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Abstract

A caterpillar graph T(py, ..., pr) of order n =7+ > 7 p;, 7 > 2, is a tree such
that removing all its pendent vertices gives rise to a path of order r. In this paper we
establish a necessary and sufficient condition for a real number to be an eigenvalue of
the Randi¢ matrix of T'(p1, ..., p,). This result is applied to determine the extremal
caterpillars for the Randi¢ energy of T'(p1,...,pr) for cases 7 = 2 (the double star)
and r = 3. We characterize the extremal caterpillars for » = 2. Moreover, we study
the family of caterpillars T'(p,n —p—q— 3, q) of order n, where g is a function of p,
and we characterize the extremal caterpillars for three cases: ¢ =p,¢g=n—p—>b—3
and ¢ =, for b € {1,...,n — 6} fixed. Some illustrative examples are included.

1 Introduction

It is worth to start this section defining the Randi¢ matrix of a graph G, denoted by
R¢ = (ry;), which is such that r;; = \/ﬁ if ij € E(G) and zero otherwise, where dj
is the degree of the vertex k. The spectrum of Rg is the multiset of its eigenvalues,
or(G) = {,r)[lml]7 /)[27"2], e ,p[sm‘*]}, where m; stands for the multiplicity of p;, for 1 <i <s,

and p; > py > --- > p, are the distinct eigenvalues of Rg.
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It is well known that p;(G) = 1 whenever G is a graph with at least one edge (see [7, Th.
2.3)).
The Randicé energy of a graph G is defined in [7] (see also [2,3]) as follows:

RE(G) =3 |p(G)]

It is immediate that RE(G) = 0 if and only if all the vertices of G are isolated vertices.
Considering A\; > Ay > --- > ), as the eigenvalues of the adjacency matrix of a graph G
of order n, the ordinary energy of G [8,11], herein denoted by £(G), is defined as

n

EG) =Nl

j=1
In [7], the Randi¢ energy and the ordinary energy of the paths P, and P,_s, respectively,
are related as follows.

RE(P,) =2+ %S(Pn_g).

According to [5], if a graph G of order n has at least one edge, then
2 < RE(G) <n. (1)

Furthermore, the lower bound in (1) is attained if and only if one component of G is
a complete multipartite graph and all other components (if any) are isolated vertices. In
particular, RE(G) = 2 for complete graphs. The upper bound in (1) is attained only if
n is even and G is isomorphic to K5, or n is odd and G is the disjoin union of "%3 Ky
plus a component which is a path P or a triangle K.

The characterization of connected graphs with maximal Randié¢ energy remains an
open problem as well as the following conjecture posed in [7] and computationally verified

for graphs of order n up to n = 10.
Conjecture 1 [7] The connected graph with mazimal Randié energy is a tree.

The following more thinner conjecture, also posed in [7], remains open too.

Conjecture 2 [7] The connected graph of odd order n > 1, having mazimal Randié
energy is the sun [7, Fig. 2]. The connected graph of even order n > 2, having mazimal

Randié energy is the balanced double sun [7, Fig. 2].

The aim of this paper is to determine the extremal graphs for the Randié¢ energy of a

family of caterpillars T'(py, - - - p,) of order n = r+3%_._, p; for cases r = 2 and r = 3. The
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paper is organized as follows. In Section 2 the notation and basic definitions of the main
concepts used through the text are introduced. In Section 3 a caterpillar is considered as
the H-join of graphs and some spectral results of graphs obtained by this operation are
recalled. Moreover, we get a necessary and sufficient condition for a real number to be
an eigenvalue of the Randi¢ matrix. This result plays a important role throughout the
paper. In Section 4 we characterize the extremal caterpillar graphs for » = 2 (that are the
double star) as well as we study the family of caterpillars T(p,, n—p—q-—3, q) of order n,
and we characterize extremal caterpillar graphs for three cases: ¢ =p, ¢=n—-—p—0—3

and ¢ = b, for any b € {1,...,n — 6} fixed.

2 Preliminaries

In this paper we deal with undirected simple graphs. For a graph G the vertex set is
denoted by V(G) and the edge set by E(G) and |V(G)] is the order of G. The edges
of G denoted by 4j, where 7 and j are the end-vertices of the edge. When ij € E(G)
we say that the vertices i and j are adjacent and also that ¢ is a neighbor of j (and
conversely). The neighborhood of a vertex v € V(G) is the set of its neighbors and
is denoted by Ng(v) = {w : vw € E(G)}. The degree of v, denoted by d,, is the
cardinality of Ng(v). The vertices ¢ with 0 degree are called isolated vertices. Two
graphs G and H are isomorphic if there is a bijection ¢ : V(G) — V(H) such that
ij € E(G) if and only if ¢(i)y(j) € E(H). This binary relation between graphs is
denoted by G = H. The complement graph of a graph G, denoted by G, is such that
V(G) = V(G) and E(G) = {ij : ij € E(G)}. The complete graph of order n, denote by
K, is a graph where every pair of vertices are adjacent. The vertices of the complement
of K, are all isolated. The adjacency matrix of a graph G of order n = |V(G)| is n x n
symmetric matrix Ag = (a;;) such that a;; = 1 if ij € E(G) and zero otherwise. The
spectrum of a matrix M is the multiset of its eigenvalues denoted by ojs. In particular,
the spectrum of the adjacency matrix of a graph G, also called the spectrum of G, is
(@) = {,\Q’”’“], ,\gm?], o )\,[gmsl}, where m; stands for the multiplicity of )\;, for 1 < i < s.

A path with r vertices, denoted by P,, is a sequence of vertices vy, v, . .., v, such that
each vertex is adjacent to the next, that is viv;41 € E(G) fori=1,...,7 —1. A cycle C,
is a closed path with r edges, that is, such that v,.; = v;. A tree is a connected acyclic
graph; a star of order 7, denoted by S, 1, is a tree with a central vertex with degree r and

all the other r vertices are pendent. A caterpillar is a tree such that removing all pendent
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vertices give rise to a path with at least two vertices. In particular, T'(py,. .., p,) denotes
a caterpillar obtained by attaching the central vertex of a star Sy, 11 to the i-th vertex of
P.,i=1,...r. The order of a caterpillaris n =r+3_._, p;.

A caterpillar T'(py, . . ., pr) can also be seen as the H-join H[G1,...,G,, Gyi1, ..., G,
K

G
where, for 1 <i <, ! —
’ - G1+T KpL

that is, a path P, with one pendant vertex attached to each vertex of the path.

1R

and H is the caterpillar of order 2r, T'(1,...,1),

The null square and the identity matrices of order n are denoted by O, and I,,

respectively.

3 The Randié¢ spectrum of a caterpillar viewed as H-
join

In this section, we consider a caterpillar as the H-join of a family of graphs (see [4]),

T(py,...,p,) = HK,...,K1,K,,,...,K, ], where H is the caterpillar of order 2r,

T(1,1,...,1), that is, a path P, with a pendant edge attached to each vertex of the path.

The following result, given in [1], characterizes Randi¢ spectra of H-join graphs.

Theorem 3.1 [1] Let H be a graph of order k. Let G; be a d;-regular graph of order
nj, with d; >0, n; > 1, forj=1,....k and G = H[G4,...,Gy]. Let Rg be the Randié
matriz of G. Then,

k
A
ORg _Urkujul{Nj-Fdj :A€o(Ag,) \{dj}}7

where Ny = > n;, forj=1,2,...k,

iENH(5)
ﬁ P12 e Pi(k-1) Pk
P12 ﬁ s P2(k—1) P2k
I = . . . . .
di—1
Plk=1)  P2(k=1) -+ N 4dp, Pl-Dk
Pk P2k S Pk—1)k ﬁ

and
/i
(Ni + d)(N; +dj)’
with 0;; = 1 if ij € E(H), and zero otherwise, fori=1...,k—1and j=i+1,... k.

pij = 0ij

Remark 1 It is clear that the Randi¢ matrix of a dj-regular graph G; is Rg, = d%Ag]

if d; > 0 and zero otherwise. On the other hand, if d; = 0, for j = 1,...,k, then

T = QALQ, with Q = diag{\/]’t:{, o \/Ni}
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Since K; and K, for i = 1,...,r, are O-regular graphs, we have the following result,

which plays an important role in this paper:

Corollary 3.1 Let H =T(1,1,...,1) be the caterpillar of order 2r, r > 2, obtained from
a path P, and a pendent vertex attached to each vertex of the path LetT=T(p1,...,pr) =
H[Ky,..., K1, K, K,,] be a caterpillar of order n =r + ZP@ Then,

i=1
Opy = o1y, U {O[ZIZI@,,M} _

As a consequence, in order to obtain the spectrum of the Randi¢ matrix of T'(py, . . ., p,)

we focus our attention on the spectrum of I'y,. Firstly, note that

/ / 4! Dr Q O,
= ding { 2V N Nay } {O QJ
_ /i /i T D1 Pr
Ql_dlag{ N17"'7 Nr}v QQ_dlag{ NT+17"'7 Nzr}7 (2)

Therefore, we can write

with

B (9 O[4p L1[ O] [A B
R O | A1 o R A
where
A= QlAprgl and B = 9192. (4)

It is worth to recall a famous determinantal identity presented by Issa Schur in 1917 [12]
referred as the formula of Schur by Gantmacher [6, p. 46]. In the sixties, the term Schur

complement was introduced by Emilie Haynsworth [9] jointly with the following notation.
A

C D
and A is nonsingular, the Schur complement of A in M is defined as

Considering a square matrix M = , where A and D are square block matrices

MJA=D—CA™'B.

For more details see [10]. Using the above notation, the next theorem states the Schur
determinantal identity. For the readers convenience, the very short proof presented in [10]

is reproduced.

Theorem 3.2 [12] Let M = A B} , where A and D are square submatrices of order

C D
m and n, respectively. If A is nonsingular then

det(M) = det(A) - det(M/A).
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Proof It is immediate that
A Bl I, 0f|A B
C D| |CA™ I,|]|0 D-CA'B|"
The identity follows by taking the determinant of both sides. |
Similarly, if D is nonsingular then
det(M) = det(A — BD7'C) - det(D). (5)

A B I,, BD™'1[A—-BD'C 0
Note that {C D] =10 I, } { c D]

From (5), we may establish the following spectral characterization for the matrix Iy,

which will play an important role in getting our main results:

Theorem 3.3 Let H =T(1,1,...,1) be the caterpillar of order 2r, r > 2 and let Ty, be
partitioned as in (3). Then, X\ € or,, if and only if

det(\I, — AA — B?) =0,
where A and B are defined as in (4).
Proof The characteristic polynomial of I'y, is

M, —A —-B
pph()\) = dﬁt()\]w - FQT) = det (|: _B )\IT:|) .

Thus, applying (5), we obtain

pro,(A) = det(AI,) - det (/\IT ~A-B GI) B)

= X\ -det (G) (NI, — MA — BQ))

N G) Sdet (N1, — M — B?) = det (NI, — \MA — BY).

4 Extremal caterpillar graphs for Randi¢ energy

In this section, we obtain the extremal graphs in the family of caterpillars, for r = 2, 3.
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4.1 Extremal caterpillar graphs T(p.n—p—2), p=1,...,[2%2].

1 2

Theorem 4.1 Let T, =T(p,n—p—2), p=1,...,[52] be a caterpillar of order n > 4.
Then
2(n—3) 4

< RE(T,) < 4——.
n—2 s RE(L) < n

2+
The lower bound is attained if and only if p = 1 (the graph obtained by attaching a pendent
vertex to a pendent vertex of S,—1) and the upper bound is attained if and only if T, has

even order and p = %

Proof By Theorem 3.3, the eigenvalues of oy, are the zeros of the polynomial det(\2I, —

AA — B?) = 0 where (see (4)),

A= (1) v (p+1)(1()"_p_1) and B = V\’(’/)% \/%] .
(p+1)(n—p—1) Vn—p—1
So,
A2 — 2 ) S
det(\, —AA—BY) = det| 0 V)
N e ) w1

_ S 2 n—p—2\ A2
= (A A
p+1 n—p—1 p+1l)(n—p-1)

= m«lﬂrl)(n—p—1))\2—p(n—p—2)).

_ p(n—p—2)
"“‘{i (p+1><np1>’ﬂ}‘

p(n—p—2)
p+D(n—-p-1)

forallp=1,...,[%2] For 1 <z < |%2], let f(z) = mfgﬁ:ﬁm Then,

Consequently,

and

RE(T) =3 (T =2 42

, 7(n—1)(n—2(x+1))
fle) = (x4+1)2(n—a—1)2 2 0.
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if and only if 1 <z < "T’Z Therefore, f is an increasing function in this interval, and

consequently,

2(n—3)

2
+ n—2

< RE(TP) < RE(TL"T*J)v

forall p=1,..., L";ZJ. Finally, if n is even,

)

n—2 4
RE(TL%J):RE(T%):2+2( - ): -

and if n is odd,

n—3 4
RE(TLnZQJ)RE(TansHJ)RE(Tnzs)Q-i-?( n+2> <4-—-—

for all n > 3. |

4.2 Extremal caterpillar graphs T(p7 n—p—q-—3, q),
pP;q € {177n_5}

1 2 3
— — —
P n—p-—q—3 q

For this class of caterpillars,

Q0 di 1 1 1
= dlag ) )
! & o+ T yn—p—q—1"Vq+1

and
Q= diag { VB, V/n—p— a3V}

Therefore (see (2), (3) and (4))

A B
e = QA0 = [B ()3} i
with
0 . — 0
U n—p—q-1
A=0ApQy = D S 0 1
= 24P T | T pg 1 ; Va1
0 NNt 0
and /F
P
7T 0 0
B=MQ=| 0 Y=g 0
0 0 Vi

Vat+1
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By Theorem 3.3, as

2 b A
AT~ P + 1 o Vp+1ly/n—p—q—1 0
N3 — M —-B>= | _ A A2 _ nmp=g=3  _ A ,
Vp+1y/n—p—q—1 —q—1 q«gl n—g—q—l
v e S

det(A\2I3 — MA — B?) =
/\2 n—p—q—3 _ A
()\2 ) npa 1 q+21 n_qp_q_l
T Varva—p—a-T NM-h
— A _ A
( )dct VpHIvin—p—q—1 ViV
p+1 Vn—-p—q—1 0 oY na
P e n=p=¢=3\( o ¢ \_ _ N
I)+1 n—p—q-—1 q+1 (g+)(n—p—q—1)

)\Z,L
(p+1)(n—p— qfl) q+1

R+ -p) [(MPn—p—g-1D—(n-p—g—=3) (N(g+1)—q) - N] =X (N(g+1)—q)
B (p+Dg+D)(n-p-g-1) ’

+

After some algebraic manipulation on the above expression, we get that

1

det(\*f; —AA = B?) = P+D@+Dn-p—q-1)

(p+D(g+D(n—p—g—1)A°

—n=p—q-2)(@2p+1)+p)+ @+ Dg+Dn—p—g—1]\*
T lpaln—p—g-3) + (@ -p-q-2) (q<2p+1>+p)w—pq(n—p—q—3>}

(/\2*1)[<p+1)(11+1)(n*p*q*1)/\4*(n*p*qf2)(r1<2p+1)+p)/\2+pq(nfpqu3)]

N D@+ Dm—p-q-1)

— s 07 = ) [~ ) X0,

being
n(n,p,q) =@E+D@+n—-—p—qg-1),

Cn,p,q) =Mm—p—q—2)(q2p+1)+p) (6)

x(n,p,q) =pgn—p—q-—3).
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When obtaining the roots of the biquadratic equation
n(n, p, A" = ¢(n,p, @)\ + x(n,p,q) = 0,
we determinate the roots of the equation det(A\2I3 — AA — B%) = 0, given by:

Ao = %1

N \/<<n7p,q)+¢<2<n7p,q)4n(n7p7q>x<n,p7q)
34 =
’ 2n(n, p,q)

N i\/( n,p,q) — /C2(n,p,q) — 4n(n,p, q)x(n,p,q)
56 = .
’ 277(71-,1)7 q)

Using the notation

a(np,q) = fra

_ x(n,p,q)
Y(n,pq) = "

Bn,p,q) = +/a*(n,p,q) = 7(n,p,q),
we get, for a general caterpillar T,,, = T'(p,n — 3 —p — q, ),

RE(T,) =2 (14 Valn,p.0) + Bnp.0) + Valnp.a) — Bpa) . (3)

In order to obtain the extreme graphs for certain subfamilies of caterpillar of the form
T(p,n—p—q—3,q), for n > 7, we consider ¢ as a function of  such that 1 < ¢(z) <n—5
for 1 < <n —>5 and define

f(z) = Va(z) + B(z) + Valz) - Ba), 9)
where a(x) := a(n,z,q(z)) and B(z) = /a?(x) — v(z) := B(n,z,q(z)) as in (7). There-
fore,

/ _ 1 [(d@+p @) | o) -F)
Flo) = 2<\/n¢(1) T 7L\/(y ’E)*‘(T))
_ 1 (f(l)(x’ + (Va(z) = B(z) — /a(z) +,3(m)),3’(z)>

2 ¥(z)

1 (fz(w)a’(%) - 2/3@):”@))
2 f@) V(@)

_ (@) (2 (2) — 20(2) +9'(x)
2f(z)/(@)
20/ () /y(x) + “/(ﬂf)'

2f(x)v/v(@)
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where, v(z) := y(n, z,q(x)). So,
f(x) >0 ifandonlyif A(z):=2d(z)y/y(z)++(x) > 0. (10)

Taking into account (6) and (7), it is easy to see that 0 < y(z) < 1, forall 1 <z < n-—b5.
Thus,

i If o/(x) >0 and +'(z) <0, forx €l C[l,n—>5], then by (10)

Y(z) < AMz) < 2d(x). (11)
iil. If /() <0 and +/(z) >0, forz €I C[l,n—>5], then by (10)

27/ (x) < Mz) < +(2). (12)

Next we characterize the extremal caterpillars T'(p,n — 2p — 3,¢) for three specific

cases: q=p,g=n—p—b—3and g=0, for any b € {1,...,n — 6} fixed.

4.2.1 Extremal graphs for the family of caterpillars T(p,b,n —p —b — 3)

1 2 3
—_— —_— —_—
p b n—p—b—3

Theorem 4.2 Let T, = T(p,b,n —p — b — 3) be a caterpillar of order n > 7, with
be{l,....,n—06} fitedandp=1,...,n—b—4. Then

REanngEuwngE(ijﬁo.

Proof Without loss of generality, we take 1 < p < L%j, since forp=1,....,n—b—4,
T, and T,,_,__3 are isomorphic graphs. Replacing ¢ by n—p—b—3in (8), and considering
the function f(z), as in (9), for 1 < @ < 2=2=3,

b+ D(n—b—1)(n—2z—-0b-23)

200+ 2)((z + )(n—z—b—2))"

o (x) =

sy b(n—b—2)(n—2x—b—3)
V@)= b+2)(z+1)2(n—z—b—2)%

we have both o/(z) > 0 and 7/(z) > 0 if and only if 1 < z < "”;”3. Thus, by (10), f

n—b—3
2

increases in the interval [1, | and the proof is complete.
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4.2.2 Extremal graphs for the family of caterpillar T(p,n — 2p — 3, p)

1 2 3
—_— —_— —_—
P n—2p—3 P

Theorem 4.3 Let T, = T(p,n — 2p — 3,p) be a caterpillar of order n > 7, with p =
L...,[%2]. Then
RE(T,) < RE(T,) < RE(T.),

where z is an integer number in I = [round(r), round(s)], with

r:%<2n—3— 2n(n—2)+3> and s==(2(n—-1)— 2n(n—1)).

1
2
Proof From (8), replacing q by p, consider (see (9)) f(x) for 1 < z < 2%, The derivatives
of a and y are
, 222 — (dn — )z +n? — 3n+2
o (z) = - -

(z+1)%2(n—22x —1)2

and
2z(22% — (4n — 6)z +n? — 4n + 3)
(z+1)3(n—2x—1)2
thus, we have o/(z) > 0 if only if 222 — (4n — 4)x + n? — 3n + 2 > 0 which occurs for
x < sy 0r x> 5y with 10 = % (2(n —1)F2n(n — 1)) .
Similarly, 7/(z) > 0 if only if (22? — (4n — 6)z + n? — 4n + 3) > 0, that is, for

v (x) =

0<z<riorez>rywithr, = % <2n—3:|: V2n(n —2) +3) .

We have 1 < 71 < 51 < 5% < ry,s5. Therefore (see (10), (11) and (12)), f in-

creases in the interval [1, 7] and decreases in [s1, %5%]. By Bolzano’s Theorem, there
exists Z € (ry,s1) such that f'(z) = 0. Since s; —r; < 0.5, we take z = round(z) €
[round(r), round(s)], where r = r; and s = s;. Finally, f(1) < f(%3), so f(1) is the

minimum of this function. [ |

Example 1 A table with some values for RE(T,_1), RE(T,), RE(T,+1) and extremal
caterpillars T'(p,n — 3 — 2p,p) are presented below.

n r s z RE(T,1) RE(T.) RE(T.1) extremal graph
19 4.762261 4.923303 5 5.388854 5.406881 5.363498 7(5,6,5)
21 5.349028 5.508623 5 5.421848 5.458735 5.455208 7T(5,8,5)

35 9.453171 9.607378 10 5.672191 5.672395 5.662869  7°(10,12,10)
50 13.84816 14.000000 14 5.768798 5.770057 5.768229  T'(14,19,14)
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4.2.3 Extremal graphs of the family of caterpillars T(p,n —p —b — 3,b)

1 2 3
——— ——— ————
P n—p—b—3 b

Theorem 4.4 Let T, = T(p,n —p — b — 3,b) be a caterpillar of order n > 7, with
be{l,...,n—6} fitedandp=1,...,n—b—4. Then,

RE(T,—-4) < RE(T,) < RE(T), where z € I = [round(r), round(s)],

with

7‘:*(nfbfl)+\/2(”*b*1)(”*b’2) (13)

and

1

5= g(_ (b+1)(n—0b)—1)+ \/(b+ Dn—b-1)((2b+1)(n—1) — 252)>. (14)

Proof Replacing ¢ by b in (8), we define f(z) as in (9) for 1 < 2 < n—b—4. We compute

_ —ba? —2((b+1)(n—b) — D)z + (b+ 1)n? — (b+ 1)(2b+ 3)n + b(b + 2)? + 2

(@) 20+ D((@+ Do —z —b—1))’

V() = b(—22=2(n—b—Dz+n>—20b+2)n+ (b+3)(b+1))
‘ b+ 1) (@ +D)(n—z—-b-1) '

We have o/(z) > 0 if only if s; < 2 < sy with

S19 = %(— (b+1)(n—0)—1)F \/(b—i- Dn=b-1)((2b+ 1)(n—1) — 2b2)),

and 7/(z) > 0 if only if r; <z < ry with

T2 :—(n—b—l) FV2(n—b—1)(n—b—2).

We have 1 < 1y < s5 < n—b—4. So, for s = sy and r = ry, we get that (see (10), (11)
and (12)) f is increasing in [1,7] and decreasing in [s,n — b — 4]. Therefore, there exists
z € (r,s) such that f'(z) = 0. So, we take z = round(z) € I = [round(r), round(s)].
Furthermore, f(n —b—4) < f(1), which complets the proof. |
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Example 2 To obtain the mazimal Randié¢ energy caterpillar graphs T (p1, pa, p3) of order
n = 33, we apply Theorems 5, 6 and 7, for slight different values of b, shown in the
following table.

Theorem b r s z RE(T,)  extremal graph
4.2 12 9  5.653986727 7(9,12,9)
4.2 9 10 5.639354482  T7(10,9,11)

4.3 9 8.867059 9.021749
4.4 9 8.811947 9.031236
4.4 8 9.226495 9.469988
4.4 10 8.397368 8.597041

5.653986727 7(9,12,9)
5.653986727 T(9,12,9)
5.652375900 7(9,13,8)
5.651878107 T(8,12,10)

NeNolNoliNe}

Remark 2 In Theorem 4.4, we find a estimated interval
I = [round(r), round(s)],

where 7 and s are given in (13) and (14), respectively, which contains the value of z that
maximizes Randié¢ energy for the family of caterpillars T, = T(p,n —p —b—3,b), n > 7,
with b € {1,...,n— 6} fixed, for each p=1,...,n —b—4. In this case, we want to point
out that the interval I does not necessarily has range less than 1. In fact, that interval
have length less than 1 if and only if
g(n,0) =8(n+b—1)%(n—b—1)(n—b—2) — (3n> — 3bn — 9n + 2b + 6)> > 0,

and this function g(n,d) can be written as:

2
gn,b) = S(n+b—12n—b—1)(n—b—2)— (3(n “1)(n—-2) - (30— 2)b) .

Sincen —b—1>n—0b—2> 0 then g(n,b) > h(n,b), with

h(n,b) = 8(n+b—1)%(n—b—2)*— (3(n —1)(n—2)— (3n— 2)b>2

(VB +b—1)(n—b=2) = 3(n = 1)(n — 2) + (3n — 2)b)
x (VB(n+b=1)(n—b—2)+3(n—1)(n—2) - (3n—2).
For each n, we find the values of b such that
Ay = VBn+b—1)(n-b—2)—3n—1)(n—2)+ 3n—2)b> 0, and,
Ay = VBn+b—1)(n-b—-2)+3(n—1)(n-2)—(3n—-2)b>0.
Taking into account that 3n — 2 > 3(n — 1) > 0, then
Ay > VBn+b—1)n—-b—-2)—3n—1)(n—2)+3(n—1)b
— (VBr-6-v8m-1)n-b-2).
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Since

(3-8
V8

for such values of b, A; > 0. Now, let us show that

VB —(3—VR)(n—1)>0&b> (n — 1) ~ 0.06066(n — 1),

Ay =V8(n+b—1)(n—b—2)— (3n—2)b+3(n—1)(n—-2)>0.

From
n—1)(n—2
B2 43— 1)n—2)>0eb< D=2
3n—2
and
3(n—1 -2 : .
n—=6< $n=-DHn=-2) < 3n*—20n+12 < 3(n*—3n+2) < 6 < 1ln  (which is true),

3n—2
it follows that Ay >0, for 1 <b<n—6< W
From the above, for n > 7 and b € N such that 0.06066(n — 1) < b <n —6,

g(n,b) > h(n,b) = Ay Ay > 0.

Given n > 7, consider by, the smallest integer b > 1 such that g(n,b) > 0 and let

b* = 0.06066(n — 1). For different values of n, b* remains close to the exact value byn:

n bmin b*
20 1| 1.1525
30 21 1.7591
50 3129723
100 6 | 6.0053
500 30 | 30.269
1000 61 | 60.599
5000 | 303 | 303.24
10000 | 606 | 606.54
20000 | 1213 | 1213.1
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