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Abstract

A general graph operation is defined and some of its applications are given in this
paper. The adjacency spectrum of any graph generated by this operation is given. A
method for generating integral graphs using this operation is discussed. Correspond-
ing to any given graph, we can generate an infinite sequence of pair of equienergetic
non-cospectral graphs using this graph operation. Given an orderenergetic graph, it
is shown that we can construct two different sequences of orderenergetic graphs. A
condition for generating orderenergetic graphs from non-orderenergetic graphs are
also derived. This method of constructing connected orderenergetic graphs solves
one of the open problem stated in the paper by Akbari et al.(2020).

1 Introduction

Consider a graph G = (V,E), where V is the vertex set and E is the edge set. The order

of this graph is n = |V |. Let AG denotes the adjacency matrix of the graph, which is a

symmetric matrix with binary entries. The ordinary energy of a graph G is defined to

be the sum of the absolute value of the eigenvalues of the adjacency matrix AG, which is

denoted by EG [9]. Let λ1, λ2, · · · , λn are the eigenvalues of A, then

EG =
n∑

i=1

|λi| (1)

Graphs can be classified according to their energies. An orderenergetic graph is defined

to be graph G with EG = n [1]. If EG < n, then such a graph is called hypoenergetic
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graph [10] and if EG > 2n − 2, such graphs are called hyperenergetic graph [8]. The

borderenergetic graphs are having EG = 2n−2 [5]. Equienergetic graphs are those graphs

with same order having equal energy [13]. If these are having same spectrum then they

are called cospectral graphs, otherwise non-cospectral. Several studies and applications

of these different types of graphs can found in [3,4,7,10,11] and references therein, except

orderenergetic graphs

Orderenergetic graphs are recently defined in [1] and hence related studies are in the

beginning stage in the literature. In [1] the authors have shown that the elements in

the family of complete tripartite graphs Kp,p,6p are orderenergetic graphs where p is any

positive integer. In addition to this, all the balanced complete bipartite graphs Kp,p are

also orderenergetic graphs. These are the only known classes of orderenergetic graphs.

In [1] it is also shown that the connected graph obtained by taking the direct product

of any two orderenergetic graphs with orders m and n, one of which is a non-bipartite

graph, will be also a connected orderenergetic graph with order mn. They have shown

that there are only nine orderenergetic graphs up to order ten [1], using computer search.

They stated an open problem regarding construction of new orderenergetic graphs. A

new method for generating orderenergetic graphs and equienergetic graphs are presented

in this paper.

We define a general graph operation in the next section which produces new graphs

from a given graph. The spectrum of these new graphs can be computed from the spec-

trum of the given graph and this is given in third section. As an application of this

graph operation we can construct several infinite sequences of integral graphs, which are

graphs with all integer eigenvalues. This operation is also used to find out several pairs of

equienergetic non-spectral graphs in two different ways. It is shown that starting with any

given graph we can generate an infinite sequence of pair of equienergetic non-cospectral

graphs. Another important application of the proposed graph operation is in the genera-

tion of several sequences of orderenergetic graphs. It is also shown that we can generate

orderenergetic graphs even from non-orderenergetic graphs by means of the this general

graph operation.
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2 A general graph operation

Let G be a graph with order n and number of edges m. Take p copies of G, denoted

by Gi, for 1 ≤ i ≤ p, and take nq number of isolated vertices for some positive integer

q. Name the n vertices of Gi as Vi = {vi1, vi2, · · · , vin}, for 1 ≤ i ≤ p. Let the isolated

vertices be named as {ujk}, where 1 ≤ j ≤ q and 1 ≤ k ≤ n. Then construct a new graph

H from the graphs {Gi} and the isolated vertices {ujk} as follows.

1. The vertex set of H is the union of the vertices in Gi and the isolated vertices {ujk}.

2. The edge set of H contains all the edges in Gi’s . In addition to these edges, the

following two types edges will be added in the edge set of H. If vij is adjacent to

vik in Gi for 1 ≤ i ≤ p, then

• add the edges {vij, vlk} and {vik, vlj} for all 1 ≤ l ≤ n and l ̸= i, i.e., add edges

from vij to every kth vertex in Gl for l ̸= i and from vik to every jth vertex in

Gl for l ̸= i.

• add the edges {vij, ulk} and {vik, ulj} for all 1 ≤ l ≤ q.

The total number of vertices in the derived graph H will be n(p + q) and the total

number of edges will be mp(p + 2q). The above graph construction is illustrated using

two examples. The graph H obtained from the complete graph on two vertices K2 with

p = 2 and q = 3 is shown as the first graph given in figure 1. For the second example, H

is constructed from the path of length 3 and taking p = q = 2 and it is the second graph

given in figure 1.
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Figure 1. Graphs constructed using the graph operation defined in section 2. The
first graph is obtained from two copies of K2 and 6 isolated vertices.
Second graph is obtained from two copies of path of length two(P3), and
6 isolated vertices.
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3 Spectrum of the graph constructed

The main focus in this paper is to study the spectrum of the graphs constructed using the

operation defined above. Spectrum of any graph is needed to find the energy of a graph.

Since the graph H is derived from a graph G, it will be better to derive the spectrum of it

in terms of the spectrum of G. For finding the spectrum of a graph we need to represent

the graph using its adjacency matrix. It is not hard to see that the adjacency matrix of

the new graph H derived from the defined operations is given by the following Kronecker

product

AH = Jq
p ⊗ AG, (2)

where AG is the adjacency matrix of the graph G. Here, Jq
p is a square matrix of order

p+ q, whose block matrix representation is given by

Jq
p =

(
Jp Jpq
Jqp 0

)
(3)

where Jpq represents the all one matrix of order p × q, Jp represents the all one square

matrix of order p× p and 0 represents a zero matrix.

Before giving the statement of the main theorem, we need to state some known results

from theory of matrices [6, 12].

Lemma 1. If A and D are square matrices(need not be same order) and B and C are

matrices with compatible orders, then the determinant of the following block matrix is

given by

Det

(
A B
C D

)
= Det (D)Det

(
A−BD−1C

)
, (4)

provided D−1 exists.

Lemma 2. Let A is an rth order square matrix with eigenvalues {αi}, 1 ≤ i ≤ r and B

is an sth order square matrix with eigenvalues {βi}, 1 ≤ i ≤ s, then the eigenvalues of the

square matrix A ⊗ B of order rs is given by all possible products {αiβj}, for 1 ≤ i ≤ r

and 1 ≤ j ≤ s, which is rs in number.

Lemma 3. If B = [bij] is a qth order square matrix, then

JpqBJqp =

(
q∑

i=1

q∑

j=1

bij

)
Jp (5)

Also,

Det (ωIp − Jp) = ωn−1 (ω − p) (6)
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Now, we state the main theorem in this paper.

Theorem 1. If G is a graph of order n whose non-zero eigenvalues are given by {λi}, 1 ≤
i ≤ r, for some r ≤ n, then the non-zero eigenvalues of the graph H are given by

{
1

2

(
p±

√
p(p+ 4q)

)
λi

}
(7)

for 1 ≤ i ≤ r, which are 2r in number. Also, zero is an eigenvalue of H with multiplicity

n(p+ q)− 2r.

Proof. Let AG and AH are the adjacency matrices of the graphs G and H respectively. It

is required to find out the eigenvalues of AH . First of all we compute the characteristic

polynomial of the matrix Jq
p and then apply the formula (2) and Lemma 2. Using equation

(3), lemma 1 and lemma 3, the characteristic polynomial of the matrix Jq
p is given by

fJq
p
(λ) = Det

(
λIp+q − Jq

p

)
= Det

(
λIp − Jp Jpq

Jqp λIq

)

= Det (λIq)Det
(
(λIp − Jp)− Jpq (λIq)

−1 Jqp
)

= λqDet

(
(λIp − Jp)−

1

λ
JpqIqJqp

)

= λqDet
(
(λIp − Jp)−

q

λ
Jp

)
= λqDet

(
λIp −

λ+ q

λ
Jp

)

= λq

(
λ+ q

λ

)p

Det

(
λ2

λ+ q
Ip − Jp

)
= λq

(
λ+ q

λ

)p(
λ2

λ+ q

)p−1(
λ2

λ+ q
− p

)

= λp+q−2
(
λ2 − λp− pq

)

So, the non-zero eigenvalues of the matrix Jq
p are 1

2

(
p±

√
p(p+ 4q)

)
and the eigenvalue

zero has multiplicity p+ q − 2. Then, from the equation (2) and the lemma 2 the theorem

follows.

4 Applications of the new graph operation

The graph H obtained from the operations defined in this paper from a given graph G is

denoted by

H = G
(q)
(p) (8)

and the graph G is called the seed graph. The adjacency matrix of this graph H is given

by equation (2).

We discuss several applications of the graph operation defined and its spectrum in this

section. Our next result characterize some of the graphs H which are integral graphs.

This gives an efficient way for generating integral graphs from known integral graphs.
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Theorem 2. Let G is an integral graph of order n. If p is not a perfect square number,

then the graph H is an integral graph when q = pr(r+1), for any non-negative integer r.

If p is a perfect square, then also the graph H is an integral graphs provided q = (s+ r)r

for any non-negative integer r, where p = s2.

Proof. Let G is an integral graph. Then from theorem 1, H is also an integral graph if

and only if 1
2

(
p±

√
p(p+ 4q)

)
are integers. This will happen only when p(p + 4q) is

a perfect square. We will consider two cases separately. In the first case let p is not a

perfect square. Then, to make p(p + 4q) a perfect square, let q = pf(r) where f(r) is

non-negative integer valued function. Then

p(p+ 4q) = p2 (1 + 4f(r)) (9)

The general integer valued function making this a perfect square is f(r) = r(r + 1), so

that

p(p+ 4q) = p2 (2r + 1)2 (10)

So the required value of q = pr(r + 1). Then the eigenvalues of J
pr(r+1)
p becomes p(r + 1)

and −pr, for any non-negative integer r. So, from theorem 1 it follows that the eigenvalues

of H are integers and so H is an integral graph if G is an integral graph.

In the second case, we assume that p is a perfect square and let p = s2 for some

positive integer s. Then to make p (p+ 4q) = s2(s2 +4q) a perfect square we need to put

q = r(s + r). Then p (p+ 4q) = s2 (s+ 2r)2. This is true for any non-negative integer

r. Then the eigenvalues of Jq
p = J

(s+r)r

s2 becomes s2 + sr and −sr, for any non-negative

integer r and p = s2. Hence, from lemma 2 and equation (2) it follows that the eigenvalues

of H are integers and H is an integral graph, provided G is an integral graph.

The next theorem gives a general method for generating orderenergetic graphs from a

given graph.

Theorem 3. Let G is any graph on n vertices with integral energy EG. If r is a non-

negative integer satisfying

EG =
n (r2 + r + 1)

2r + 1
, (11)

then the graph H = G
(q)
(p) with q = pr(r + 1) is always an orderenergetic graph for any

arbitrary positive integer p.
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Proof. Let r is a non-negative integer satisfying equation (11) where EG is the integral

energy of the graph G. Let AH be the adjacency matrix of the graph H with q = pr(r+1)

. Then it follows that EH = p(2r + 1)EG, using theorem 2. Now, using equation (11), we

have

EH = p(2r + 1)EG = np(r2 + r + 1) = n(p+ p(r(r + 1)) = n(p+ q), (12)

where n(p + q) is the order of the graph H. So the graph H is an orderenergetic graph.

Figure 2. Two non-orderenergetic graphs used for generating orderenergetic graphs
(see theorem 3 and note 2).

Corollary 1. If G is an orderenergetic graph on n vertices, then the sequence of graphs

G
(0)
(p) are also orderenergetic graphs with order pn for any positive integer p.

Proof. The result is clear from theorem 3 by letting r = 0 and noting that EG = n.

Corollary 2. If G is an orderenergetic graph on n vertices, then the sequence of graphs

G
(2p)
(p) are also orderenergetic graphs with order 3pn for any positive integer p.

Proof. The result follows from theorem 3 by letting r = 1 and noting that EG = n.

Note 2. It is clear from above corollaries that for any orderenergetic graph we can

generate two different sequences of orderenergetic graphs as a consequence of theorem

3. Then the natural question that arise is that whether we can generate orderenergetic

graphs from some non-orderenergetic graphs using this theorem 3 or not. Indeed it is

possible, which is illustrated using two examples here. Consider the two graphs with

order 10 given in figure 2. These graphs are equienergetic graphs with energy 14. Then

from theorem 3 we obtain the value of r = 2 and it is concluded that the sequence of

graphs G
(pr(r+1))
(p) = G

(6p)
(p) for each of the seed graphs given in figure 2 are all orderenergetic

graphs. So, we can generate orderenergetic graphs from non-orderenergetic graphs using
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theorem 3.

The next two corollaries gives two different ways to generate equienergetic graphs.

Corollary 3. Let G and Ĝ be a pair of equienergetic graphs, then the graphs G
(q)
(p) and

Ĝ
(q)
(p) are also pair of equienergetic graphs for any positive integer p.

Proof. The result follows from theorem 1 and equation (7).

Our next corollary gives an efficient way for constructing a sequence of pair of equiener-

getic graphs which are non-cospectral in general, from a given arbitrary graph. Also, if

the given graph is integral we are getting an infinite sequence of pair of equienergetic

non-cospectral integral graphs.

Corollary 4. Let G be any graph, then the pair of graphs G
(0)
(3p) and G

(2p)
(p) are non-

cospectral equienergetic graphs of same order, for any positive integer p. Moreover, if the

graph G is an integral graph, then all the pair of equienergetic graphs are also integral

graphs.

Proof. Let the non-zero eigenvalues of G are {λi} , 1 ≤ i ≤ r, for some r ≤ n and the

energy is EG. Then from theorem 1 it follows that the non-zero eigenvalues of G
(0)
(3p) and

G
(2p)
(p) are {3pλi} , 1 ≤ i ≤ r and {2pλi,−pλi} , 1 ≤ i ≤ r respectively. Hence the graphs

G
(0)
(3p) and G

(2p)
(p) are clearly non-cospectral and equienergetic with energy 3pEG. Finally, it

follows that if the graph G is an integral graph, then all these pair of graphs are integral

graphs.

5 Prime orderenergetic graphs

In [1] it is also shown that the elements in the family of complete tripartite graphs Kp,p,6p

are orderenergetic graphs where p is any positive integer. In addition to this, all the bal-

anced complete bipartite graphs Kp,p are also orderenergetic graphs. These are the known

classes of orderenergetic graphs of order 8p and 2p respectively. In [1] it is also shown

that the connected graph obtained by taking the direct product of any two orederener-

getic graphs with orders m and n, one of which is a non-bipartite graph, will be also a

connected orderenergetic graph with order mn. They also found that there are only nine

orderenergetic graphs up to order ten [1]. These graphs are tabulated below.
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Table 1. Table of orderenergetic graphs up to order 10

Order/EnergyNumber of
orderenergetic
Graphs

Graphs Non zero eigenvalues

2 1 K1,1 (orP2) {−1, 1}
4 1 K2,2 (C4or) {−2, 2}
6 2 K3,3

H1

{-3,3}

{-2,2,-
1,1}

8 4 K4,4

K1,1,6

H2

H3

{-4,4}

{4,-3,-
1}

{3,-2,-
2,1}

{-3,3,-
1,1}

10 1 K5,5 {−5, 5}

In this section we characterize certain family of ordenergetic graphs. A graph is said

to be prime orderenergetic graph if it is orderenergetic and it is not of the form G
(0)
(p) with

p > 1 or G
(2p)
(p) with p ≥ 1 for any orderenergetic graph G.

Theorem 4. The graphs K1,1, K1,1,6, H2 and H3 given in table 1 are prime orderenergetic

graphs and the graphs K2,2, K3,3 and H1 are not prime orderenergetic graphs.

Proof: First of all note that, if G is of order n, then G
(0)
(p) and G

(2p)
(p) are with orders np

and 3np respectively. Clearly K1,1 is the smallest orderenergetic graph, and so it is clearly

a prime orderenergetic graph. Since the order of K1,1,6 is 8, it is not prime orderenergetic

only if it is of the form G
(0)
(2) for a fourth order orderenergetic graph G or it is of the form

G
(0)
(4) for a second order orderenergetic graph G. But, the only fourth order orderenergetic

graph is G = K2,2 and the corresponding graph G
(0)
(2) is the graph K4,4. So, the first case
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is not possible. In the second case, for the second order orderenergetic graph G = K1,1,

the graph G
(0)
(4) is also K4,4. So it follows that K1,1,6 is a prime orderenergetic graph.

Similar to the proof of the graph K1,1,6, we can show that the orderenergetic graphs

H2 and H3 of order 8 in table 1 are also prime orderenergetic.

Now, consider the orderenergetic tree H1 of order 6 in the table. Clearly it is not a

prime orderenergetic graph as H1 = G
(2)
(1), where G = K1,1. It is also easy to see that

K2,2 = G
(0)
(2) and K3,3 = G

(0)
(3) where G = K1,1. So, they are also not prime orderenergetic

graphs.

If G is a prime orderenergetic graph, then from corollary 1 and corollary 2, there are

two sequence of orderenergetic graphsG
(0)
(p) andG

(2p)
(p) generated byG. Now, we characterize

the first sequence of orderenergetic graphs generated by the prime orderenergetic graph

K1,1. Before that we prove the following result for an orderenergetic bipartite graph.

Theorem 5. If G is an orderenergetic bipartite graph of order n, then all the graphs

Hm = G
(0)
(m) are also orderenergetic bipartite graphs with order mn.

Proof: Let G = (V,E) be a bipartite graph, where V = V1 ∪ V2 with |V1| = r, |V2| = s

and |V | = n = r + s. Then the adjacency matrix AG of this graph can be represented as

a block matrix given by

AG =

[
0 B
BT 0′

]
. (13)

Here, 0 is the zero square matrix with order r, B is the binary matrix of order r × s,

BT represents the transpose of the matrix B and 0′ is the zero square matrix of order s.

Since Jm and AG are square matrices, we have

Jm ⊗ AG = P (AG ⊗ Jm)P
T , (14)

where P is some permutation matrix [6, 14]. So, from equation (2), it follows that the

adjacency matrix of the graph Hm is

AHm =P (AG ⊗ Jm)P
T

=P

([
0 B
BT 0′

]
⊗ Jm

)
P T

=P

[
O B ⊗ Jm

BT ⊗ Jm O′

]
P T

=PAmP
T

(15)

where O and O′ are zero square matrices of order rm and sm respectively and

Am =

[
O B ⊗ Jm

BT ⊗ Jm O′

]
(16)
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is a binary matrix with order mn. It is clear from equation (16) and the fact that

transposition is distributive over Kronecker product, the graph Gm with adjacency matrix

Am is a bipartite graph of ordermn, with rm number of vertices in one set and sm number

of vertices in the second set. It follows that Hm is also a bipartite graph, since the graphs

Hm and Gm are isomorphic, as evident from equation (15). Hence, the sequence of graphs

Hm = G
(0)
(m) are orderenergetic bipartite graphs, if the graph G is orderenergetic bipartite

graph.

Now we can characterize the balanced complete bipartite graphs in the following the-

orem.

Theorem 6. The sequence of orderenergetic graphs G
(0)
(m) generated by the prime orderen-

ergetic graph G = K1,1 is the sequence of all orderenergetic balanced complete bipartite

graphs Km,m.

Proof: It follows from corollary 1 that the graphs G
(0)
(m) are all orderenergetic balanced

bipartite graphs of order 2m. It is enough to show that they are complete bipartite graphs

also. From equation (16), it follows that the adjacency matrix of the graph G
(0)
(m) is

[
O Jm
Jm O

]
(17)

where O is the zero matrix of order m. Since Jm is the all one matrix, from equation (17)

it follows that the orderenergetic graphs G
(0)
(m) are the balanced complete bipartite graphs

of order 2m and hence G
(0)
(m) = Km,m.

The next theorem, which characterize the orderenergetic complete tripartite graphs

Kp,p,6p, can also be proved in the same way.

Theorem 7. The sequence of orderenergetic graphs G
(0)
(m) generated by the prime orderen-

ergetic graph G = K1,1,6 is the sequence of all orderenergetic complete tripartite graphs

Km,m,6m.

In the next theorem we show that orderenergetic graphs of certain orders are always

prime orderenergetic graphs, except for balanced complete bipartite graphs.

Theorem 8. Any orderenergetic graph of order 2p, apart from balanced complete bipartite

graph Kp,p, is a prime orderenergetic graph for any prime number p > 3.

Proof: Suppose order of the orderenergetic graph Ĝ is 2p and it is not a balanced

complete bipartite graph, where p is a prime number. Since the order of the graph G
(2m)
(m)
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is always a multiple of 3, Ĝ will not be appear in this sequence for any orderenergetic graph

G, since p > 3. Suppose Ĝ = G
(0)
(m) for some orderenergetic graph G. Then 2p = mn,

where n is the order of G. Then the possibilities are either m = 2 and n = p or m = p and

n = 2. The first case is impossible as there are no orderenergetic graph of odd order [2].

In the second case the Kronecker product will lead to the balanced complete bipartite

graph Kp,p. So, the original graph Ĝ cannot be expressed in the form G
(0)
(m) with m > 1

or G
(2m)
(m) with m ≥ 1 for any orderenergetic graph G. Hence, given any orderenergetic

graph Ĝ of order 2p, apart from balanced complete bipartite graph Kp,p, it is always prime

orderenergetic graph for any prime number p > 3.

Note 3. When p = 3, the only orderenergetic graph of order 2p = 6 is the tree H1

(excluding the balanced complete bipartite graph) given in table 1 and it is already shown

this is not a prime orderenergetic graph. As discussed in the earlier parts of this paper,

it is clear that there exist no orderenergetic graphs with order 2p, for the primes p = 2 or

p = 5, other than balanced complete bipartite graphs.

Since the problem of finding orderenergetic graphs with higher orders is a difficult

task, the question that naturally arise is that whether there exist orderenergetic graphs

of order 2p for other prime numbers or not. If there exist such graphs, then they are all

prime orderenergetic graphs by the above theorem. We have got a positive result for the

next prime p = 7 by a computer search. One of the prime orderenergetic graphs of order

14 is given in figure 3.

H4

Figure 3. Prime orederenergetic graph of order 14

From the various result discussed in this paper, we can conclude the following corollary

which gives the existence of orderenergetic graphs for various orders.
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Corollary 5. There exist orderenergetic graphs of order 6m, 8m and 14m for any positive

integer m, other than balanced complete bipartite graphs.
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