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Abstract

A graph G of order n is borderenergetic if it has the same energy as the complete graph

Kn. In this paper, we obtain the result that for any connected graph G, except for the

five graphs (one of order 5, three of order 6 and one of order 10), the line graph L(G) of

G is not borderenergetic. As a consequence, we get that if G is a borderenergetic graph,

then the line graph L(G) of G is not borderenergetic. In addition, we observe a relation

between the lower bound of the energy of the line graph L(G) of a borderenergetic graph

G and the minimum degree δ(G) of G.

1 Introduction

All graphs considered in this paper are finite, simple and undirected. Let G be a graph

with n (= n(G)) vertices and degree sequence d1, d2, · · · , dn. The line graph L(G) of a

graph G is defined as the graph whose vertex set is the set of edges of G, where two

vertices of L(G) are adjacent if and only if the corresponding edges in G have a common
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vertex. Obviously, the line graph of a regular graph is also regular. The tensor product

of two graphs G1 and G2 is the graph G1

⊗
G2 with vertex set V (G1)× V (G2), in which

two vertices (u1, u2) and (v1, v2) are adjacent if and only if both u1v1 ∈ E(G1) and

u2v2 ∈ E(G2). For natation and terminology not defined here, we refer to [22].

The graph energy [11,12] of a graph G, denoted by E(G), is defined as the sum of the

absolute values of all eigenvalues of its adjacency matrix, and is defined by

E(G) =
n∑

i=1

|λi|.

For more information on the graph energy and its applications in chemistry, we refer

to [13–15,18].

Gong et al. in [10] proposed the concept of borderenergetic graphs, i.e., graphs of order

n satisfying E(G) = 2(n − 1). More results on the borderenergetic graphs can be seen

in [3–7,9,17,19–21]. In particular, Li and Deng et al. in [5,6,8] studied the properties of

structures of borderenergetic graphs related to their girths and complements.

The energy of the line graph of a graph G and its relations with other graph energies

were early studied in [2, 16]. In this paper, we shall study the borderenergetic property

or borderenergeticity of the line graphs of connected graphs. As a result, we obtain that

for any connected graph G, except for the five graphs G1, G2, G3, G4 and G5 (see Figure

1), the line graph L(G) of G is not borderenergetic. As a consequence, we get that if G

is a borderenergetic graph, then the line graph of G is not borderenergetic. In addition,

we observe a relation between the lower bound of the energy of line graph L(G) of a

borderenergetic graph G and the minimum degree δ(G) of G.

2 Preliminary

We need some preparations before proceeding to our main results.

Theorem 2.1. [1] Let G be a graph with n vertices and m edges. Then

n∑

i=1

d2i ≥ ∆2 + δ2 +
(2m−∆− δ)2

n− 2
.

Moreover, the equality holds if and only if d2 = d3 = · · · = dn−1.

If G is a connected graph with n(≥ 2) vertices, 1 ≤ ∆ ≤ n − 1 and 1 ≤ δ ≤ n − 1,

then we get the following results.
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Corollary 2.2. Let G be a connected graph with n vertices and m edges. Then

m ≤ 1

2

√√√√(3n− 6)

(
n∑

i=1

d2i − 2

)
+ n− 1.

Theorem 2.3. [16] Let G be a graph with n vertices and m edges. Then

√√√√2
n∑

i=1

d2i − 4m ≤ E(L(G)) ≤
n∑

i=1

d2i − 2m.

Equality on the left-hand side is attained if and only if the components of G are P1 and/or

P2 and a single copy of either P3 or P4. Equality on the right-hand side is attained if and

only if the components of G are P1 and/or P2 and/or P3.

From Theorem 2.3, we can get the following conclusion.

Corollary 2.4. If the line graph of a connected graph G of order n is borderenergetic.

Then
n∑

i=1

d2i ≥ 4n− 6.

Proof. Let m be the number of edges of G. Because the line graph of G is borderenergetic,

we have E(L(G)) = 2(m− 1). From the right-hand inequality of Theorem 2.3, we have

2(m− 1) ≤
n∑

i=1

d2i − 2m,

i.e.,
n∑

i=1

d2i ≥ 4m− 2.

Since the graphG is connected, we havem ≥ n−1. So, eventually we get
∑n

i=1 d
2
i ≥ 4n−6.

Theorem 2.5. [16] Let G be an (n,m)-graph with vertex degrees di, i = 1, 2, · · · , n.
Then the line graph L(G) of G has m vertices and q edges, where q is given by

q = −m+
1

2

n∑

i=1

d2i .
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3 Main Result

By exhaust computer searching, we can conclude that, in all connected graphs with 1 ≤
n ≤ 10 vertices, there are only five graphs, i.e., G1, G2, G3, G4 and G5 (See Figure 1),

whose line graphs are borderenergetic, and their adjacency spectra are as follows:

G1 G2 G3

G4 G5

Figure 1. The connected graphs G1, G2, G3, G4 and G5.

Sp(G1) = {3.2361, 0(2),−1.2361,−2};

Sp(G2) = {3.8284, 1,−1(3),−1.8284};

Sp(G3) = {3, 1, 0(2),−2(2)};

Sp(G4) = {3, 0(4),−3};

Sp(G5) = {3, 1(5),−2(4)};

Sp(L(G1)) = {4.5616, 1(2), 0.4384,−1,−2(3)};

Sp(L(G2)) = {6, 2(2), 0(3),−2(5)};

SpL(G3)) = {4, 2, 1(2),−1(2),−2(3)};

Sp(L(G4)) = {4, 1(4),−2(4)};

Sp(L(G5)) = {4, 2(5),−1(4),−2(5)}.

Based on this, with some theoretical proof we obtain the following result.
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Theorem 3.1. For any connected graph G, except for the five graphs G1, G2, G3, G4 and

G5, the line graph L(G) of G is not borderenergetic.

Proof. For the case 1 ≤ n ≤ 10, there are only five graphs, i.e., G1, G2, G3, G4 and G5,

whose line graphs are borderenergetic. Now we consider connected graphs with orders

n ≥ 11. Let G be a connected graph with n ≥ 11 vertices and m edges. By contradiction,

suppose the line graph L(G) of G is borderenergetic. Then E(L(G)) = 2(m − 1). Since

E(G) ≥ 2
√
m, we have

E(L(G)) ≥ 2
√
q,

where q is the number of edges of the line graph L(G) and q = 1
2

∑n
i=1 d

2
i −m. So,

E(L(G)) ≥ 2
√
q = 2

√√√√1

2

n∑

i=1

d2i −m.

Moreover, we have

2(m− 1) ≥ 2

√√√√1

2

n∑

i=1

d2i −m,

i.e.,

(m− 1)2 ≥ 1

2

n∑

i=1

d2i −m.

By the above inequality, we obtain

m2 −m− 1

2

n∑

i=1

d2i + 1 ≥ 0.

Assume
∑n

i=1 d
2
i = x. Then we have

m2 −m− 1

2
x+ 1 ≥ 0. (1)

Since G is a connected graph, we have m ≥ n− 1. Combining Corollary 2.2 and (1), we

get
[
1

2

√
(3n− 6)(x− 2) + n− 1

]2
− n+ 1− 1

2
x+ 1 ≥ 0.

So,

(3n− 8)2

16
x2 − 6n3 − 5n2 − 48n+ 72

4
x+ n4 − 3n3 +

33

4
n2 − 24n+ 24 ≤ 0.

The left-hand expression of the above inequality can be seen as a function f(x) on variable

x. Then the above inequality can be written as

f(x) ≤ 0.
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By solving the inequality, we get that the above inequality holds if x1 ≤ x ≤ x2, where

x1 =
2(6n3 − 5n2 − 48n+ 72−

√
240n5 − 1680n4 + 4560n3 − 6000n2 + 3840n− 960)

(3n− 8)2
,

x2 =
2(6n3 − 5n2 − 48n+ 72 +

√
240n5 − 1680n4 + 4560n3 − 6000n2 + 3840n− 960)

(3n− 8)2
.

From Corollary 2.4, we know that x ≥ 4n − 6 when the line graph L(G) of G is a

borderenergetic graph. But we can check that when n ≥ 11, it holds that

x2 − (4n− 6) =
2(6n3 − 5n2 − 48n+ 72 +

√
240n5 − 1680n4 + 4560n3 − 6000n2 + 3840n− 960)

(3n− 8)2

− (4n− 6)

=
−24n3 + 236n2 − 640n+ 528

(3n− 8)2

+
2
√
240n5 − 1680n4 + 4560n3 − 6000n2 + 3840n− 960

(3n− 8)2

< 0.

That is, x2 < 4n − 6, which is a contradiction to 4n − 6 ≤ x ≤ x2. The result thus

follows.

It is easy to check that the above five exceptional graphs G1 through G5 in Figure 1

are not borderenergetic graphs. So we get the following consequence.

Corollary 3.2. If G is a connected borderenergetic graph, then the line graph L(G) of G

is not borderenergetic.

4 A low bound for the energy of the line graphs of

borderenergetic graphs

In this section, we are concerned about the lower bound of the graph energy of the line

graph of a borderenergetic graph. Under the condition of minimum degree δ, the energy

of the line graph L(G) of a graph G has the following property.

Theorem 4.1. [1] Let G be a graph of order n > 2 with m edges and minimum degree

δ. If δ ≥ n
2
+ 1, then the energy of L(G) is 4(m − n). Thus, the line graphs of all

(n,m)-graphs under the condition δ ≥ n
2
+ 1 are equienergetic.

Now we consider the energy of the line graph L(G) of a graph G under the condition

δ ≤ n
2
. Indeed, for any graph G, there exits a relation between the eigenvalues of the line

graph L(G) and the signless Laplacian eigenvalues of G; see below.
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Theorem 4.2. [1] Let G be a graph of order n with m ≥ 1 edges. Let qi be the i-th

greatest signless Laplacian eigenvalue of G and λi(L(G)) be the i-th greatest eigenvalue of

the line graph L(G) of G. Then

qi(G) = λi(L(G)) + 2, i = 1, 2, · · · , k, where k = min{n,m}.

In addition, if m > n, then λi(L(G)) = −2 for i ≥ n + 1 and if n > m, then qi(G) = 0

for i ≥ m+ 1.

Using Theorem 4.2, we can get the following result.

Theorem 4.3. Let G be a non-complete borderenergetic graph with n vertices and m

edges such that the minimum degree δ(G) ≤ n
2
. Then

E(L(G)) ≥ 4(m− n).

Proof. Since nδ ≤ n2

2
and nδ ≤ 2m ≤ n(n− 1), we have

nδ ≤ min{n
2

2
, 2m} ≤ n(n− 1).

Thus, there are the following two cases to be discussed. Note that n ≥ 7 when G is a

borderenergetic graph.

Case 1. min{n2

2
, 2m} = n2

2
.

Then we have nδ ≤ n2

2
≤ 2m ≤ n(n − 1), i.e., m ≥ n2

4
> n. By Theorem 4.2, we can

obtain
m∑

i=n+1

λi(L(G)) = −2(m− n),

m∑

i=n+1

|λi(L(G))| = 2(m− n).

Due to
∑m

i=1 λi(L(G)) = 0, we get

n∑

i=1

λi(L(G)) =
m∑

i=1

λi(L(G))−
m∑

i=n+1

λi(L(G)) = 0 + 2(m− n) = 2(m− n).

So, we obtain

E(L(G)) =
m∑

i=1

|λi(L(G))|

=
n∑

i=1

|λi(L(G))|+
m∑

i=n+1

|λi(L(G))|
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≥
n∑

i=1

λi(L(G)) + 2(m− n)

= 2(m− n) + 2(m− n)

= 4(m− n).

Case 2. min{n2

2
, 2m} = 2m.

Then we have nδ ≤ 2m ≤ n2

2
≤ n(n− 1), i.e., m ≤ n2

4
. If m > n, then it follows from

Case 1 that E(L(G)) ≥ 4(m − n). For the case m = n, it is obvious that E(L(G)) ≥ 0.

As m < n, we have

E(L(G)) =
m∑

i=1

|λi(L(G))| ≥ 4(m− n).

Next we find three graphs H1, H2 = (K3

⊗
K4)

⋃
K2 and H3, which are borderener-

getic graphs with minimum degrees of 2, 1 and 0, respectively. The graphs H1 and H3

are shown in Figure 2.

H δ n Sp(L(Hi)) E(L(Hi)) 4(m− n)

H1 2 10 {−2(22),−0.3567, 2, 2.5858, 3.3406, 4, 5(2), 5.0484, 5.4142, 11.9677} 88.7134 88

H2 1 14 {−2(24), 0, 1(2), 2(3), 5(6), 10} 96 92

H3 0 11 {−2(20), 2(5), 5(4), 10} 80 76

Table 2. The spectra and graph energy of the line graphs of graphs H1, H2 and H3.

H1 H3

Figure 2. The borderenergetic graphs H1 and H3.
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