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Abstract

We use Hadamard’s determinantal inequality and its generalization to prove
some upper bounds on the energy of a graph in terms of degrees, average 2-degrees
and number of common neighbors of its vertices. Also, we prove an inequality
relating the energy of a graph and one arbitrary subgraph of it.

1 Introduction

To a graph G (which is always assumed to be finite, simple and undirected) with the

vertex set {1, . . . , n}, we can assign a symmetric (0, 1) matrix A, which is called the

adjacency matrix of G, whose (i, j) entry is one if and only if i and j are adjacent. The

energy of G, which is introduced by Gutman in [7] and is denoted by E(G), is the sum of

absolute values of the eigenvalues of A.

As is mentioned by Nikiforov in [15], the energy of a graph is the same as the trace

norm of its adjacency matrix. The trace norm of a general complex square matrix A is

defined as the sum of its singular values. In this paper, we use the term energy of A to

refer to the trace norm of A and denote this quantity by E(A).
There are many lower and upper bounds for the energy of a graph, see for example

Chapter 5 of [10]. The purpose of this paper is to investigate the application of Hadamard’s

inequality and its generalizations for finding upper bounds for the energy of graphs and

matrices in general. The Hadamard’s inequality can be stated in two equivalent forms,

which are presented in the following theorem. Note that Mn(C) denotes the set of all n×n
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complex matrices, and the Euclidean norm of a complex vector (c1, . . . , cn) is defined as
√∑n

i=1 |ci|2.

Theorem 1. (Hadamard’s inequality)

(i) Let A = [aij] ∈ Mn(C) be positive definite. Then

det(A) ≤ a11 · · · ann·

(ii) Let A ∈ Mn(C) and ri be the Euclidean norm of the i-th row of A. Then

| det(A)| ≤ r1 · · · rn·

For more information about this fundamental inequality, its proof and some of its

generalizations, see [11, Section 7.8].

In Section 2 of this paper, we use an intermediate Lemma appeared in [16] for the proof

of the Coulson integral formula to express the energy of a matrix as an integral involving

a determinant, and using that expression and applying the Hadamard’s inequality we

find some upper bounds for the energy of a matrix and a graph. In Section 3, we use a

generalization of the Hadamard inequality, namely the Fischer’s inequality, to prove an

upper bound for the energy of a graph which involves the number of common neighbors of

some of the vertices. Finally in Section 3, we use an inequality about the singular values

of the Hadamard product of two matrices to find a relation between the energy of a graph

and the energy of one of its subgraphs.

2 Upper bounds on the energy using Hadamard’s in-

equality

One of the fundamental formulas for computing the energy of a graph is the Coulson

integral formula [5]. This formula expresses the the energy of a graph as an integral

involving the characteristic polynomial of that graph. The following Lemma is used

in [16] to prove the Coulson integral formula.

Lemma 2. [16, Lemma 5.3.2] For every real number a,

|a| = 1

π

∫ ∞

0

1

x2
ln(1 + x2a2)dx.

This lemma enables us to prove the following theorem for the energy of a general

complex square matrix. Note that similar formulas are reported in [8] for the adjacency

matrices of general graphs and in [6] for acyclic graphs.
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Theorem 3. For A ∈ Mn(C),

E(A) = 1

π

∫ ∞

0

1

x2
ln det

(
I + x2AA∗) dx.

Proof. Let σ1, . . . , σk be the nonzero singular values of A. So σ2
1, . . . , σ

2
k are nonzero

eigenvalues of AA∗ and for every real number x,

det
(
I + x2AA∗) =

k∏

j=1

(1 + x2σ2
j ).

Now by Lemma 2, σj =
1
π

∫∞
0

1
x2 ln(1+σ2

jx
2)dx, for every j ∈ {1, . . . , k}, which implies

that

E(A) =
k∑

j=1

σj =
1

π

∫ ∞

0

1

x2
ln

k∏

j=1

(1 + x2σ2
j )dx

=
1

π

∫ ∞

0

1

x2
ln det

(
I + x2AA∗) dx,

as desired.

The integrand in Theorem 3 contains the determinant of a positive definite matrix,

and this determinant can be bounded using the Hadamard’s inequality. This leads us to

the next theorem.

Theorem 4. Let A ∈ Mn(C) and denote the Euclidean norm of the i-th row of A by ri.

Then

E(A) ≤
n∑

i=1

ri.

Proof. For every real number x, the diagonal entries of the positive definite matrix I +

x2AA∗ are 1 + x2r21, . . . , 1 + x2r2n. So by the Hadamard’s inequality, det(I + x2AA∗) ≤
∏n

i=1(1 + x2r2i ). Now, Theorem 3 and Lemma 2 give

E(A) = 1

π

∫ ∞

0

1

x2
ln det

(
I + x2AA∗) dx ≤ 1

π

∫ ∞

0

1

x2
ln

n∏

i=1

(1 + x2r2i )dx =
n∑

i=1

ri,

which completes the proof.

For a Hermitian matrix A, E(A) is the sum of absolute values of the eigenvalues of

A. In some cases, it is desirable to consider a matrix similar to A and use the sum

of Euclidean norms of the rows of that matrix to find an upper bound for the energy.

But, although the eigenvalues are invariant under a similarity transformation, singular

values are not, and so the energy may change by such a transformation. In this cases the

following corollary could be helpful.
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Corollary 5. Let A ∈ Mn(C) has the eigenvalues λ1, . . . , λn. If the Euclidean norm of

the i-th row of A is ri, then
n∑

i=1

|λi| ≤
n∑

i=1

ri.

In particular, if A is Hermitian, P is an invertible n× n matrix and the Euclidean norm

of the i-th row of P−1AP is ri, then

E(A) ≤
n∑

i=1

ri.

Proof. Assume that λ1 ≥ · · · ≥ λk be the nonzero eigenvalues of A. Also, let σ1 ≥
· · · ≥ σk be the positive singular values of A. By a theorem attributed to Weyl in [2,

p.43], (σ1, . . . , σk) log-majorizes (|λ1|, . . . , |λk|). But by [13, p. 168, A.2.b], weak log-

majorization implies weak majorization. So (σ1, . . . , σk) weakly majorizes (|λ1|, . . . , |λk|).
In particular,

k∑

i=1

|λi| ≤
k∑

i=1

σk = E(A).

This inequality together with Theorem 4 give the first part.

For the second part, note that the energy of the Hermitian matrix A is the sum of

absolute values of its eigenvalues, and the eigenvalues of A and P−1AP are the same. So

using the first part for P−1AP gives the result.

In [1] the energy of a complex square matrix is defined to be the sum of absolute values

of its eigenvalues. Theorem 5 shows that the sum of Euclidean norms of the rows of a

matrix is an upper bound for this type of energy too.

The following upper bound for the energy of a graph is obtained in [3] and [4] using

the concept of the energy of a vertex. Here, we present a new proof based on Theorem 4.

Theorem 6. If G is a graph with degree sequence d1, . . . , dn, then

E(G) ≤
n∑

i=1

√
di .

Proof. The Euclidean norm of the i-th row of the adjacency matrix of a graph is the

square root of the degree of its i-th vertex. So Theorem 4 gives the result.

One of the simplest upper bounds for the energy of a graph is the McClelland’s bound

[14], which states that for every graph G with n vertices and m edges, E(G) ≤
√
2nm.

Since Cauchy–Schwarz inequality implies that
∑n

i=1

√
di ≤

√
n
∑n

i=1 di =
√
2nm, the
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bound in Theorem 6 is better than McClelland’s bound. Another simple upper bound

for the energy of a graph in terms of the number of vertices and the number of edges is

stated in the following theorem.

Theorem 7. [9] If 2m ≥ n and G is a graph of order n and size m, then

E(G) ≤ 2m

n
+

√√√√(n− 1)

[
2m−

(
2m

n

)2
]
.

Computation shows that among 11716573 connected graphs with at most 10 vertices,

there are only 74518 graphs for which the upper bound in Theorem 6 is better than the

upper bound given in Theorem 7, so Theorem 6 is rather weak. In the next section we

try to use a generalization of the Hadamard’s inequality to find a better upper bound. To

see another upper bound for the energy of a graph which depends on the degree sequence,

see [19].

Other quantities that have been used to find upper bounds for the energy of a graph

are that of the 2-degrees and the average 2-degrees of the vertices (see [17]). The 2-degree

of a vertex is the sum of the degrees of its neighbors, and the average 2-degree of that

vertex is the arithmetic mean of the degrees of its neighbors (provided that the vertex

is not isolated). In the following theorem, we prove an upper bound for the energy in

terms of the average 2-degrees of the vertices. The expression is quiet similar to that of

Theorem 6.

Theorem 8. Let G be a graph with the vertex set {1, . . . , n} and without isolated vertices,

and let mi be the average 2-degree of i. Then,

E(G) ≤
n∑

i=1

√
mi.

Proof. Let di be the degree of i and let P be a diagonal matrix with the diagonal entries
√
d1, . . . ,

√
dn. If A = [aij] is the adjacency matrix of A, then P−1AP =

[
aij

√
dj√
di

]
, and

the square of the Euclidean norm of the i-th row of this matrix is

n∑

j=1

a2ij
dj
di

=
1

di

n∑

j=1

aijdj = mi.

So by Corollary 5, E(G) ≤ ∑n
i=1

√
mi.
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3 Energy upper bound using Fischer’s inequality

In this section we use the Fischer’s inequality, which is a generalization of the Hadamard’s

inequality, to find another upper bound for the energy of a graph. For a proof of the

Fischer’s inequality, see [11, Theorem 7.8.5] and the exercise following it.

Theorem 9. Let M be a positive definite matrix in the following block form:

M =




M11 · · · M1k
...

. . .
...

Mk1 · · · Mkk




and assume that M11, . . . ,Mkk are square matrices. Then, det(M) ≤ det(M11) · · · ≤
det(Mkk).

The following lemma is a generalization of Lemma 2.

Lemma 10. Let f be a polynomial of degree n with negative real roots −c1, . . . ,−cn, and

suppose that f(0) = 1. Then,

1

π

∫ ∞

0

1

x2
ln f(x2)dx =

n∑

i=1

1√
ci
·

Proof. Let a be the leading coefficient of f . Then,

f(x) = a(x+ c1) · · · (x+ cn) = ac1 · · · cn
(
1 +

x

c1

)
· · ·

(
1 +

x

cn

)

=

(
1 +

x

c1

)
· · ·

(
1 +

x

cn

)
,

since ac1 . . . cn = f(0) = 1. Now, using Lemma 2 we get

1

π

∫ ∞

0

1

x2
ln f(x2)dx =

1

π

∫ ∞

0

1

x2
ln

n∏

i=1

(
1 +

x2

ci

)
dx

=
n∑

i=1

1

π

∫ ∞

0

1

x2
ln

(
1 +

x2

ci

)
dx =

n∑

i=1

1√
ci
,

and this completes the proof.

A matching over {1, . . . , n} is a set of disjoint two-element subsets of {1, . . . , n}. An

element of {1, . . . , n} is said to be covered by M if it belongs to one of the sets in M .

Theorem 11. Let G be a graph with the vertex set {1, . . . , n}, M be a matching over

{1, . . . , n}, and N be the vertices not covered by M . Also, suppose that di is the degree of

i and dij is the number of common neighbors of i and j. Then

E(G) ≤
∑

i∈N

√
di +

∑

{i,j}∈M

√
di + di + 2

√
didj − d2ij
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Proof. Without the loss of generality we can assume that M = {{1, 2}, {3, 4}, . . . , {2r −
1, 2r}}. Let A be the adjacency matrix of G. The matrix AA∗ = A2 can be written in

the following block form:

A2 =




B1

. . . ∗
Br

d2r+1

∗ . . .

dn




where Bi =

(
d2i−1 d2i−1,2i

d2i−1,2i d2i

)
. So by Theorem 3 and Fischer’s inequality,

E(G) =
1

π

∫ ∞

0

1

x2
ln det(I + x2A2)dx ≤ 1

π

∫ ∞

0

1

x2
ln

[
r∏

i=1

det(I + x2Bi)

n∏

i=2r+1

(1 + dix
2)

]
dx

=

r∑

i=1

1

π

∫ ∞

0

1

x2
ln det(I + x2Bi)dx+

n∑

i=2r+1

1

π

∫ ∞

0

1

x2
ln(1 + dix

2)dx.

By Lemma 2, 1
π

∫∞
0

1
x2 ln(1 + dix

2)dx =
√
di. Also, let

fi(x) = det(I + xBi) = (1 + dsx)(1 + dtx)− d2stx
2,

where for simplifying the formulas we let s = 2i − 1 and t = 2i. The reciprocals of the

roots of fi are −1
2

(
ds + dt ±

√
(ds − dt)2 + 4d2st

)
, so be Lemma 10,

1

π

∫ ∞

0

1

x2
ln fi(x

2)dx =

√
ds + dt +

√
(ds − dt)2 + 4d2st
2

+

√
ds + dt −

√
(ds − dt)2 + 4d2st
2

=

√
ds + dt + 2

√
dsdt − d2st.

Therefore,

E(G) ≤
r∑

i=1

√
d2i−1 + d2i + 2

√
d2i−1d2i − d22i−1,2i +

n∑

i=2r+1

√
di

=
∑

{i,j}∈M

√
di + di + 2

√
didj − d2ij +

∑

i∈N

√
di,

as desired.

Note that √
di + di + 2

√
didj − d2ij ≤

√
di +

√
dj
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and the equality holds if and only if dij = 0. So, Theorem 11 generally gives a better

bound than Theorem 6. Also, the optimal result of Theorem 11 is obtained when M is

as large as possible. So when n is even, one should choose a matching that covers all of

{1, . . . , n}, and when n is odd, a matching that covers n− 1 vertices should be chosen.

4 Energy of a subgraph

There is another way of looking at the Hadamard’s inequality using the notion of Hada-

mard product. For A = [aij], B = [bij] ∈ Mn(C), the Hadamard product (or Schur

product) of A and B is defined as A ◦ B = [aijbij]. Now, the Hadamard’s inequality

can be restated as follows: for every positive definite matrix A, det(A) ≤ det(A ◦ I).

There are many results concerning the eigenvalues and singular values of the Hadamard

product. In this section, we use such a theorem to find an upper bound for the energy of

a subgraph. Note that for A ∈ Mn(C), σ1(A) ≥ · · · ≥ σn(A) denote the singular values

of A in descending order. Also, let r1(A) ≥ · · · ≥ rn(A) be the Euclidean norms of the

rows of A in descending order.

Theorem 12. [12, Theorem 5.5.20] For any n× n complex matrices A,B,

n∑

i=1

σi(A ◦B) ≤
n∑

i=1

ri(B)σi(A).

A generalization of this theorem is proved in in [18].

The energy of an induced subgraph of a graph G is less than or equal to the energy of

G [10, Theorem 4.19], but similar inequality does not hold for an arbitrary subgraph (for

example, see [16, p.199]). Nevertheless, we can find an inequality relating the energy of a

graph and the energy of an arbitrary subgraph of it.

Theorem 13. Let H be a subraph of G with maximum degree ∆(H). Then

E(H) ≤ E(G)
√
∆(H)·

Proof. Since there is a spanning subgraph of G which contains H as an induced subgraph,

and the energy of an induced subgraph is less than or equal to the the energy of its

supergraph, we can assume thatH is a spanning subgraph of G. Let A,B be the adjacency

matrices of G and H, respectively, with the same ordering of the vertices. It is clear that

A◦B = B, and the Euclidean norm of the i-th row of B is the square root of the i-th vertex
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of H which is at most
√
∆(H). So, by Theorem 12,

∑n
i=1 σi(B) ≤ ∑n

i=1 ∆(H)σi(A), or

E(H) ≤
√
∆(H)E(G), as desired.
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