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Abstract

The energy of a graph G, denoted by E(G), is defined as the sum of absolute

values of all eigenvalues of G. A graph of order n, whose energy is less than n,

i.e., E(G) < n, is said to be hypoenergetic. Graphs for which E(G) ≥ n are called

non-hypoenergetic. A graph of order n is said to be orderenergetic, if its energy and

its order are equal, i.e., E(G) = n. In this paper, we characterize non-hypoenergetic

graphs with nullity 2. It is proved that except two graphs, every connected graph

with nullity 2 is non-hypoenergetic.

1 Introduction

Let G be a simple graph with vertex set V (G) = {v1, . . . , vn} and edge set E(G). By

order and size of G, we mean the number of vertices and the number of edges of G,

respectively. We denote the order of G by |V (G)|. For any vertex v ∈ V (G), the open

neighborhood of v in G is NG(v) = {u ∈ V (G) : uv ∈ E(G)}. Also the degree of v in

G is just d(v) = |NG(v)|. Let S ⊆ V (G). By ⟨S⟩, we mean the subgraph of G induced

by S. The path and the cycle of order n are denoted by Pn and Cn, respectively. A
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graph is claw-free, if it has no induced subgraph isomorphic to K1,3. A complete bipartite

graph with part sizes m and n is denoted by Km,n. If m = n, then we say that Km,m is

balanced. A {1, 2}-subgraph of G is a subgraph which is a disjoint union of a matching

and a 2-regular subgraph of G. A {1, 2}-subgraph which is a spanning subgraph, is called

a {1, 2}-factor.

The adjacency matrix of G, A(G) = [aij], is an n × n matrix, where aij = 1 if

vivj ∈ E(G), and aij = 0, otherwise. Thus A(G) is a symmetric matrix and all eigenvalues

of A(G) are real. Let η(G), the nullity of G, denote the number of zero eigenvalues of

A(G). The energy of a graph G, E(G), is defined as the sum of absolute values of

eigenvalues of A(G), see [7].

Graphs of order n, satisfying the condition E(G) < n are named hypoenergetic and

their properties were studied in [9–11]. Graphs for which E(G) ≥ n are said to be non-

hypoenergetic. A graph is called orderenergetic, if its energy and its order are equal,

i.e., E(G) = n. Some basic properties of orderenergetic graphs were studied in [3]. The

authors showed that there are infinitely many connected orderenergetic graphs. They

proved that a graph having a {1, 2}-factor, is orderenergetic if and only if it is a disjoint

union of balanced complete bipartite graphs. Also it was established that there is no

orderenergetic graph with nullity 1. The concept of energy was extended by Nikiforov to

arbirary complex matrices and digraphs, [13]. In particular, in [2], the authors studied

hypoenergetic and non-hypoenergetic digraphs.

In this paper, we investigate some graphs whose energies exceed the number of vertices.

We prove that if a graph G, has a {1, 2}-subgraph of order n− 1, then E(G) > n, except

for Kr,r+1, r ≥ 1. It is shown that if K2,4 is an induced subgraph of a graph G such that

G \ V (K2,4) has a perfect matching and G has no component isomorphic to Kr,r+2, for

each r, then E(G) > n. It is also proved that if P3 is an induced subgraph of a graph G,

such that G\V (P3) has a perfect matching and G has no component isomorphic to Kr,r+1,

for each r, then E(G) > n. Using these results we show that if G is a claw-free graph

of order n, then E(G) > n, except for C4 and K1,2. Furthermore, it is proved that if the

nullity of a graph G of order n, is 1, then E(G) > n, except for K1,2. Also, we show that

except two graphs, every graph with nullity 2 is non-hypoenergetic. In particular, there

exist only two connected orderenergetic graphs with nullity 2. The following lemmas are

needed in the sequel.
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Lemma 1. [4] Let G be a graph and H1, . . . , Hk be its k vertex-disjoint induced subgraphs.

Then

E(G) ≥
k∑

i=1

E(Hi).

Lemma 2. [12] Let H be an induced subgraph of a graph G. Then E(H) ≤ E(G) and

equality holds if and only if E(G) = E(H),

Lemma 3. [3] Let G be a graph of order n. If G has a {1, 2}-factor, then E(G) ≥ n.

Equality holds if and only if G is a disjoint union of balanced complete bipartite graphs.

Lemma 4. [1, 3] If n is an odd integer, then E(Cn) ≥ n + 1. Moreover, for n ≥ 9,

E(Cn) ≥ n+ 2.

Lemma 5. [3] There is no connected orderenergetic graph with η = 1.

Lemma 6. [12] Let u be a pendent vertex of a graph G and v the vertex in G adjacent

to u. Then η(G) = η(G− u− v).

Lemma 7. [5] Let G be a connected claw-free graph. Then it contains a matching which

avoids at most one vertex.

2 Graphs whose energies exceed the number of ver-

tices

In this section, we investigate some graphs whose energies exceed the number of ver-

tices. Furthermore, we show that, except two graphs, every graph with nullity 2 is non-

hypoenergetic

Lemma 8. Let G be a graph of order n such that K2,4 is an induced subgraph of G and

G \ V (K2,4) has a perfect matching. If G has no component isomorphic to Kr,r+2 (for

each r), then E(G) > n.

Proof. Let M be a perfect matching of G\V (K2,4). Let r be the maximum number of P2-

components of M , such that the subgraph induced on V (K2,4) and these P2-components is

complete bipartite. With no loss of generality, one can assume that these P2-components

are e1, . . . , er. Let H be the subgraph induced on V (K2,4) and vertices of e1, . . . , er. (In

fact, H = K2+r,4+r.) Since H is not a component of G, there exists a P2-component of
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M , different from ei, 1 ≤ i ≤ r, say e, such that H is connected to e. We consider two

cases:

Case 1. The edge e is connected to K2,4. Let K be the subgraph induced on V (K2,4)

and endpoints of e. If K ̸= K3,5, then a computer search shows that E(K) > 8. Now,

since G \ V (K) has a perfect matching, by Lemmas 1 and 3, we find that

E(G) ≥ E(K) + E(G \ V (K)) > 8 + |V (G \ V (K))| > n,

as desired. If K = K3,5, then there exists some ej, 1 ≤ j ≤ r, such that the subgraph

induced on endpoints of e and ej is not C4. Now, let K ′ be the subgraph induced on

V (K2,4) and endpoints of e and ej. By a computer search one can find that E(K ′) > 10.

Now, a similar argument as above implies that E(G) > n.

Case 2. The edge e is connected to some ei, 1 ≤ i ≤ r and it is not connected to

K2,4. Let K
′′ be the subgraph induced on V (K2,4) and endpoints of e and ei. A computer

search shows that E(K ′′) > 10. Therefore as we did before E(G) > n. This completes the

proof.

Lemma 9. Let G be a graph of order n such that P3 is an induced subgraph of G and

G \ V (P3) has a perfect matching. If G has no component isomorphic to Kr,r+1 (for each

r), then E(G) > n.

Proof. Let M be a perfect matching of G \ V (P3). Let e1, . . . , er, r ≥ 1 be the maximum

number of P2-components ofM , such that the subgraph induced on V (P3) and the vertices

of these P2-components is complete bipartite. Let H be the subgraph induced on V (P3)

and vertices of e1, . . . , er. (In fact, H = Kr+1,r+2.) Since H is not a component of G,

there exists a P2-components of M , different from ei, 1 ≤ i ≤ r, say e, such that H is

connected to e. We consider two cases:

Case 1. The edge e is connected to P3. Let K be the subgraph induced on V (P3)

and endpoints of e. If K ̸= K2,3, then a computer search shows that E(K) ≥ 5.22. Now,

since G \ V (K) has a perfect matching, by Lemmas 1 and 3, we find that

E(G) ≥ E(K) + E(G \ V (K)) > 5 + |V (G \ V (K))| > n,

as desired. If K = K2,3, then there exists some ej, 1 ≤ j ≤ r, such that the subgraph

induced on endpoints of e and ej is not C4. Now, let K ′ be the subgraph induced on
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V (P3) and endpoints of e and ej. By a computer search one can find that E(K ′) ≥ 7.94.

Now, a similar argument as above implies that E(G) > n.

Case 2. The edge e is connected to some ei, 1 ≤ i ≤ r and it is not connected to P3.

Let K ′′ be the subgraph induced on V (P3) and end points of e and ei. A computer search

shows that E(K ′′) > 7.45. Hence as we did before E(G) > n.

Lemma 10. Let G be a graph of order n such that 2P3 = P3 ∪ P3 is an induced subgraph

of G and G\V (2P3) has a perfect matching. If G has no component isomorphic to Kr,r+1

(for each r), then E(G) > n.

Proof. Assume that W1 and W2 are P3-components of G. Let M be a perfect matching

of G \ V (W1 ∪W2). Let e1, . . . , er, r ≥ 1 be the maximum number of P2-components of

M , such that the subgraph H induced on V (W1) and vertices of e1, . . . , er is complete

bipartite. Since H is not a component of G, either H is connected to some P2-component

of M , say e, where e ̸= ei, 1 ≤ i ≤ r, or H is connected to W2. Two cases can be

considered:

Case 1. Assume that the subgraph H is connected to some P2-component e of M ,

where e is different from ei, 1 ≤ i ≤ r. Then the argument used in the proof of Lemma

9, implies that W1 is contained in a connected subgraph K of G, where K is of order 5

or 7 and E(K) > |V (K)|. As we stated in the proof of Lemma 9, if K is of order 5, then

E(K) ≥ 5.22 and if K is of order 7, then E(K) ≥ 7.45. First, suppose that K is of order

5. Now, since E(W2) = 2.82 and G \ [V (K) ∪ V (W2)] has a perfect matching, we obtain

E(G) ≥ E(K) + E(W2) + E(G \ [V (K) ∪ V (W2)]) ≥

5.22 + 2.82 + |V (G \ [V (K) ∪ V (W2)])| > n.

Next, assume that the order of K is 7. We have

E(G) ≥ E(K) + E(W2) + E(G \ [V (K) ∪ V (W2)]) ≥

7.45 + 2.82 + |V (G \ [V (K) ∪ V (W2)])| > n,

as desired.
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Case 2. Assume that the subgraph H is connected to W2. Then there exists some

ej, 1 ≤ j ≤ r, such that W2 is connected to ej. Let K ′ be the subgraph induced on

V (W1) ∪ V (W2) and endpoints of ej. A computer search shows that E(K ′) > 8. Now,

since G\V (K ′) has a perfect matching, we find that E(G) > n. This completes the proof.

Corollary 11. Let G be a connected graph of order n. If G has a {1, 2}-subgraph of order

n − 1, then E(G) > n, except for G = Kr,r+1, r ≥ 1. In particular, if the nullity of G is

1, then E(G) > n, except for K1,2.

Proof. Let H be a {1, 2}-subgraph of order n− 1. Let V (G) \ V (H) = {u}. First assume

that H contains at least one odd cycle, say C. One may assume that every odd cycle in

H is an induced odd cycle, because if we have an odd cycle with a chord, then there is a

chord which partitions the vertices of odd cycle into an induced odd cycle and some paths

of order 2. Furthermore, we can assume that H has no even cycle, because the vertex set

of every even cycle can be partitioned into disjoint copies of P2. Now, since ⟨V (H)⟩ is a
proper subgraph of G, by Lemmas 1, 2 and 4 we obtain

E(G) > E(⟨V (H)⟩) ≥ E(C) + E(⟨V (H) \ V (C)⟩) ≥ (|V (C)|+ 1) + |⟨V (H) \ V (C)⟩| ≥ n,

so we are done.

Next, suppose that every component of H is P2. Let vw be the P2-component of H,

such that v ∈ N(u). Let K = ⟨u, v, w⟩. If K = C3, then G has a {1, 2}-factor. Hence,

by Lemma 3, E(G) ≥ n. Note, that in the equality case, G should a balanced complete

bipartite graph, but this contradicts the existence of C3 in G. Thus E(G) > n. If K = P3,

then Lemma 9, implies that E(G) > n, as desired. In order to prove the last assertion, let

ϕ(G, x) =
∑n

i=0 cix
n−i be the characteristic polynomial of G. Since η(G) = 1, cn−1 ̸= 0.

Now, by Sachs Theorem [12, p. 7], G contains a {1, 2}-subgraph of order n − 1. Hence

the result follows from the previous part.

Remark 12. Note that Corollary 11, implies Lemma 5.

Corollary 13. If G is a connected claw-free graph of order n, then E(G) > n, except for

K1,2 and C4.
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Proof. Let G be a claw-free graph of order n. Then by Lemma 7, either G has a {1, 2}-
factor, or it has a {1, 2}-subgraph of order n−1. First, assume that G has a {1, 2}-factor,
then by Lemma 3, E(G) ≥ n. If the equality holds, then G is a balanced complete

bipartite graph. However, since G is claw-free, this is only possible if G = C4. Hence

E(G) > n, except for C4. Next, suppose that G has a {1, 2}-subgraph of order n − 1.

Then by Corollary 11, E(G) > n, except for K1,2. So we are done.

Now, we are in a position to state the main theorem of this section.

Theorem 14. Let G be a connected graph of order n with nullity 2. If G ̸∈ {K1,3, C4, G1, G2},
then E(G) > n. In particular, C4 and Graph G1 are the only orderenergetic graphs with

nullity 2.

G1 G2

Proof. Let ϕ(G, x) =
∑n

i=0 cix
n−i be the characteristic polynomial of G. Since η(G) = 2,

cn−2 ̸= 0. Now, by Sachs Theorem, G contains a {1, 2}-subgraph of order n − 2, say H.

Let V (G) \ V (H) = {u, v}. Note that if u and v are adjacent, then G has a {1, 2}-factor.
Hence by Lemma 3, E(G) ≥ n. However, if E(G) = n, then G is a balanced complete

bipartite graph. But the only balanced complete bipartite graph with nullity 2 is C4,

which contradicts the assumption. Therefore E(G) > n. Hence in the following we may

assume that u and v are not adjacent.

Case 1. Assume that H contains at least one induced odd cycle. Let C be a cycle-

component of H. First, suppose that at least one of the u or v is adjacent to C. Then it is

easy to see that G has a {1, 2}-subgraph of order n− 1. Now, by Corollary 11, E(G) > n.

(Note that since η = 2, G is not isomorphic to Kr,r+1, for some r.) Next assume that

both u and v are adjacent to the same P2 component of H, say xy. Let K = ⟨u, v, x, y⟩.
Note that if K has a perfect matching, then G has a {1, 2}-factor and a similar augment

as above yields that E(G) > n. So we may exclude subgraphs K with a perfect matching.

It follows that K = K1,3. Now, since G \ (V (K) ∪ V (C)) has a perfect matching and

E(K) = 3.46, using Lemmas 1, 3 and 4 we have:

E(G) ≥ E(K) + E(C) + E(G \ [V (K) ∪ V (C)]) ≥
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(|V (K)| − 0.54) + (|V (C)|+ 1) + |V (G \ [V (K) ∪ V (C)]| > n.

Finally, suppose that u and v are adjacent to different P2-components of H, say wz

and rs, respectively. Let u ∈ N(w) and v ∈ N(r). Let N1 = ⟨u,w, z⟩ and N2 = ⟨v, r, s⟩.
We note that if N1 or N2 is C3, then G has a {1, 2}-subgraph of order n − 1. Hence by

Corollary 11, E(G) > n. So we let N1 = N2 = P3. We have E(P3) = 2.82. Now, by

Lemmas 1, 3 and 4 we obtain:

E(G) ≥ E(C) + E(N1) + E(N2) + E(G \ [V (C) ∪ V (N1) ∪ V (N2)]) ≥

(|V (C)|+1)+(|V (N1)|−0.18)+(|V (N2)|−0.18)+ |V (G\ [V (C)∪V (N1)∪V (N2)])| > n,

as desired.

Case 2. Assume that every component of H is P2. Note that this is only possible if

n is even. We consider three cases:

Subcase 2.1. If u and v are adjacent to different vertices of a P2-component of H,

then G has a {1, 2}-factor. So E(G) > n.

Subcase 2.2. If both u and v are adjacent to one vertex of a P2-component of H,

say xy, then let K = ⟨u, v, x, y⟩. We have K = K1,3. Let x be the central vertex of

K = K1,3 and L = G \ V (K). Clearly, L has a perfect matching, say M . Two cases can

be considered:

(a) Assume that u, v and y are pendent vertices of G. First note that, by Lemma 6,

η(G−u−x) = 2. Clearly, G−u−x = 2K1∪L. Hence η(L) = 0. Now, since G is connected,

there exists a P2-component of M , say ab, such that a ∈ N(x). Let W = ⟨a, b, u, v, x, y⟩.
A computer search shows that if W is not Graph (a), then E(W ) > 6. Note that the

nullity of Graph (a) is 2 and its energy is 5.81.

(a)

u

v

x

y

a

b
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So if W is not Graph (a), then since G \ V (W ) has a perfect matching, we obtain

E(G) ≥ E(W ) + E(G \ V (W )) > 6 + (n− 6) > n.

If W is Graph (a), then there exists a P2-component of M , say cd such that c or d is

adjacent to some vertex of W different from u, v and y. Let W ′ = ⟨V (W ), c, d⟩. We

observed that except Graphs (b) and (c), E(W ′) > 8. This implies that E(G) > n.

(b)

u

v

x

y

a

b

c

d
(c)

u

v

x

y

a

b

c

d

If W ′ is one of the Graphs (b) or (c), then we note that C4 is a subgraph of L. But

since η(L) = 0, C4 is not a component of L. Let N be the component of L which contains

C4. Clearly, N is not balanced complete bipartite, otherwise η(L) ≥ 2. Moreover, N has

a perfect matching, say M1. Let M ′ be a proper subset of M1, such that the subgraph

N ′ = ⟨V (M ′)⟩ is the balanced complete bipartite subgraph of N of maximum order.

Since C4 is a subgraph of N , the order of N ′ is at least 4. Now, since N is connected,

there exists a P2-component of M1 \ M ′, say rs, such that N ′ is connected to rs. This

means that there is a P2-component of M ′, say ef such that the subgraph ⟨e, f, r, s⟩ is

connected. Now, if ⟨e, f, r, s⟩ ̸= K2,2, then let gh ∈ M ′ \ {ef} be arbitrary and consider

N1 = ⟨e, f, g, h, r, s⟩ (Note that since the order of N ′ is at least 4, the edge gh exists). A

computer search shows that E(N1) ≥ 6.63. If ⟨e, f, r, s⟩ = K2,2, then let gh ∈ M ′ \ {ef}
such that ⟨g, h, r, s⟩ ≠ K2,2. Note that gh exists, otherwise ⟨V (N ′), r, s⟩ is a balanced

complete bipartite subgraph of N whose order is greater than N ′, a contradiction. Now,

consider the subgraph N2 = ⟨e, f, g, h, r, s⟩. We observed that E(N2) ≥ 6.92. Thus for

i = 1, 2 we have

E(G) ≥ E(K) + E(Ni) + E(G \ [V (K) ∪ V (Ni)]).

Since G \ [V (K) ∪ V (Ni)] has a perfect matching, we obtain

E(G) ≥ 3.46 + 6.63 + |V (G \ [V (K) ∪ V (Ni)])| > n.
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(b) Suppose that at least one of the vertices u, v and y is not a pendent vertex of G,

say u. We remind that the subgraph K = ⟨u, v, x, y⟩ is K1,3 and L = G \ V (K) has a

perfect matching, M . Now, since d(u) > 1 and v, y ̸∈ N(u), there exists a P2-component

wz of M such that w ∈ N(u). Let W = ⟨u, v, x, y, w, z⟩. Again we exclude subgraphs W

with a perfect matching. Now, a computer search shows that exceptW = K2,4, E(W ) > 6,

which implies that E(G) > n. So assume that W = K2,4. Clearly, G\V (W ) has a perfect

matching. Now, Lemma 8, yields that E(G) > n.

Subcase 2.3. Suppose that there exist P2-components xy and wz of H, such that

x ∈ N(u) and w ∈ N(v). Let W = ⟨u, v, x, y, w, z⟩. As we discussed in the previous

subcase, we can exclude subgraphs W with a perfect matching. Now, a computer search

shows that except 2P3, K2,4 and the Graph (d), E(W ) > 6, which implies that E(G) > n:

(d)

Note that Graph (d), is orderenergetic and has nullity 2. Assume that n > 6. We

consider three cases:

(a) If W is Graph (d), then since G is connected, there exists a P2-component of

H \ V (W ), say rs, such that r or s is adjacent to some vertex of W . Now, consider

the subgraph ⟨V (W ), r, s⟩. A computer search shows that the energy of this subgraph is

greater that 8. Consequently, E(G) > n.

(b) If W = K2,4, then by Lemma 8 we find that E(G) > n.

(c) If W = 2P3, then Lemma 10 implies that E(G) > n. The proof is complete.
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(Eds.), Selected Topics on Applications of Graph Spectra, Math. Inst., Belgrade, 2011,

113–135.

[10] I. Gutman, X. Li, Y. Shi, J. Zhang, Hypoenergetic trees, MATCH Commun. Math.

Comput. Chem. 60 (2008) 415–426.
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