^{2} \left(\lambda^{2}(q+1) - q\right)}{(p+1)(q+1)(n-p-q-1)}. \end{split}$$

After some algebraic manipulation on the above expression, we get that

$$det(\lambda^2 I_3 - \lambda A - B^2) = \frac{1}{(p+1)(q+1)(n-p-q-1)} \Big[(p+1)(q+1)(n-p-q-1)\lambda^6 - [(n-p-q-2)(q(2p+1)+p) + (p+1)(q+1)(n-p-q-1)]\lambda^4 + [pq(n-p-q-3) + (n-p-q-2)(q(2p+1)+p)]\lambda^2 - pq(n-p-q-3) \Big] = \frac{(\lambda^2 - 1) \Big[(p+1)(q+1)(n-p-q-1)\lambda^4 - (n-p-q-2)(q(2p+1)+p)\lambda^2 + pq(n-p-q-3) \Big]}{(p+1)(q+1)(n-p-q-1)}$$

$$=\frac{1}{\eta(n,p,q)}\left(\lambda^2-1\right)\left[\eta(n,p,q)\lambda^4-\zeta(n,p,q)\lambda^2+\chi(n,p,q)\right],$$

being

$$\begin{cases} \eta(n, p, q) &= (p+1)(q+1)(n-p-q-1), \\ \zeta(n, p, q) &= (n-p-q-2)\left(q(2p+1)+p\right) \\ \chi(n, p, q) &= pq(n-p-q-3). \end{cases}$$
(6)

When obtaining the roots of the biquadratic equation

$$\eta(n, p, q)\lambda^4 - \zeta(n, p, q)\lambda^2 + \chi(n, p, q) = 0,$$

we determinate the roots of the equation $\det(\lambda^2 I_3 - \lambda A - B^2) = 0,$ given by:

$$\begin{split} \lambda_{1,2} &= \pm 1 \\ \lambda_{3,4} &= \pm \sqrt{\frac{\zeta(n,p,q) + \sqrt{\zeta^2(n,p,q) - 4\eta(n,p,q)\chi(n,p,q)}}{2\eta(n,p,q)}} \\ \lambda_{5,6} &= \pm \sqrt{\frac{\zeta(n,p,q) - \sqrt{\zeta^2(n,p,q) - 4\eta(n,p,q)\chi(n,p,q)}}{2\eta(n,p,q)}}. \end{split}$$

Using the notation

$$\begin{cases} \alpha(n, p, q) &= \frac{\zeta(n, p, q)}{2\eta(n, p, q)}, \\ \gamma(n, p, q) &= \frac{\chi(n, p, q)}{\eta(n, p, q)}, \\ \beta(n, p, q) &= \sqrt{\alpha^2(n, p, q) - \gamma(n, p, q)}, \end{cases}$$
(7)

we get, for a general caterpillar $T_{p,q} = T(p, n - 3 - p - q, q)$,

$$RE(T_{p,q}) = 2\left(1 + \sqrt{\alpha(n,p,q) + \beta(n,p,q)} + \sqrt{\alpha(n,p,q) - \beta(n,p,q)}\right).$$
(8)

In order to obtain the extreme graphs for certain subfamilies of caterpillar of the form T(p, n-p-q-3, q), for $n \ge 7$, we consider q as a function of x such that $1 \le q(x) \le n-5$ for $1 \le x \le n-5$ and define

$$f(x) = \sqrt{\alpha(x) + \beta(x)} + \sqrt{\alpha(x) - \beta(x)},$$
(9)

where $\alpha(x) := \alpha(n, x, q(x))$ and $\beta(x) = \sqrt{\alpha^2(x) - \gamma(x)} := \beta(n, x, q(x))$ as in (7). Therefore,

$$\begin{split} f'(x) &= \frac{1}{2} \left(\frac{\alpha'(x) + \beta'(x)}{\sqrt{\alpha(x) + \beta(x)}} + \frac{\alpha'(x) - \beta'(x)}{\sqrt{\alpha(x) - \beta(x)}} \right) \\ &= \frac{1}{2} \left(\frac{f(x)\alpha'(x) + (\sqrt{\alpha(x) - \beta(x)} - \sqrt{\alpha(x) + \beta(x)})\beta'(x)}{\sqrt{\gamma(x)}} \right) \\ &= \frac{1}{2} \left(\frac{f^2(x)\alpha'(x) - 2\beta(x)\beta'(x)}{f(x)\sqrt{\gamma(x)}} \right) \\ &= \frac{\alpha'(x) \left(f^2(x) - 2\alpha(x) \right) + \gamma'(x)}{2f(x)\sqrt{\gamma(x)}} \\ &= \frac{2\alpha'(x)\sqrt{\gamma(x)} + \gamma'(x)}{2f(x)\sqrt{\gamma(x)}}, \end{split}$$

$$f'(x) \ge 0$$
 if and only if $\lambda(x) := 2\alpha'(x)\sqrt{\gamma(x)} + \gamma'(x) \ge 0.$ (10)

Taking into account (6) and (7), it is easy to see that $0 \le \gamma(x) < 1$, for all $1 \le x \le n-5$. Thus,

i. If $\alpha'(x) \ge 0$ and $\gamma'(x) \le 0$, for $x \in I \subset [1, n-5]$, then by (10)

$$\gamma'(x) \leq \lambda(x) < 2\alpha'(x). \tag{11}$$

ii. If $\alpha'(x) \leq 0$ and $\gamma'(x) \geq 0$, for $x \in I \subset [1, n-5]$, then by (10)

$$2\alpha'(x) < \lambda(x) \le \gamma'(x). \tag{12}$$

Next we characterize the extremal caterpillars T(p, n - 2p - 3, q) for three specific cases: q = p, q = n - p - b - 3 and q = b, for any $b \in \{1, ..., n - 6\}$ fixed.

 $\label{eq:constraint} \textbf{4.2.1} \quad \textbf{Extremal graphs for the family of caterpillars } T(p,b,n-p-b-3)$

Theorem 4.2 Let $T_p = T(p, b, n - p - b - 3)$ be a caterpillar of order $n \ge 7$, with $b \in \{1, \ldots, n-6\}$ fixed and $p = 1, \ldots, n-b-4$. Then

$$RE(T_1) \le RE(T_p) \le RE\left(T_{\lfloor \frac{n-b-3}{2} \rfloor}\right).$$

Proof Without loss of generality, we take $1 \le p \le \lfloor \frac{n-b-3}{2} \rfloor$, since for $p = 1, \ldots, n-b-4$, T_p and $T_{n-p-b-3}$ are isomorphic graphs. Replacing q by n-p-b-3 in (8), and considering the function f(x), as in (9), for $1 \le x \le \frac{n-b-3}{2}$,

$$\alpha'(x) = \frac{(b+1)(n-b-1)(n-2x-b-3)}{2(b+2)((x+1)(n-x-b-2))^2}$$

$$\gamma'(x)=\frac{b(n-b-2)(n-2x-b-3)}{(b+2)(x+1)^2(n-x-b-2)^2}$$

we have both $\alpha'(x) \ge 0$ and $\gamma'(x) \ge 0$ if and only if $1 \le x \le \frac{n-b-3}{2}$. Thus, by (10), f increases in the interval $[1, \frac{n-b-3}{2}]$ and the proof is complete.

Theorem 4.3 Let $T_p = T(p, n - 2p - 3, p)$ be a caterpillar of order $n \ge 7$, with $p = 1, \ldots, \lfloor \frac{n-4}{2} \rfloor$. Then

$$RE(T_1) \leq RE(T_p) \leq RE(T_z),$$

where z is an integer number in I = [round(r), round(s)], with

$$r = \frac{1}{2} \left(2n - 3 - \sqrt{2n(n-2) + 3} \right) \quad and \quad s = \frac{1}{2} \left(2(n-1) - \sqrt{2n(n-1)} \right).$$

Proof From (8), replacing q by p, consider (see (9)) f(x) for $1 \le x \le \frac{n-4}{2}$. The derivatives of α and γ are

$$\alpha'(x) = \frac{2x^2 - (4n - 4)x + n^2 - 3n + 2}{(x + 1)^2(n - 2x - 1)^2}$$

and

$$\gamma'(x) = \frac{2x(2x^2 - (4n - 6)x + n^2 - 4n + 3)}{(x+1)^3(n-2x-1)^2}$$

thus, we have $\alpha'(x) \ge 0$ if only if $2x^2 - (4n-4)x + n^2 - 3n + 2 \ge 0$ which occurs for $x \le s_1$ or $x \ge s_2$ with $s_{1,2} = \frac{1}{2} \left(2(n-1) \mp \sqrt{2n(n-1)} \right)$.

Similarly, $\gamma'(x) \ge 0$ if only if $x(2x^2 - (4n - 6)x + n^2 - 4n + 3) \ge 0$, that is, for $0 \le x \le r_1$ or $x \ge r_2$ with $r_{1,2} = \frac{1}{2} \left(2n - 3 \mp \sqrt{2n(n-2) + 3} \right)$.

We have $1 < r_1 < s_1 < \frac{n-4}{2} < r_2, s_2$. Therefore (see (10), (11) and (12)), f increases in the interval $[1, r_1]$ and decreases in $[s_1, \frac{n-4}{2}]$. By Bolzano's Theorem, there exists $\bar{z} \in (r_1, s_1)$ such that $f'(\bar{z}) = 0$. Since $s_1 - r_1 < 0.5$, we take $z = round(\bar{z}) \in [round(r), round(s)]$, where $r = r_1$ and $s = s_1$. Finally, $f(1) < f(\frac{n-4}{2})$, so f(1) is the minimum of this function.

Example 1 A table with some values for $RE(T_{z-1})$, $RE(T_z)$, $RE(T_{z+1})$ and extremal caterpillars T(p, n-3-2p, p) are presented below.

n	r	s	z	$RE(T_{z-1})$	$RE(T_z)$	$RE(T_{z+1})$	$extremal\ graph$
19	4.762261	4.923303	5	5.388854	5.406881	5.363498	T(5, 6, 5)
21	5.349028	5.508623	5	5.421848	5.458735	5.455208	T(5, 8, 5)
35	9.453171	9.607378	10	5.672191	5.672395	5.662869	T(10, 12, 10)
50	13.84816	14.000000	14	5.768798	5.770057	5.768229	T(14, 19, 14)

4.2.3 Extremal graphs of the family of caterpillars T(p, n - p - b - 3, b)

Theorem 4.4 Let $T_p = T(p, n - p - b - 3, b)$ be a caterpillar of order $n \ge 7$, with $b \in \{1, \ldots, n-6\}$ fixed and $p = 1, \ldots, n-b-4$. Then,

$$RE(T_{n-b-4}) \leq RE(T_p) \leq RE(T_z), \text{ where } z \in I = [round(r), round(s)],$$

with

$$r = -(n-b-1) + \sqrt{2(n-b-1)(n-b-2)}$$
(13)

and

$$s = \frac{1}{b} \bigg(-\big((b+1)(n-b) - 1\big) + \sqrt{(b+1)(n-b-1)\big((2b+1)(n-1) - 2b^2\big)} \bigg).$$
(14)

Proof Replacing q by b in (8), we define f(x) as in (9) for $1 \le x \le n-b-4$. We compute

$$\alpha'(x) = \frac{-bx^2 - 2\big((b+1)(n-b) - 1\big)x + (b+1)n^2 - (b+1)(2b+3)n + b(b+2)^2 + 2}{2(b+1)\big((x+1)(n-x-b-1)\big)^2},$$

$$\gamma'(x) = \frac{b\big(-x^2 - 2(n-b-1)x + n^2 - 2(b+2)n + (b+3)(b+1)\big)}{(b+1)\big((x+1)(n-x-b-1)\big)^2}$$

We have $\alpha'(x) \ge 0$ if only if $s_1 \le x \le s_2$ with

$$s_{1,2} = \frac{1}{b} \bigg(-\big((b+1)(n-b) - 1\big) \mp \sqrt{(b+1)(n-b-1)\big((2b+1)(n-1) - 2b^2\big)} \bigg),$$

and $\gamma'(x) \ge 0$ if only if $r_1 \le x \le r_2$ with

$$r_{1,2} = -(n-b-1) \mp \sqrt{2(n-b-1)(n-b-2)}.$$

We have $1 < r_2 < s_2 < n - b - 4$. So, for $s = s_2$ and $r = r_2$, we get that (see (10), (11) and (12)) f is increasing in [1, r] and decreasing in [s, n - b - 4]. Therefore, there exists $\overline{z} \in (r, s)$ such that $f'(\overline{z}) = 0$. So, we take $z = round(\overline{z}) \in I = [round(r), round(s)]$. Furthermore, f(n - b - 4) < f(1), which complets the proof.

Example 2 To obtain the maximal Randić energy caterpillar graphs $T(p_1, p_2, p_3)$ of order n = 33, we apply Theorems 5, 6 and 7, for slight different values of b, shown in the following table.

Theorem	b	r	s	z	$RE(T_z)$	$extremal\ graph$
4.2	12			9	5.653986727	T(9, 12, 9)
4.2	9			10	5.639354482	T(10, 9, 11)
4.3	9	8.867059	9.021749	9	5.653986727	T(9, 12, 9)
4.4	9	8.811947	9.031236	9	5.653986727	T(9, 12, 9)
4.4	8	9.226495	9.469988	9	5.652375900	T(9, 13, 8)
4.4	10	8.397368	8.597041	9	5.651878107	T(8, 12, 10)

Remark 2 In Theorem 4.4, we find a estimated interval

$$I = [round(r), round(s)],$$

where r and s are given in (13) and (14), respectively, which contains the value of z that maximizes Randić energy for the family of caterpillars $T_p = T(p, n - p - b - 3, b), n \ge 7$, with $b \in \{1, ..., n - 6\}$ fixed, for each p = 1, ..., n - b - 4. In this case, we want to point out that the interval I does not necessarily has range less than 1. In fact, that interval have length less than 1 if and only if

$$g(n,b) = 8(n+b-1)^2(n-b-1)(n-b-2) - (3n^2 - 3bn - 9n + 2b + 6)^2 > 0,$$

and this function g(n, b) can be written as:

$$g(n,b) = 8(n+b-1)^2(n-b-1)(n-b-2) - \left(3(n-1)(n-2) - (3n-2)b\right)^2.$$

Since n - b - 1 > n - b - 2 > 0 then g(n, b) > h(n, b), with

$$\begin{split} h(n,b) &= 8(n+b-1)^2(n-b-2)^2 - \left(3(n-1)(n-2) - (3n-2)b\right)^2 \\ &= \left(\sqrt{8}(n+b-1)(n-b-2) - 3(n-1)(n-2) + (3n-2)b\right) \\ &\times \left(\sqrt{8}(n+b-1)(n-b-2) + 3(n-1)(n-2) - (3n-2)b\right). \end{split}$$

For each n, we find the values of b such that

$$\begin{array}{rcl} \Delta_1 & = & \sqrt{8}(n+b-1)(n-b-2) - 3(n-1)(n-2) + (3n-2)b > 0, \mbox{ and } \\ \Delta_2 & = & \sqrt{8}(n+b-1)(n-b-2) + 3(n-1)(n-2) - (3n-2)b > 0. \end{array}$$

Taking into account that 3n - 2 > 3(n - 1) > 0, then

$$\begin{aligned} \Delta_1 &> \sqrt{8}(n+b-1)(n-b-2) - 3(n-1)(n-2) + 3(n-1)b \\ &= \left(\sqrt{8}b - (3-\sqrt{8})(n-1)\right)(n-b-2). \end{aligned}$$

Since

$$\sqrt{8}b - (3 - \sqrt{8})(n-1) > 0 \Leftrightarrow b > \frac{(3 - \sqrt{8})}{\sqrt{8}}(n-1) \simeq 0.06066(n-1),$$

for such values of $b, \Delta_1 > 0$. Now, let us show that

$$\Delta_2 = \sqrt{8}(n+b-1)(n-b-2) - (3n-2)b + 3(n-1)(n-2) > 0.$$

From

$$-(3n-2)b + 3(n-1)(n-2) > 0 \Leftrightarrow b < \frac{3(n-1)(n-2)}{3n-2}$$

and

$$n-6 < \frac{3(n-1)(n-2)}{3n-2} \Leftrightarrow 3n^3 - 20n + 12 < 3(n^2 - 3n + 2) \Leftrightarrow 6 < 11n \quad \text{(which is true)},$$

it follows that $\Delta_2 > 0$, for $1 \le b \le n - 6 < \frac{3(n-1)(n-2)}{3n-2}$.

From the above, for $n \ge 7$ and $b \in \mathbb{N}$ such that $0.06066(n-1) \le b \le n-6$,

$$g(n,b) > h(n,b) = \Delta_1 \Delta_2 > 0$$

Given $n \ge 7$, consider b_{\min} the smallest integer $b \ge 1$ such that g(n, b) > 0 and let $b^* = 0.06066(n-1)$. For different values of n, b^* remains close to the exact value b_{\min} :

n	b_{\min}	b^*
20	1	1.1525
30	2	1.7591
50	3	2.9723
100	6	6.0053
500	- 30	30.269
1000	61	60.599
5000	303	303.24
10000	606	606.54
20000	1213	1213.1

Acknowledgments: This research is partially supported by the Portuguese Foundation for Science and Technology ("FCT-Fundação para a Ciência e a Tecnologia"), through the CIDMA - Center for Research and Development in Mathematics and Applications, within project UID/MAT/04106/2013. The research of R. C. Díaz was supported by Conicyt-Fondecyt de Postdoctorado 2017 N^o 3170065, Chile.

References

- E. Andrade, H. Gomes, M. Robbiano, Spectra and Randić spectra of caterpillar graphs and applications to the energy, *MATCH Commun. Math. Comput. Chem.* 77 (2017) 61–75.
- [2] B. Bozkurt, A. D. Güngör, I. Gutman, Randić sectral radius and Randić energy, MATCH Commun. Math. Comput. Chem. 64 (2019) 321–334.
- [3] B. Bozkurt, A. D. Güngör, I. Gutman, A. S. Çevik, Randić matrix and Randić energy, MATCH Commun. Math. Comput. Chem. 64 (2010) 239–334.
- [4] D. M. Cardoso, M. A. de Freitas, E. A. Martins, M. Robbiano, Spectra of graphs obtained by a generalization of the join graph operation, *Discr. Math.* **313** (2013) 733–741.
- [5] M. Cavers, S. Fallat, S. Kirkland, On the normalized Laplacian energy and general Randić index R₋₁ of graphs, *Lin. Algebra Appl.* 433 (2010) 172–190.
- [6] F. R. Gantmacher, The Theory of Matrices, AMS Chelsea Pub., Providence 1998.
- [7] I. Gutman, B. Furtula, B. Bozkurt, On Randić energy, Lin. Algebra Appl. 442 (2014) 50–57.
- [8] I. Gutman, The energy of a graph, Ber. Math. Stat. Sekt. Forschungsz Graz 103 (1978) 1–22.
- [9] E. V. Haynsworth, Determination of the inertia of a partitioned Hermitian matrix, Lin. Algebra Appl. 1 (1968) 73–81.
- [10] R. A. Horn, F. Zhang, Basic properties of the Schur complement, in: F. Zhang (Ed.), The Schur Complement and Its Applications, Springer, New York, 2005, pp. 17–41.
- [11] X. Li, Y. Shi, I. Gutman, Graph Energy, Springer, New York, 2012.
- [12] I. Schur, Überpotenzreihen die im innern des einheitskreises berchränkt sind [I], J. für die Reine und Angew. Math. 147 (1917) 205–232.