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Abstract

Let G be a graph with n vertices and m edges. A vertex cover of G is a set Q
of vertices that contains one endpoint of every edge; the minimum cardinality of a
vertex cover is called the vertex cover number and it is denoted by β. In this paper,
we prove new lower bounds for the vertex cover number. For example it is shown

that β ≥ n
∆+1 and β ≥

√
(2∆−1)2+8m−(2∆−1)

2 , where ∆ denotes the maximum degree
of G. Moreover, both of these inequalities turn into equalities if and only if G is a
star graph. Some new lower bounds for the energy of G are given, too.

1 Introduction

Let G = (V,E) be a simple graph with vertex set V = {v1, v2, . . . , vn} and the edge set

E. The degree of a vertex x of G is denoted by d(x) and the maximum (resp. minimum)

degree of vertices of G is denoted by ∆ = ∆(G) (resp. δ = δ(G)). Avertex in G is

said to be isolated vertex if it has degree zero. For any graph G with n vertices and m

edges, m − n + 1 is called the cyclomatic number of G. In this paper, the number of

connected components (maximal connected subgraphs) of G is denoted by c(G). Also,

the adjacency matrix A(G) = (aij) is defined as n × n matrix, where aij = 1, if vi is

adjacent to vj; and aij = 0, otherwise. For any matrix A, A∗ is the conjugate transpose

of A. A Hermitian matrix is a complex square matrix such A = A∗. The singular values

of a matrix A are defined as the square roots of the eigenvalues of A∗A, and the energy

of A which is denoted by E(A) is the sum of its singular values. The energy of a graph G,
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denoted by E(G), is defined as the energy of A(G). Note that since A(G) is symmetric

real matrix, E(G) equals the sum of the absolute values of all eigenvalues of A(G). The

concept of graph energy was first introduced by Gutman in 1978 [13]. For detailed results

on graph energy we refer the reader to book [18], where the authors summarized the most

important results involving graph energy. A bipartite graph is a graph whose vertices can

be divided into two disjoint parts U and V such that every edge joins a vertex in U to one

in V . In this paper, the number of odd cycles of the graph G is denoted by co(G). It is

well-known that a graph G is bipartite if and only if co(G) = 0. A complete bipartite graph

is a bipartite graph in which every vertex of one part is joined to every vertex of the other

part. A complete bipartite graph whose size of parts equals a and b is denoted by Ka,b. If

the size of one of the parts is 1, then it is said to be a star graph. If X is a set of vertices

of G, then G[X] will denote the subgraph of induced by X, and G − X will denote the

subgraph of G induced by V (G)\X. Throughout this paper, the term k-connected means

k-vertex-connected. For more details about basic notations and definitions, see [5,10,25].

A vertex cover of a graph G is a set Q ⊂ V (G) that contains one endpoint of every

edge. The vertices in Q cover E(G). The minimum size of a vertex cover of G is called

the vertex cover number and it is denoted by β = β(G). The vertex covering problem and

vertex cover number is one of the most studied simple graph invariants; for more studies

about this topic, see [6, 11, 14, 16, 17]. In this paper, we prove some lower bounds for the

vertex cover number and the energy of graph depending on number of vertices n, number

of edges m and maximum degree ∆.

In Section 2, we use the double counting principle to prove that

β ≥ n

∆+ 1
,

with equality if and only if G is a star graph. Also, it is shown that if G contains a

minimum vertex cover whose induced subgraph is connected, then β ≥ n−2
∆−1

.

In Section 3, a new lower bound

β ≥
√
(2∆− 1)2 + 8m− (2∆− 1)

is found; also, it is proved that the equality holds for star graphs. Then this lower bound

is used to give a lower bound for the energy of graph. Caporossi et al. gave the following

lower bound based on the number of edges in [4] as

E(G) ≥ 2
√
m
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with equality if and only if G is the union of a complete bipartite graph Ka,b, where

ab = m, and arbitrarily many isolated vertices. Another lower bound was established

in [23] as follows:

E(G) ≥
√

2m+ n(n− 1)| detA(G)| 2n .

This lower bound was improved in [12] as

E(G) ≥
√

2m+ n(n− 2)| detA(G)| 2n .

To see more recent bounds for the energy of a graph, see [1–3, 7, 9, 15]. Most of these

bounds depends on the linear algebra parameters. In this paper, we give an upper bound

for the energy of graph in terms of the number of edges and maximum degree. Then in

this section, after recalling some bounds and spectral characterizations for the number of

odd cycles co(G), two lower bounds for the energy of graphs in terms of the number of

odd cycles and the maximum degree are given.

2 New lower bounds for vertex cover number in

terms of order and maximum degree

We start this section by the following result in which a lower bound for the vertex cover

number is determined and it is shown that the equality holds only for star graphs.

Theorem 1. Let G be a connected graph with n vertices, m edges, vertex cover number

β and maximum degree ∆ ≥ 2. Then

β ≥ n

∆+ 1
. (1)

Also, the equality holds if and only if G is a star graph.

Proof. Let Q be a minimum vertex cover of G and let H = G[Q] and K = G\H. Let F

be the set of edges between H and K. Applying the double counting principle, we count

the set F . Since the vertices in Q cover E(G), K contains no edge and G contains no

isolated verex, so

|F | ≥ |K| = n− β (2)

On the other hand,

|F | =
∑

v∈Q
(dG(v)− dH(v)) =

∑

v∈Q
dG(v)−

∑

v∈Q
dH(v) =

∑

v∈Q
dG(v)− 2m(H) ≤ β∆. (3)
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Combining (2) with (3), we have

β ≥ n

∆+ 1
. (4)

Also, it is clear that β = n
∆+1

if and only if all the following statements are true:

(i) For any vertex v ∈ V (H), d(v) = ∆, since the equality in (3) holds;

(ii) H is a null graph, i.e. Q is an independent set;

(iii) |F | = n − γ, i.e. each vertex of K is adjacent to exactly one vertex of H, for the

equality in (2) holds.

Now, since the complement of any minimum vertex cover is an independent set, we deduce

that G satisfies Conditions (i), (ii) and (iii) if and only if G ∼= βK1,∆. Therefore the

connectivity of G implies that β = n
∆+1

if and only if G ∼= K1,∆.

In the next theorem, the following notation will be used.

cv(G) = min{c(G[Q]) : Q is a minimum vertex cover of G}.

Theorem 2. Let G be a connected graph with order n, vertex cover number β and maxi-

mum degree ∆ ≥ 2. Then β ≥ n−2cv(G)
∆−1

.

Proof. Choose any minimum vertex cover Q of G and let H = G[X] and K = G \H.

Let F be the set of edges between H and K. Now, we apply the double counting principle,

for the set F . Since Q is a vertex cover,

|F | ≥ |K| = n− β (5)

On the other hand,

|F | =
∑

v∈Q
(dG(v)− dH(v)) =

∑

v∈Q
dG(v)−

∑

v∈X
dH(v) ≤ β∆− 2m(H)

≤ β∆− 2(β − c(H)) = β(∆− 2) + 2c(H) . (6)

Combining (5) with (6), we have

β ≥ n− 2c(H)

∆− 1
. (7)

Now, let H be induced subgraph on a minimum dominating set such that c(H) = cv(G).

Then we have

β ≥ n− 2cv(G)

∆− 1
, (8)

as desired.
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Corollary 3. Let G be a connected graph with order n, vertex cover number β and

maximum degree ∆ ≥ 2. If G contains a minimum vertex cover Q with G[Q] connected,

then β ≥ n−2
∆−1

.

Proof. Choose a minimum vertex cover Q such that H = G[Q] be connected. Then the

assertion follows from (8).

Remark 4. Let G be a graph which contains a minimum dominating set Q with G[Q]

connected. Then it is not hard to check that the lower bound, obtained in Corollary 3 is

better than the one which was obtained in Theorem 1.

3 A lower bound for vertex cover number and energy

of graphs

This section is devoted to proving a new lower bound for the vertex cover number de-

pending on the number of edges and maximum degree. Some examples and applications

are given, too.

Theorem 5. Let G be a connected graph with m edges, vertex cover number β and

maximum degree ∆ ≥ 2. Then

β ≥
√
(2∆− 1)2 + 8m− (2∆− 1)

2
(9)

Moreover, the only extremal graph whose vertex cover number attain the lower bound is a

star graph.

Proof. Let Q be a minimum vertex cover of G, H = G[Q] and K = G \ H. We use

double counting principle for the set E(H). It is clear that

|E(H)| ≤ β(β − 1)

2
(10)

On the other hand, since Q is a vertex cover of G, K contains no edge and G contains no

isolated verex, so

|E(H)| = m− |F | (11)

Similar to the proof in Theorem 1, we have

|F | =
∑

v∈Q
(dG(v)− dH(v)) =

∑

v∈Q
dG(v)−

∑

v∈Q
dH(v) =

∑

v∈Q
dG(v)− 2m(H) ≤ ∆β. (12)
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Now, from (11) and (12), we obtain the following inequality:

|E(H)| ≥ m−∆β (13)

Combining (10) with (13), we have

β2 + (2∆− 1)β − 2m ≥ 0. (14)

Therefore, either β ≤ 1−2∆−
√

(2∆−1)2+8m

2
or β ≥ 1−2∆+

√
(2∆−1)2+8m

2
. Since β ≥ 1, the first

inequality does not hold. So, the assertion follows. Moreover, the equality in (9) holds if

and only if all inequalities involved in (10)-(14) turn into equalities, which implies that:

(i) H is a complete graph with β vertices, by (10);

(ii) Every vertex in Q is adjacent to ∆ vertices from K and m(H) = 0, by (12).

Therefore, the equality in (9) holds if and only if G ∼= K1,∆.

Corollary 6. For any connected graph G with n vertices, m edges, maximum degree ∆,

β(G) ≥ max

{⌈
n

∆+ 1

⌉
,

⌈
1− 2∆ +

√
(2∆− 1)2 + 8m

2

⌉}
.

Example 7. Let G be a graph with n vertices, m edges and maximum degree ∆.

(a) If G ∼= K1,r, then β(G) and both lower bounds in (1) and (9) are 1.

(b) If G ∼= K2,r, then β(G) = 2 and

⌈
n

∆+ 1

⌉
=

⌈
1− 2∆ +

√
(2∆− 1)2 + 8m

2

⌉
= 2.

(c) If G ∼= K3,3, then β(G) = 3 and

⌈
n

∆+ 1

⌉
= 2;

⌈
1− 2∆ +

√
(2∆− 1)2 + 8m

2

⌉
= 3.

So, for this graph the lower bound (9) is better than that of (1).

In the continuing of this section, we give some upper bounds for the energy of the graph

G in terms of its vertex cover number β(G) and the number of odd cycles co(G). Before

this, it is needed to recall some bounds and spectral characterizations for the parameter



689

c(G). From classical graph theory, we know that a graph is bipartite if and only if it has

no odd cycle. If we focus on nonbipartite graphs, then two problems (about odd cycles

in graphs), arise.

The first one is about the length and the number of the shortest odd cycles. This

problem has been solved by using tools of spectral graph theory. In algebraic graph

theory, it is shown that if χ(G, λ) = λn + a1λ
n−1 + a2λ

n−2 + · · ·+ an is the characteristic

polynomial of G, then the length of the shortest odd cycle in G is equal to the index of the

first non-vanishing coefficient among a1, a3, a5, . . .; moreover, the number of such cycles in

G equals −af
2
. There are many other spectral conditions for odd cycles in non-bipartite

graphs. For example, see [8, 19, 20]. Let S2k−1(Ks,t) be the graph obtained by replacing

an edge of Ks,t with a path P2k+1, where k ≥ 2. Clearly, the odd girth of S2k−1(Ks,t)

is 2k + 3. Lin, Ning and Wu [20] showed that the graph S1(K⌈n−1
2

⌉,⌊n−1
2

⌋) among all

nonbipartite triangle-free graphs has maximum spectral radius. Moreover, they posed the

following general question:

Question 1 Which class of graphs attain the maximum spectral radius among all

nonbipartite graphs with order n and odd girth at least 2k + 3?

Recently, Lin and Guo [20] answer this question. In fact, the proved that the graph

S2k−1(K⌈n−2k+1
2

⌉,⌊n−2k+1
2

⌋) has maximum spectral radius among all graphs of order n whose

length of the shortest odd cycle is 2k + 3.

The secound problem is about the number of odd cycles in a graph of order n. There

is no explicit formula for calculating the parameter co(G), the number of odd cycles, in

an arbitrary graph. However, there are some bounds and spectral characterizations for

this parameter. The signature s(G) of G is the difference between the number of positive

eigenvalues and the number of negative eigenvalues of the adjacency matrix A(G). Ma,

Yang and Li [22] proved that co(G) ≥ |s(G)|. Then, Ma, Wong and Tian [21] characterized

graphs whose number of odd cycles equals |s(G)|; see [21, Theorems 3.9 and 4.1] for more

details. Hare [8] gives some tools for counting odd cycles in graphs, too. For any 2-

connected nonbipartite graph G, it is shown that the cyclomatic number of G is a sharp

lower bound for the number of its odd cycles. Also, it is proved that any 3-connected

nonbipartite graph G with n vertices contains at least 2r(G)− 2 ≥ n odd cycles.

Wang and Ma [24] proved the following lower bound for the energy of a graph.
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Theorem 8.( [24, Theorem 4.2]) Let G be a graph with vertex cover number β. Then

E(G) ≥ 2β − 2co(G). In particular, if G is a bipartite graph, then E(G) ≥ 2β.

Remark 9. The lower bound given by Ma and Wang is not suitable for some graphs.

For example:

(i) The eigenvalues of the adjacency matrix of the complete graph Kn are

{n− 1,−1,−1, . . . ,−1︸ ︷︷ ︸
n−1 times

}

and so, E(Kn) = 2n−2. On the other hand, 2β−2co(Kn) = 2(n−1)−2co(G) which

is a trivial lower bound for E(Kn). So, the lower bound in Theorem 8 is trivial.

(ii) Start with a triangle. Add to each of its edges one new vertex and connect this new

vertices to forming a new triangle. Let G be a constructed graph by this method.

This graph has co(G) = 8 odd cycles and its vertex cover number is β = 3. So,

again the lower bound for energy, given in Theorem 8, is a negative integer.

However, this lower bound is suitable for many other graphs.

Using Theorems 5 and 8, we have the following immediate corollary which determines

a lower bound for the energy of graph in terms of number of edges and maximum degree.

Corollary 10. Let G be a graph with m edges, co odd cycles and maximum degree ∆.

Then

E(G) ≥
√
(2∆− 1)2 + 8m− 2(∆ + co(G)) + 1.

In partucular, if G is a bipartite graph, then

E(G) ≥
√

(2∆− 1)2 + 8m− (2∆− 1).

Lemma 11. Let G =G1 ∪G2 ∪ · · · ∪Gs, where G1, G2, . . . , Gs are connected components

of G. Then

E(G) =
s∑

i=1

E(Gi); β(G) =
s∑

i=1

β(Gi).

Proof. The first equality follows from this fact that the adjacency matrix of the graph

G, the union of some graphs Gi, is a block matrix whose blocks are the adjacency matrices

of graphs Gi, and so the spectrum of G is the union of spectrum of Gis. The secound one

follows from this fact that a minimum vertex cover of G is the union of some minimum

vertex covers of Gis.
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Now, as an application of Theorem 2, we find a lower bound for the energy of a graph.

From Theorem 2, Corollary 10, and Lemma 11, we have the following immediate corollary

for not necessary connected graphs.

Corollary 12. Let G be a graph with m edges, vertex cover number β, k odd cycles and

maximum degree ∆ ≥ 2. Then

E(G) ≥ 2(β − k) ≥
√
(2∆− 1)2 + 8m− 2(∆ + k) + 1.
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